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Introduction
A geometry able to include mountains and clouds now exists. I put it together in 1975, 
but of course it incorporates numerous pieces that have been around for a very long time. 
Like everything in science, this new geometry has very, very deep and long roots.

Benoît B. Mandelbrot

Introduction

This enhanced and expanded edition of THE COLOURS OF INFINITY features an additional chapter on the 
money markets by the fractal master himself, Professor Benoît Mandelbrot. The DVD of the film associated 
with this book has been re-mastered especially for this edition with exquisite new fractal animations, which 
will take your breath away!

Driven by the curious enthusiasm that engulfs many fractalistas, in 1994, Nigel Lesmoir-Gordon overcame 
enormous obstacles to raise the finance for, then shoot and edit the groundbreaking TV documentary from 
which this book takes its name. The film has been transmitted on TV channels in over fifty countries around 
the world. This book is not just a celebration of the discovery of the Mandelbrot set, it also brings fractal 
geometry up to date with a gathering of the thoughts and enthusiasms of the foremost writers and researchers 
in the field.

As Ian Stewart makes clear in the opening chapter, there were antecedents for fractal geometry before 1975 
when Mandelbrot gave the subject its name and began to develop the underlying theory. It took the genius of 
Mandelbrot, allied with the computer power available to him at IBM, to realize the practicality, beauty and 
fascination in the subject, and to act as its propagator through a long and influential career.

The first chapter by Benoît Mandelbrot in this book is based on a paper delivered before a Nobel Conference 
in Stockholm called A Geometry Able to Include Mountains and Clouds. The breadth of his vision, extend-
ing from mathematics to economics, from art to language, is extraordinary. As several of the contributors 
note, once you take a fractal view of the universe, you see the evidence everywhere – in water, in clouds, in 
trees, in art (see Rood’s chapter), in the human body and in the workings of the World Wide Web (Flake and 
Pennock). Mandelbrot’s second chapter, Fractal Financial Fluctuations looks deeply into the fractal nature of 
the growth and collapse of financial prices. His radically new fractal modelling techniques cast a whole new 
light of order into the seemingly impenetrable thicket of the financial markets.

The article by Arthur C. Clarke is a special case. Its 4,000 or so words are a lucid miniature of scientific 
popularization, reflecting the excitement fractal geometry induces in so many of its converts. It also, as Nigel 



Lesmoir-Gordon explains in his account of how the film came to be made, offered a link between himself and 
Clarke, the film’s anchor, and lent its name to the film project itself.

Four of the film’s contributors (Stewart, Clarke, Mandelbrot and Barnsley) have chapters in the book. 
Rood, Flake and Pennock, as well as Nigel Lesmoir-Gordon, the film’s begetter, contribute original chapters 
specifically for this volume.

Using a metaphor of a random soccer game, Michael Barnsley with his wife Louisa, the originators of fractal 
image compression technology, present the ideas of fractal transformation and colour stealing using random 
iteration for the first time.

Will Rood takes the animation of fractals into a new area by explaining how the M-set is coloured and 
then how the strange reptiles of Dutch conceptual artist M. C. Escher (1898–1972), the ‘undisputed master 
of tessellated art’, can be mapped onto the exterior of quadratic fractals, allowing the creation of tessellation 
with fractal limits.

Gary Flake and David Pennock propose an ‘optimistic and realistic’ interpretation of the NFL (‘no free 
lunch’) theory as a key to understanding the current state of the World Wide Web and how it will evolve 
over time. Given its huge traffic and lack of central authority, the Web could have been infinitely complex, 
but it is in fact exceedingly regular; and this regularity can be exploited to make more effective algorithms for 
finding information on the Web.

The Colours of Infinity brings together all the leading names in the fractal geometry field. Between them 
the contributors have published at least 200 books under their own names, and in collaboration. You will feel 
in their articles an ease with communicating sometimes difficult abstract concepts and an urge to share the 
powerful meanings their insights into the world of fractals have for all of us. In terms of positive energy and 
commitment to the subject they are a persuasive community.

The last chapter of this collection is unusual in that it sets out the full shooting script of the film, with audio 
and spoken word alongside. This may well prove invaluable source material in, for example, the educational 
use of the film, which has gradually increased over the decade or so since the film’s release.

The Colours of Infinity, the movie, made with so much evident pleasure, is approaching cult status and now 
gains a new lease of life by being coupled with this stimulating collection, expanding the film’s concerns still 
further.

The soundtrack of the DVD, with Pink Floyd’s David Gilmour’s soaring guitar almost an aural fractal in its 
own right, is totally accessible, as are Will Rood’s beautifully coloured animations of the fractals. The music 
and the images together have become club and garage favourites, and it is easy to understand why. Is it too far 
fetched to see in this harmonious matching of sound and image a tribute to the way Stanley Kubrick handled 
them in the Stargate sequence of his science fiction masterpiece 2001: A Space Odyssey? – a powerful link 
back to Arthur C. Clarke.

One of the many strange thoughts that the M-set generates is this. In principle, it could have 
been discovered as soon as the human race learned to count. In practice, since even a low 
magnification image may involve billions of calculations, there was no way in which it could 
even be glimpsed before computers were invented. 

Sir Arthur C. Clarke
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1  The Nature  
of Fractal  
Geometry

Ian Stewart

Fractals are more than just stunning visual effects – they open 
up new ways to model nature and allow us to quantify terms like 
‘irregular’, ‘rough’ and ‘complicated’, writes mathematician Ian 
Stewart. His chapter does a service to the non-specialist reader in 
giving a largely non-technical introduction to fractal geometry in 
the context of mathematical traditions and its commercial appli-
cations. Stewart shows both how concepts like fractal dimension 
have a lengthy prehistory and also how Mandelbrot brought to 
the subject a systematic treatment, uniting theory and application. 
Mandelbrot’s most important contribution to fractal geometry, 
Stewart suggests, ‘was the realization that there was a subject’.

N. Lesmoir-Gordon (ed.), The Colours of Infinity: The Beauty and Power of Fractals,
DOI 10.1007/978-1-84996-486-9_1, © Springer-Verlag London Limited 2010
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Thirty years ago, no one had heard of fractals. 
The concept existed, but the name was not 
coined until about 1975. Today, almost eve-

ryone has heard of fractals, and probably has a mug 
or a T-shirt or a poster somewhere around the house 
with one of the remarkable, intricate computer 
images that the word brings to mind. The impor-
tance of fractals, however, goes well beyond their 
visual attractiveness. What makes them so useful in 
today’s scientific research is that they have opened 
up entirely new ways to model nature. They give 
scientists a powerful tool with which to understand 
processes and structures hitherto described merely as 
‘irregular’, ‘intermittent’, ‘rough’, or ‘complicated’.

What is a fractal? As a first, broad-brush descrip-
tion: it is a geometric form that possesses detailed 
structure on a wide range of scales. Think of the 
rocky slopes of a mountain, the proliferating fronds 
of a fern, and the fluffy outline of a cloud. These are 
physical objects: ‘fractal’ is a mathematical concept, 
and it relates to the real world in the same man-
ner that ‘sphere’ relates to the shape of the Earth 
and ‘spiral’ relates to the shape of a snail shell. A 
mathematical fractal idealizes the intricacy of rocks 
and clouds: it has detailed structure on all scales. 
However much it is magnified, it does not ‘flatten 
out’ into a simple shape like a line or a plane.

Mathematical objects are idealized models of 
certain features of the real world; they are not real 
things, and they do not correspond exactly to real 
things. The Earth is not a perfect sphere; even allow-
ing for its bulging equator, it is not a perfect ellipsoid 
either, even though many astronomy and earth sci-
ence textbooks describe it that way. It has mountain 
ranges that give it a rough surface, unlike the infinite 
smoothness of the mathematical ideal. However, this 
type of inaccuracy does not stop scientists modelling 

the Earth as a sphere. In fact, the great advantage of 
a sphere as a model, for many purposes, is that it does 
not represent the intricacies of the real planet exactly. 
If it did, it would be no more use than a map of New 
York that is the same size as New York, with every 
traffic-light, doorstep, and cat rendered in perfect 
detail. A map must be simpler than the territory.

Models are tailored to suit particular objectives. 
If the objective is to understand mountain-building, 
then it is pointless to assume that the Earth is a 
smooth sphere. But if the objective is the long-term 
behaviour of the solar system, then a sphere is entirely 
acceptable, and a ‘point mass’ – even further from 
physical reality, since it assumes the Earth’s diam-
eter is zero – may well be better. In the same way, a 
mathematical fractal has detailed structure on scales 
so fine that they subdivide atoms – indeed, on scales 
finer than the Planck Length, at which level the uni-
verse becomes lumpy instead of smooth and ‘distance’ 
makes no sense. This discrepancy with the real world 
does not make fractals useless or irrelevant. As with 
the sphere and the map, what matters is the extent to 
which the model illuminates reality, not the extent 
to which it copies reality.

Fractals make it possible to quantify terms like 
‘irregular’, ‘intermittent’, ‘rough’, and ‘complicated’. 
How rough? 1.59 rough or 2.71 rough? Fractal geom-
etry gives such statements a meaning, and makes it 
possible to test them in experiments. Mathematics 
provides a number, associated with each frac-
tal, called its fractal dimension. The dimension 
reflects, among other things, the scaling properties 
of the fractal – how its structure changes when it is 
magnified. Unlike the traditional smooth curves and 
surfaces of much mathematical physics and applied 
mathematics, the dimension of a fractal need not be 
a whole number. It can, for example, be 1.59 or 2.71. 

The universe is full of fractals.  Indeed it may even be one.
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The term ‘fractal’ was introduced by Mandelbrot, but many of the subject’s
oncepts – notably fractal dimension – have a lengthy prehistory.
Mandelbrot’s contributions to the subject have been many, but the most
important was the realization that there was a subject.

In fact, the difference between the fractal dimension 
of a geometric shape and its dimension in the usual 
‘topological’ sense of mathematics provides a quanti-
tative measure of just how rough the fractal is.

The notion of a fractal was brought to scien-
tific prominence by Benoît Mandelbrot in 1975, and 
promoted in his book Fractals: Form, Chance, and 
Dimension of 1977. A revised edition appeared in 
1982 under the title The Fractal Geometry of Nature. 
The term ‘fractal’ was introduced by Mandelbrot, 
but many of the subject’s concepts – notably fractal 
dimension – have a lengthy prehistory. Mandelbrot’s 
contributions to the subject have been many, but 
the most important was the realization that there 
was a subject. Mathematicians had studied spaces of 
non-integer dimension long before Mandelbrot; sci-
entists had observed scaling laws and self-similarities 
in natural phenomena. But a systematic treatment, 
uniting theory and application, was lacking.

Now, some thirty years later, the theory that was 
stimulated by Mandelbrot’s insight is thriving. A 
glance through the leading scientific journals, such 
as Nature and Science, will make it clear that fractals 
have become a standard technique of scientific mod-
elling in a wide variety of areas. The mere existence 
of fractal structures immediately suggests a wide range 
of physical and mathematical questions, by directing 
our attention away from the classical obsession with 
smooth curves and surfaces. What happens to light 
waves passing through a medium whose refractive 
index is fractally distributed? Reflected in a fractal 
mirror? What sounds will a drum make if it has a 

fractal boundary? Traditional methods have little to 
say about such questions.

The importance of fractals

Are they important? Undoubtedly. Turbulence in 
the atmosphere makes it difficult for Earth-based 
telescopes to produce accurate images of stars; a 
turbulent atmosphere is well modelled by a fractal 
distribution of the refractive index. Light bounc-
ing off the ocean, with its myriad waves on many 
scales, closely resembles reflection from a fractal 
mirror. And the way trees absorb energy from the 
wind is closely related to the ‘vibrational modes’ of a 
fractal – and it is such modes that create the sound 
of a drum. The natural world provides an inexhaust-
ible supply of important problems in fractal physics. 
Already, technological and commercial advances 
have stemmed from such questions – for example, 
a compact antenna for mobile phones, new ways 
to analyse the movements of the stock market, and 
efficient methods to compress the data in computer 
images, squeezing more pictures onto a CD.

Once our eyes have been opened to the fact that 
fractal objects possess a distinctive character and 
structure, and are not just irregular or random, it 
becomes obvious that the universe is full of fractals. 
Indeed, it may even be one. Fractals teach us not to 
confuse complexity with irregularity, and they open 
our eyes to new possibilities. Fractals represent an 
entire new regime of mathematical modelling, which 
science is just beginning to explore.
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Gallery of monsters
The prehistory of fractals

The prehistory of fractals goes back over a hundred 
years, to when mathematicians began thinking 
about new kinds of curves and surfaces, totally dif-
ferent from the shapes typically studied in classical 
geometry. The classical shapes are lines and planes, 
cones and spheres, curves and surfaces – and, except 
for the occasional edge or corner, these curves 
and surfaces are smooth and very well behaved. 
Smoothness in effect implies that they have no 
interesting small-scale structure: when magnified 
sufficiently, they appear flat and featureless. This 
absence of structure on small scales is crucial to clas-
sical ‘limiting’ analysis – the time-honoured methods 
of the calculus, which go back to Isaac Newton and 
Gottfried Leibniz. The very methodology of the 
calculus, the central technique of physics for more 
than two centuries, is to approximate a curve by 
its tangent line, a surface by its tangent plane. This 
approach simply will not work on a highly irregular 
curve or surface.

Nevertheless, we can imagine highly irregular 
curves. Originally these were seen as ‘pathological’ 
objects whose purpose was to exhibit the limitations 
of analysis. They were counter-examples, serving to 
remind us that the capacity of mathematics for nasti-
ness is unbounded. The pure mathematician’s motto 
is Murphy’s Law: ‘Anything that can go wrong, will 
go wrong.’ And the wise mathematician or scientist 
always wants to know what can go wrong. Often this 
is a starting-point for finding new ways for things to go 

right.
For example, during the eighteenth and 

nineteenth centuries it was wide-
ly assumed that any continuous 
curve must have a well-defined 

tangent (that is, any continuously 
varying quantity must have a well-defined 

instantaneous rate of change) at ‘almost’ any point. 
The only exceptions were the corners, where the 
curve makes an abrupt change of direction. However, 
in a lecture to the Berlin Academy in 1872, Karl 
Weierstrass showed that this is not true. It is, in fact, 
about as false as it is possible to get. He described 
a class of curves that are continuous, but have no 
points where the tangent is well defined. The basic 
idea is to add together infinitely many increasingly 
tiny ‘wiggles’. The resulting curve is continuous – it 
has no gaps – but it wiggles so rapidly that there is no 
sensible way to construct a tangent. Anywhere.

Again, in 1890 Giuseppe Peano constructed a 
curve that passes through every point of the interior 
of a unit square. This curve demonstrated the com-
plete inadequacy of the common idea of ‘dimension’ 
as the number of (continuously varying) parameters 
needed to specify a point. Peano’s curve takes a 
square, with its two dimensions and standard para-
metrization by two coordinates (north–south and 
east–west), and reparametrizes it by a single variable: 
how far you have to go along Peano’s curve in order 
to hit a given point.

In 1906 Helge von Koch gave an example of a 
curve of infinite length that bounds a finite area: the 
snowflake. (Fig. 1.1) It is constructed by starting with 
an equilateral triangle, and erecting on each side a 
smaller triangle, one-third the size. This construction 
is repeated to infinity. Like Weierstrass’s curve, the 
snowflake is continuous but has no tangent. A similar 
repetitive process occurs in the construction of one 
of the simplest and most fundamental pathological 
sets of all: the Cantor Set, named for Georg Cantor 
who used it in 1883 (although it was known to Henry 
Smith in 1875). It is constructed by repeated dele-
tions of the middle third of an interval. (Fig. 1.2)

The mathematical community – even leading 
figures – found it hard to come to terms with these 
unsettling discoveries. Henri Poincaré dismissed 
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them as ‘a gallery of monsters’, and Charles Hermite 
deplored what he called a ‘lamentable plague of 
functions with no derivatives’. More recently Jean 
Dieudonné wrote: ‘Some mathematical objects, like 
the Peano curve, are totally non-intuitive ... extrava-
gant.’ But Dieudonné was not suggesting they lacked 
interest, just that they were difficult to wrap your 
head round.

It is only fair to add that the undue proliferation 
of such sets, without any clear purpose in mind, can 
easily become an exercise in futility. So Poincaré and 
Hermite did have some basis for their complaints. But 
as time passed, most mathematicians came to accept 

that these sets play a legitimate, indeed crucial, 
role in mathematics: they demonstrate that there 
are limits to the applicability of classical analysis. 
In fact, this realization stimulated the development 
of new kinds of non-classical analysis, which turned 
out to be important in their own right. Indeed 
by 1900 the great German mathematician David 
Hilbert could refer to the whole area as a ‘paradise’ 
without causing ructions. Nonetheless, many math-
ematicians were perfectly prepared to operate within 
the classical limits. They saw the ‘pathologies’ as 
‘artificial’ objects, unlikely to be of any importance 
in the study of Nature.

Nature, however, had other ideas.

Fig. 1.1 To a casual observer this is a snowflake, but math-
ematically it is a classic fractal shape, constructed out of 
one equilateral triangle, with the middle third of each side 
removed and new equilateral triangles drawn out to the 
edge, their middle third removed, smaller triangles drawn 
out in turn, and so on.
Fig. 1.2 The Cantor Set: first developed in 1883, it is construct-
ed by repeated deletions of the middle third of an interval.
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How long is the coast of Britain?

The fractal geometry of coastlines

One of the formative examples of fractals is the 
geometry of coastlines. In particular: how long is a 
coastline? Coastlines are notoriously irregular, and 
the answer to the question depends on how the 
measurement is made. The simplest method is to 
take a fixed finite length x and move along the coast-
line in steps of length x. Adding these steps together 
gives a total length L(x). (Fig. 1.3)

If the coastline is smooth, in the rigorous mathe-
matical sense, then when x is small enough, the coast-
line is very close to a straight line. For a straight line, 
the value of L(x) tends to a definite limit L as x tends 
to zero, and that limit is the length of the straight line 
in the usual sense. It follows that if the coastline is a 
smooth curve, L(x) also tends to a definite limit L as x 
tends to zero, and that limit is the length of the curve 
in the usual sense. In other words, if x is small enough, 
L(x) is an approximation to the total length that is 
close enough on the scale of the model chosen.

What actually happens, with real coastlines, is 
quite different. Small bays of diameter smaller than 
x are missed by the stepping procedure. Although 
reducing the value of x must in some sense improve 

Fig. 1.3 Mapping a coastline: the actual length depends on 
how many steps of length x one takes. If x = 1 km the length 
will be considerably less than if the length were 1 m; and this 
will be far less than steps of 1 cm; and so to infinity.
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the approximation, by ‘noticing’ ever smaller bays, 
there will still remain irregularities on some scale 
smaller than x, at least until we get down to molecular 
proportions where the whole exercise becomes mean-
ingless. Because coastlines are fractal, the value of 
L(x) grows without limit, and the length is infinite.

In the absence of a finite limiting value, it is 
often useful to study how a quantity tends to infin-
ity. Is the growth rate fast and explosive, or slow 
and steady? In other words, what is the ‘asymptotic’ 
(when a curve tends towards but never reaches a 
straight line) behaviour? Lewis Fry Richardson once 
made an empirical study of the asymptotic problem, 
for real coastlines, and found an excellent empirical 
law: L(x) ~ kx1−D for certain constants k and D. The 
value of D is much the same for most coastlines on 
planet Earth, presumably for geological reasons, and 
in particular D ~ 1.25 for the coast of Britain.

To gain an intuitive feeling for what this result 
means, compare Britain to a snowflake curve. The 
construction of the snowflake is too regular to cor-
respond to a real coastline, but as far as the main 
feature – structure on all scales – goes, it’s not bad.

For simplicity, measure its length using values

x = 1, 1/3, 
1/9, 

1/27, and so on.
 Then L(1) = 1, L(1/3) = 4/3, L(1/9) = (4/3)

2, L(1/27) = 
(4/3)

3, and so on.
 In general L((1/3)

n) = (4/3)
n. Let x = (1/3)

n, and note 
that 4/3 = (1/3)

1−D where D = log 4/log 3.
Then L(x) = x1−D and D = 1.2618.
This is very close to the empirical estimate
D = 1.25 for the coastline of Britain.

I am not claiming that this implies that Britain is a 
snowflake. The snowflake curve’s geometry is much 
too regular. Nevertheless, we may interpret the above 
calculation in the following terms. Suppose a real 
coastline has the same statistical distribution of bays 
and promontories, sub-bays and subpromontories, as 
does the snowflake curve. Then the value of L(x) 
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should follow the same asymptotic law as for the 
snowflake, and thus lead to the same D. If the statis-
tical distribution is similar to that of the snowflake, 
but not quite the same, then the constant D should 
change slightly. So we conclude that the coastline of 
Britain has pretty much the same ‘roughness’ as the 
snowflake – but is maybe just a tad smoother.

The combinatorial regularity of the snowflake 
is essentially a scaling law. If a small section of the 
curve is suitably magnified, then it looks exactly like 
some larger section of the original. The constant D 
describes, in a quantitative manner, the precise scal-
ing required. Here, if four copies of a segment of the 
curve are suitably assembled, the result has exactly 
the same shape as the segment, but is three times as 
large. The value log 4/log 3 of D is built from those two 
numbers. This property is called self-similarity. The 
same idea holds for coastlines, but now the scaling 
affects the statistics, not the curve as such. Instead 
of asking that a magnified version of a section of 
coastline should be exactly the same as the origi-
nal, we ask that it should be a plausible picture of 
a coastline on the same scale as the original. Or, to 
put it another way: if you are presented with a map 
of a coastline, without any other markings and with 
no indication of the scale, then there will be no way 
to determine the scale just by studying the map.

Innumerable other natural phenomena exhibit 
structure on a wide range of scales, connected by 
suitable scaling laws. For instance, the bark of a 
tree, the ripples on the ocean, vortices in a turbu-
lent fluid, landscapes, the inner surface of the lung, 
the holes in a sponge, the surface of a soap flake. 
Therefore we expect there to be some regime of 
mathematical modelling in which the ‘pathological’ 
curves and surfaces that were so despised by the clas-
sical mathematicians find natural application to the 
real world. Since scaling laws appear to be funda-
mental to the whole enterprise, the initial emphasis 
should be on understanding what they have to tell 

us. And the first thing they tell us extends the usual 
notion of ‘dimension’ in a radical way.

Fractal dimension

It turns out that the number D introduced above 
may be interpreted as a dimension. This may seem 
a rather curious idea, since the usual notion of 
dimension is always a whole number, but there are 
plenty of precedents in mathematics. The concept 
‘number’, for example, originated in counting – one 
sheep, two sheep, three sheep. In this context, half 
a sheep makes no sense. But in the butcher’s shop – 
or, less grimly, at the moneylender’s, where a person 
might own a half share in a sheep – the extension of 
the number system to fractions is natural. Again, we 
are used to the idea that the nth power of a number 
is obtained by multiplying n copies of that number 
– so that the fifth power of 3, for example, is 35 = 
3 × 3 × 3 × 3 × 3 = 243. What, then, is the halfth 
power? What you get by multiplying half a copy of 
a number by itself? That makes little sense, but the 
halfth power makes excellent sense: it is the square 
root. Multiply the halfth power by itself, and you get 
back the first power – the original number. Twice a 
half is one – easy.

In fact, the generalization of dimension that 
occurs in fractal geometry is reasonable from several 
points of view. To see why, we begin by reviewing 
the usual concept of dimension. (Fig. 1.4)

 (a) A line segment has dimension 1, by which 
we mean that any point in the segment can 
be specified using just one coordinate, one 
number. The point x lies x units to the right 
of the left-hand end of the segment.

 (b) A square has dimension 2, by which we mean 
that any point in the square can be specified 
using just two coordinates (x, y). Here x is the 
distance from the left-hand edge and y is the 
distance from the bottom edge.
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 (c) A cube has dimension 3, by which we mean 
that any point in the cube can be specified 
using just three coordinates (x, y, z). Here x is 
the distance from the left-hand face, y is the 
distance from the bottom face, and z is the 
distance from the back face.

In these examples, the dimension of the object is 
the number of independent directions in space that 
it occupies. No directions are needed for a point, so 
it has dimension 0. A line lies along one direction, a 
square lies in two (a plane), whereas a cube requires 
three. Similar ideas apply to curved lines and sur-
faces. A curve has dimension 1. The surface of a 
smooth object, such as a sphere or torus, has dimen-
sion 2. A solid object, such as a solid sphere or a solid 
torus, has dimension 3. This concept of dimension is 
always a whole number. A point has dimension 0, a 
curve has dimension 1, a surface has dimension 2, a 

solid has dimension 3. With a suitable act of imagi-
nation, we can go into spaces of dimension 4, 5, 6, 
and so on – see Abbott (1884) and its modern sequel 
Stewart (2001). Engineers will recognize this con-
cept as the number of ‘degrees of freedom’ of a system 
– the number of coordinates needed to determine its 
state – so that space-time, with 3 space coordinates 
and one time coordinate, is 4-dimensional.

The dimension of even a simple system can be 
surprisingly large. For example, describing the posi-
tion and velocity of the Moon in space requires six 
numbers: three position coordinates, and three com-
ponents of velocity relative to those coordinates. So 
the 3-body system composed of the Earth, Moon, and 
Sun, which is basic to astronomy, is an 18-dimen-
sional system. Each body requires 3 coordinates of 
position in space and a further 3 of velocity.

A more extreme case is something we all carry around 
with us: the human body, with its innumerable flexible 
joints. Look at your hand. Each finger can be bent 

x x x

yy

z

Fig. 1.4 The concept of dimension in geometry: (a) a line has 
1 dimension and 1 coordinate; (b) a square has 2 dimen-
sions and 2 coordinates; (c) a cube has 3 dimensions and 3 
coordinates.

At a conservative estimate, the
‘configuration space’ for the human body – 
the totality of possible shapes into which it can be bent – is at least 
101-dimensional.Yes, we live in space of 3 dimensions, and a space-time of 4,
but the complete range of possible configurations of the human body forms

Above: A solar eclipse
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through some angle, and those angles are pretty much 
independent of each other. So just to describe the state 
of your hand, you need a 5-dimensional space of possible 
configurations. In fact, fingers can bend sideways (a bit) 
too, so 10 dimensions is a more realistic number. Your 
two hands and two feet now require at least 40 dimen-
sions to capture all possible combinations of positions, 
and then there are your wrists, elbows, shoulders, ankles, 
knees, thighs ... and your head, eyelids, and waist.

At a conservative estimate, the ‘configuration 
space’ for the human body – the totality of pos-
sible shapes into which it can be bent – is at least 
101-dimensional. Yes, we live in space of 3 dimen-
sions, and a space-time of 4, but the complete range 
of possible configurations of the human body forms a 
conceptual ‘space’ with 101 dimensions.

This notion is called topological dimension because 
shapes that can be continuously deformed into each 
other have the same dimension. Thus a wiggly curve 
has the same dimension, 1, as a straight line; a wobbly 
surface has the same dimension, 2, as a plane. And if 
a shape is magnified by some scale factor – say tripled 
in size – then its dimension remains unchanged.

Scaling laws are more sensitive: they involve not just 
shape, but size. Distances are important, scale matters. 
What count are not topological properties, but metric 
ones. This extra ingredient opens up the possibility of 
finding an extended notion of dimension which

 (a) agrees with the usual definition for smooth 
curves and surfaces;

 (b) applies to more general spaces, such as the 
snowflake or the Cantor Set; and

 (c) reflects metric, not topological, properties, 
especially behaviour under scaling.

The price we pay for such an extension, however, 
is that the resulting concept of dimension is forced 
to take non-integer values. It turns out to be a price 
well worth paying – imaginative ideas that take us 
out of our comfortable world usually are.

The simplest such generalization (there are many) 
is the similarity dimension. This concept is based 
on scaling properties; it is a little too special to be 
entirely satisfactory, but when it does work it is very 
easy to understand.

Consider a unit square. If its sides are divided 
into n equal parts, then it can be cut into N = n2 
subsquares, each similar to the original. With a simi-
lar dissection of a cube, we find that N = n3; with a 
4-dimensional hypercube we get N = n4. And with a 
homely line segment, N = n1. (Fig. 1.5)

The pattern is obvious: if the dimension is d, 
then N = nd. Taking logarithms and solving, we get 
d = log N/log n. All perfectly reasonable, and equivalent to 
standard geometrical properties of these simple shapes.

So let’s try a shape that is not quite so simple: 
the archetypal ‘pathological set’, the Cantor Set. 
Remember: to form a Cantor Set, start with a line 
segment, remove its middle third to get two segments 
each one-third the size; then repeat indefinitely. 
What’s left is the Cantor Set. It is clear that after the 
initial step, we construct two separate Cantor Sets, 
each one third the size of the whole; the Cantor 
Set itself is obtained by uniting these two subsets. 
In other words, the Cantor Set can be broken into 
two pieces (N = 2) each one third as big (n = 3). 
By formal analogy, the dimension of the Cantor Set 
‘ought’ to be d = log 2/log 3 = 0.6309, which is not a 
whole number. This may seem curious, but it makes 
a lot of sense because:

 (a) it accurately reflects the scaling properties of 
the Cantor Set: two copies make a set just the 
same shape but three times as big; and

 (b) the dimension is intermediate between 0, the 
dimension of a finite set of points, and 1, the 
dimension of a curve. This agrees with the 
intuitive idea that the Cantor Set is rather 
less than a curve, since it has gaps, but is more 
closely clustered than a finite set of points.


