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ON ELLIPTIO PARTIAL DIPPERBNTIAL EQUATIONS 

by L. NIRENBERG (New Pork) (4 

Outline. 

This series of lectures will to~icll on a 11111nber of topics in the theory 
of elliptii: tlifferential eqiiatioris. 111 Lecture I we tliscuss the fundamental 
solution for equations with collsta~~t coefficients. Lecture 2 is concerned 
with Calculux ir~eqna~lities i~lcludi~lg tlre well kuomli ones of Sobolev. In  le- 
o t ~ ~ r e s  3 and 4 we preserlt tlle Hilbert space approach to the Dirichlet pro- 
blern for strongly elliptic systems, alrd describe various il~eqoalities. Lectures 
5 and 6 comprise a self contained proof of the well k11ow11 fact that < weaku 
solutions of elliptic equations with sufficiently t smooth >> coefficients are 
classical solut'ions. 

In Lectures 7 and 8 we describe some work of Agmon, Douglis, 
Nirenberg [14] collcerni~~g estimates ]]ear the bou~ldsry for solutions of 
elliptic eqiietions satisfying boulldary conditions. This work is based 011 

explicit forlnulas, given by Poisson kernels, for solutions of homogeneoils 
elliptic equation with consbdut coefficiellts in a half space. 

Tlrronghout, for sin~plicity we treat one equation in one unknown. 
The material will on the whole be self contained, though of course not 
a11 proofs can be included. However, we shall attempt to indicate those 
of the main results. 

r) Qnesto oiolo di conferenze B stato tennto a Pisa dtll lo a1 10 sottembre 1958, e 
ha fatto parte del oorso del C. I. W. E. olie ha tlvnto per tema : t I l  prinoipio di minimo 
e sue appliaazioni alle eqnazioni fnneiouali )). Tale oorso si B svolto in oollaborazione con 
la  Sonola Narmale Snperiore e lJIstitnto Mate~natico dell7Universitil di Pisa. I n  qnesti 
Annali saranno snooessivamente pnbblioati i oorsi d i  oonferenze tennti dai professori 
C, B. Morrey e L. Bere, 
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Lecture I. !llhe Funda~nental 8olution. 

I would like to start wit11 a few geueral and somewbat unrelated 
colnments. In  studying differential equations one is usually interested in 
obti i l~ii~g uvbique solutions by imposing suitable boundary or ir~itial col~di- 
tions, the kind depending on the so - called <type)> of the equation - elliptic, 
i~yperbolic, etc. However, the type classification for general equations has 
not been carried out, and ill ttlrt~~y ciises it is not known what bo~iudary 
conditions to impose. Indeed for equations that change type - a ~ d  we 
are a11 familliar with the initial work in this field due to Professor Tricomi - 
the nature of the boundary conditions is far from obvious. 

Thus if one considers an arbitrary equiltion witboilt regard to type it 
is s natural question to ask whether there exist solutio~ls a t  all. In fast 
there are occl~sions when one simply wants some solutions. Such occur 
often in differentjal geometry. Take a well know~l case: to introduce 
isothermal coordinates with respect to a given Riemanuean lrretric OII i\ 

two diluensiollal manifold. This reduces to .  a local probleln of finding 
nontrivial solutions of a differential equatiou il l  s8 neighb[~l.l~ood of a point. 

Auothel question is:  are there solutions in the large of a given 
equation. For the preceding this is answered by nniformization theory for 
Riemann surfaces. 

In  this t d k  we will consider for some special cases the question: For 
a given differential operator L are there solt~tions of Ltc = f for << well 
behaved B fiunctions f .  Of course equations with analytic coefficients nlwi~ys 
have local solutions, obtained for instance by power series expitnsions 
(Cauchy-Kowilewski). 

Recelltly Hans Lewy [1] exhibited an equatiou with Cw coefficieuts 
having no solutions ewen locally. Since it is easy to describe, we present i t :  

In 3-space with coordinates x,  y ,  t ,  set x = x + i y ,  write the Cauchy- 
d l d  

Rieml~nn operator as 7 = - (- + ) , and consider the differential 
dx 2 d m  

equation 

where the right hand side is a continnous real fuuction of t alone which, 
for couvel~ier~ce, is writbell as 21. derivirti~e of a real fi~llctiol~ y .  

THEOREM: If there is  a co~rti~auotcsly djfe~enticcble solutiolc $1 of  tile 
eqcifctio~b is tr vteiylrbovliood 07' 1 1 ~  ov iy i j~ ,  / h , e ~  y ( t )  i s  real analytic. 



differential equations 

Thus for ;illy  ion-a~lalytic y there is no solutio~l near the origin. (The 
proof lnay be erlsily modified to show tllat there are also no a generalized 
solrltions P). 

dl4 
I'roof: If we integrate -- d 0 over a circle 1 z 12 = s 2 0 ,  z = 8112 egg, 

d z  

Now set l =  s + i t  and U ( l )  = x u (10 . Integrating the equation for zl I 
over the circle we fiud that U satisfies 

It follows tlriit V(l)  = U + 2 n i y is a l i o l o ~ ~ ~ o r l ~ h i c  function of C = s + i t  

in H donlt~i~l ilettr the origin with re 5 = s > 0 . But 011 s = 0 the function 
U ,  i. e. the real part of V ,  vairishes, and therefore V can be co~ltinued 
analj tically across s = 0 .  Hence y is analytic. 

1;) [I] Lewy also constructs t~ furlatinu F s~lcll that tlre equation 
LU = F h t ~ s  110 a smooth u solutioo in the ileigllborhood of airy p o i ~ ~ t .  
Lewy also coujectures t h i ~ t  there are l ~ o ~ ~ ~ o g v ~ ~ e o a e  equatio~ls wit11 CCQ coeffi- 
cients Iraviug IIO solutiolls in the ileighborhood of any ~)oiut. 

The simplest cle,ss of differential ope~.ators L of arbitrary type, for 
which one tnigbt expect so lu t io~~s  u of 

to exist, for all well behaved fi~nctions f ,  are operators with constaut 
coefficientn. 111 the last few years a convideri~ble study has been made of 
general differential operators with conskaut coefficie~its, (See Ebrenpreis [2], 
Hijrniairder [3], Milgrailge [4]. Solntious of (1.1) cliu be found, at least 
locqlly, if olle lrnows that  i~ f~~udameukal solutiori E of L 1 = d (the Dirac 
8 ftu~ction) exists. This is a (possibly generalized) function E such that  



for all C" functions u with compact sapport. We shall denote the class 
of such functions by Cr. Here x denotes convolution. Then i f f  is in C ?  
the function u = E x f is a solution of (1.1). 

Malgrange [4] and Ehrenpreis [2] proved the existence of a fundamental 
solution for any differential operator with constant coefficients. However it 
is not difficult to construct one explicitily, as Hormander, and also Trbves [5], 
have shown, i~iid we shall now describe such a colistruction. 

First we fix our 
NOTATION : We consider functions u (a) of n variables x = (xi , ... , x,) 

and denote the differentiation vector by D  = (D, , ... , D,) , Di = d/dsi. 
The letters j  , y , ,u , v will denote vectors j = (fi, , ... , j,) with lion-negative 
integral coefficients Pi, and we set I ,8 I = 2 jg . Otherwise for ally vector 
5 = (ti , ... , tN) , 1 5 1 will represent its Euclidean length 1 5 l2 = 2 I ti 1 2 ,  and 
E.)7=2&qi. We write 

B B fit, . ,  D = D :  ... D , , ;  

for conveliience me shiill also, on occasion, express a gel~erwl mth order 
partial derivative of B fi~nctioll u by Dn'u. C r  will deuote the class of Om 
functions with compact support. 

We consider now a, differential operator L of order k with consti~nt 
coefficients, which me may write as a polynomial ill D  of order k .  

In  constructing the fundamental solution let us first argue in a heuristic 
manner. Introduce the Fourier transform of the function u (x) 

u ( E )  = e - & ' h  (x) d x , - J 
integration heillg over the eutiro n-space. Tl~eli 

S o i f u = E r r L u =  E ( d - y ) L u ( y ) d y  then J 



diferential equations 

Problem : give formula (1.2) a msanilzg. 
In attempting to do this (and there are many ways) there a~re two 

difficulties that occur. The first is the son-integrability at iufilrity, duo to 
the fact that we are integrating over the full %-space. The seco~~d  difficulty 
is caused by tlre real roots 5 of the polynomiel L (i 5). 

The first difficulty is easily overcome. It essentitllly expresses the filct 
that is general E is a distxibution, i. e. a finite derivative of a coatiaoous 
fiurctio~r. Instead of cor~structiag E directly we shall constrt~ct the funda- 
mental solution EN of the operator (I. - A)N L = (1 - 2 D?)NL ( L ) )  . We 

i 
shall const~~uct a funda~rte~~hal solution EN having continuous derivatives 
up to any given order, by &king N sufficiently large. We m:~y the11 trke, 
ill the distribution sense, 

i. e. for f in Cr the function 

is a solution of Lu = f. 
Thus we consider, for p (t) = 1 + 2 

Taking N large elirnirrates the first difficulty, i. e. the trouble a t  ilrfil~it~y. 
Xow to handle the second difficnlly. We ma.y assume, after a possible 

rotation of coordinates, that the coefficiel~t of D: in L (D) is $. 0 ,  say 
unity. Cousider L ( i t )  as a poly~romial in 5,. We shall first illbegrate i ~ t  

(1.4) with respect to the variable E,, keeping E f =  (El ,  ... , E,,-l) fixed, 
however we slr~ll  1nove the line of integration from the real line to a 
pnrallel liue lying irt the colnplex t,, plane. 

For fixed real 5' there are k roots 5, of L (i 5). 111 the strip 
1 

) 3 n b  tfl I < - ill the complex 5, plane there is therefore a line parallel to 
2 

the real axis whose distance from any root is a t  least (2 k + 3)-1, as one 
easily sees. Let us a choose one such line 31% 5, = c(Y) whose distance to 



RIIY root is a t  least (4 k + 4)-l . The clloice of c ( [ ' )  depends on r, but  i t  
is easy to see that  c = c (5') may be chosen so as  to  be c o ~ ~ t i ~ l u o i i s  except 
on a set of 5' of (n. - 1)-di~nensioll~.l Ineastlre zero. 

Settiug tj = q (5') = (0 , ... , c ( f ' ) )  me IIOW take a.s detieition 

wl~ere integration is first mit,b respect to [,, . 
Since 

me see that EN has derivatives up to ally give11 order, if N is 1~1,ge enougl~. 
We have 611ally to verify that for u E 0; 

Setting ( 1  - A)N L (D)  = LN ( I ) )  , the right: hand side equals 

ei(=-~).(ESis) 

LN(I(E + iq)) a E Ln ( 1 ) )  u (y) d Y . 

Since zc has compact support its Fourier transform ; ( E )  cau be extended 
to colnplex vectors E a8s an entire analytic fuuctiou, and since u Cm the 

derivatives of die do,wll faster that  any yon7er of I E l  as we go to infinity 
in a strip I 3 % ~  5 I < constant. Thus, interchangiag the order of iiltegratio~i 
in the above, we find that it equals 

Because of the behaviour of ; of infinity we may shift the line of inte- 
gratiou of the E, parallel to  itself aud dud that this expressiou 

J 
,-a 

= ( 2  .)-#I 6k.E u (5)  d 5 = tc (a) 
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Thus. the fu~letion EN defined by (1.4)' is a fii~~cIarnent;~l soliitiol~ for the 
operator L N .  The desired fit~~d:lmeutal solution of Lu then is given by (1.3). 

One sees easily that the fni~tlamental solation EN given by (1.4)' has 
exponential growth iu the x,, variable. 

For fiirtl~er important work on fundament~l solutioi~s for equatious 
wit11 oo~rsttmt coefticie~~ts we refer to Hortrla~ider (61. 

Co~~sider  row elliptic difleere~~tial operators with eoastal~t coefficieuts. 
These are open~tors 1, wlrose leading part L' - consistiug of the terms 
of l~igl~est  order - satisfy 

L'(f)+ 0 for real (+  0 .  

We shall have need later of the fu~ldameiital solution for a I~olnoge- 
neous elliptic operator wit11 cor~slaut coeffifioients, i. e. L' = 1, . For snelr, 
of course, the f u ~ ~ d a n ~ e i ~ t a l  solntio~~ first ~coastructed by Herglotz is well 
belraved at i~~finity. We shall use the following ford of it, given iu P. 
John's book [7]. 

where i~~tegl.ation is over the full unit sphere with d o t  as the elenlent of 
area, q is ic non-negative ir~teger of the same parity t t ,  i. e. q +n is even, 
a11d the principal bnl.11~11 of tlre logarithm is taker1 with the plane slit 
along the uegative real axis. 

From (1.5) me obtain as n special case, for L = A power, the followi~rg 
idelltiby which is due to P. John and used extensively in [71, represen- 
t i ~ ~ g  the 8 function in t e r m  of plaue waves: For u iu 17; 

I n  [7] John derives (1.6) from the kuomii expressioli for the fundamen- 
tal solution for a power of the Laplacean, and then derives (1.5) from (1.6). 
This Itlay be done as folloms. Suppose E ( x . .  () satisfies 

3 . E  L K (0 - 6) = (x . 5)Q log - , 
Z 

then a fundamental solution of the operator L is given by 
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But sucl~ n K is easily found. If we set rx: [ = then K(o) satisfies 

L (€) - K (o) = on log o/i , (,"J 
a solution of which is  

with ck,, an appropriate constant. If we insert this into the above expres- 
sion for the fundament,al solution of L we obtain the expression 

which differs from (l.S).only by the term i~rvolving c ~ , ~ .  But this term is 
a polyno~sial of degree k - 21 wllic11 is therefore tl solution of L v = 0 ,  
and so may be ignored. 

It slro111d also be possible to derive (1.5) from the heuristic: formula 
(1.2). (1.5) aserts that 

n+q 
is a fundamental solution for .the operator A ~ L .  Let us attempt, to de- 
rive this expression from the corresponding exl)ression of (1.2): 

Arguiug heurisitically a,gain let us modify the expression by introduci~rg 
polar coordinates in the 5 space 

Then (1.8) becomes 

(1.8)' 
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Let us now write the heuristic expression 

as a well defined contour integral 

where the contour (? is a curve which goes from + oo ill t,he complex Q 
plaee, ellcircles t)he origin counterclockwise ant1 returns to + co ;11o11g 
the real axis, the breach for the logarithm is the sa~ne as above, w,nd the 
constaut o is chosen so thict 

The expressio~~s (1.9)' may be eval~~ated explicity, aud on insertion 
into (1.8)', yields the expression (1.7). We leave the calculation to t,he 
reader. 

Lecture 11. Calculus Inequalities. 

A priori estimates play a central role in the theory of partial diffe- 
rential equatior~s. They are of v~,rious kinds - pointwise estimates for 
derivatives of solutions end their modulus of coatinuity, and estiwates of, 
say,,l,, norms of solutio~ls a,nd their derivatives - alld it is 11atura1Iy 
imporla'nt to ni~derstand the relatiouships betweeu t,hese various estimates. 

For instauce, the well ki~own re'sults of Sobolev assert that if the m'tl~ 
order derivatives 1)"' u of a fullctiou 21 (x, , ... , x,,) (with C0111~)il~t s~tpport) 
are in L,, 1 < r < oo the11 lower order derivatives U i  26, j < wz belong to 
L,, for some p , or, if r is s~~ff ic ie~~t ly  high, the Dj u are bounded and 
satisfy a Holder condition with n certaiu exponent a .  

Since we shall often make use of it, let 11s recall here the ~lotioli of 
H ~ L D E R  CONTINUI'I'Y. A ful~ction f ( x )  defined 011 iL set fi  ill a Euclitlean 

space satisfies a, Holder conditiou there with expollent a ,  0 < a < 1 , if 
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is finite. I t  is Holder eo~ltinuoue ( e x p o ~ ~ e ~ ~ t  a) in a d o n ~ a i l ~  if i t  satisfies a 
Holder eolldition with expollent a in every eempact subset of the domain. 

This lecture is co~laenled wil)l~ c i ~ l c ~ ~ l u s  illeqnelities relating integral 
and l)oi~ltwise estimates of f i i ~ ~ e t i o ~ l s  a ~ ~ d  their clerivatives. The recent 
ituportaut reanlt of de Giorgi [11] 011 the differelltiability of solutions 
of regulnr vib~*iatio~lal l~roblellts seems il l  fitct to be basetl OII e caloulus ine- 
quality assertil~g that cellail1 ir~tegra~l estim;ltes imply Holder conti~ruity. 
We shall eonsider f i i ~ ~ c t i o ~ l s  ~ ( x )  defitled ill ~ c ~ t l i ~ ~ ~ e a a i o ~ r a l  Euclidean space 
aud be lo~~ging  to Lp , and whose (1erivabives of order nt belong to L , ,  
1 < q , r < CG . W e  shall present i~~terpolat ive i~lequalities for the Lp and 
Holder norms [ 1, of derivatives Dj u , 0 (j < 9 1 1 ,  for the maximal range 
of p alld a .  Our inequalities are a combi~la t io~~ of, a.rld include, those 
usua.lly called of Sobolev type (wllich lloltl also for fi~actional derivatives, 
and rather s t~ ' :~ igb t , fo~ .~ard  proofs of wl~icll nlily be found in [8]) ,  illld fami- 
liar inter1)olative illequalities s u c l ~  a s  

~ , 2  < constant M ,  . M~ 

where illli is e . u . b . of the L, norms of the derivatives of order i of a 
functiou u ,  i = 0 ,  1 , 2 .  The proofs use o~l ly first principles and are ellti- 
rely elemeataty. (No attempt will be made here to obtain best constants). 
The inequalities is this sectio~t were pl.esented at  the 111t'e Congress in 
Edinbnrgl~ August 1958, where we learned Lhat almost equivalent results 
had also been proved by E. Ga,gliardo. 

111 this Ieeture we shall iise tlre followillg 
1 

NOTATION : For - w < - < w we defins the norms and se~l~inorms 
P 

121 1 ,  for f n n c t ~ i o ~ ~ s  11 (x) defiued in a domain cD in 11-ctimensional spaces : 
For p > O  

[ u 1 ,  = the L ,  norm of u in cD . 

For p < 0 set s = [- n/p] , - a = s + tc/p and define 



where e . u .  b . is bake11 wit11 respect to all partial det~ivirtives DS of order 
s , and over points in 0 .  

We define I D J  u 1, a s  the mnximatn of the I 1, ilortrls of all j - t h  order 
derivatives of u .  

W e  ahall express o w  resnlt for f i i~~ct ions u detiued it1 the entire 
a-space En. ~xte t l s ion  to otlrer dotnail~s will be described briefly in the 
remtirks after the theoreel. 

THEOREY: Let u belong to L, it,. ond its tlelivcctives qf order w , 
Dm , t ~ ,  belong to L,. , 1 < q , r co . For the devicutivez D j  u , 0 < j < 91t , 
the following inequalities hold 

(2.2) 

where 

I ~j u 1, constant I Dn' u 1; / I( IFa, 

for all a in the interval 

(the constccnt depeltding only ow n , 9 1 2 ,  j , q , r , n ) ,  with the follo~aing 
exceptional ccrses 

1. If j = 0 ,  r ~8 < n , q = co ,then we mnke the additional nsstmirption 

that either u tends to zero crt ittflrrity or u E 1;9 $IY some .fi,tite [> 0 . 
2. If 1 < r < w , trnd 111 -j - vl/r is a won negative intege~ thrw (2.2) 

holds only for cs strti.sfying j/nh ( a< 1 . 
We shall not give i~ cotr~plete proof of the lheore~n here but  shall 

indicate the meill steps. First some corntr~e~tts. 
1. The value of is determined simply by d imel~s ion~l  a~lalysis. 
2. For a = 1 the fact that u is coutained it1 Cq does not enter in  

the estimate (2.9), and the estimate is equivaletlt to the results of Sobolev 
(note tlrat 'we permit r to  be unity). 

3. That j/nh is the sma,llest possible value for n may be seen by 
taking 16 = sin a xi 5' (8) where is  in C; : For large 1 me have I u 14 .  =0(1), 
I D j  u l p  = 0 (lj), I Dm u 1, = 0 (An$) where no 0 can be replaced by o . 

4. I t  will be clear from the proof that the result l~olds also for u 
defined in a product domaiu 

and hence for any domain that clin be mapped in a one-to-one wa,y onto 
such a donlain by a sufficiently < nice >> mapping. 
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5. For a bounded domain (with t smooth % boundary) the result 
holds if we add to the right slde of (2.1) the term 

constant I tt 1;. 

for any > 0 .  The col~~tiiuts then depelld also on the domain. 
6. Similar estiu~ittes hold for tlie L, uorms of D j  u on linear subs- 

paces of lower dimension, for suitable p . 
7. Si~r~ilar  interpolatioa iaequalities also hold for fractional derivtl. 

tives, but their proof is not so elementary. 
The theoreni, ill its full geuerirlity should be useful in treating nonli- 

uear problems. We mentioil in parf,iciilar tltat from (2.2) for a = jlnt , 
q = w it follows that the set of fur~ctious $4 mhich are bounded and have 
derivatives of order nl, belotlgiug to L,. forlris a Banach Algebra. For r = 2 
this is a~l led  tlie Schauder ring. 

The proof of ttie theorem is elemelrtary and contains in particular an 
elementary proof for the Sobolev case a = 1. Iu order to prove (2.2) for 
any given j one has o111y to prove i t  for the extreme values of a ,j/w and 
unity. (If Case 2 ltolds eome additioual remark has to be made.) For in 
general there is a simple 

Interpolation Lemma : if - oo < 1 < p < r < oo the@ 

where G i8 indepettdeut of u .  
Tlie lemma is easily proved; for R > 0 it is merely the usual ii~terpo- 

lati011 iueqnality for L, norms. 
Let us tarn now to the proof of the theore~n, or a t  lea.st to tile main 

poir~ts. Consider first the Sobolev ease, a = 1. It saffices to coiisider the 
case j = 0 ,  111 = 1 , frorri mhich the ge~teral result ntay then be derived. 
If r > n (2.2) asserts that u satisfies :I oertaiu Bolder coi~dition, A I I ~  a11 ele- 
mentary proof due to Morrey has loug been k~toan.  We shitll sketch it here 
for functiorls defined ill a genet,al dorl~airi (i3. 

De.fittition : A domaill (2) is said to Itave the s t r o ~ g  coue property if there 
exist positive constauts I / ,  i ;r~id a closed solid right sghel.ica1 colle V of fixed 
opeuing aud height sue11 that ally points P ,  Q i n  a (the closure of q) with 



are vertices of coues Vp, VQ lying in (i3 which tire courguent to V and 
have the followi~~g property : the volume of the intersection of the sets: 
Vp, VQ, alld the two spheres with contor8 P ,  Q w,nd radius I P- Q 1 ,  is 
not less than R I P - Q In. 

We 11ow prove the assertion 
If u hne first tlerivntiver in L,., v >  a, is n dowtailc Q hanoing the strong 

cone property, then for points P, Q i ~ r  9 with I L' - Q I 5 a , we h.ave 

wltere the constant depends only on a ,  1 ,  V , n nird 1.. 

(From this follows easily an estimate for [a] . , depending on the 
I-; 

domain). 
Proof: Set 8 = I P - Q I and let Sp (SQ) be the intersection of Vp ( VQ) 

with the sphere about, P (Q)  radius 8 . Set BP n .SQ = S . If R is a poi~lt 
in IS we have, OII i~ltegrating with respectt to R over S, 

Volume of 8 . I z c ( P ) - w ( Q ) I 5  I z c ( P ) - a ( R ) l t l R +  I 
S 

+ I /  r (4 - u ( Q )  l d B  - 
S 

Because of the strong cone property the left l~and side is not less than 

The first term on the right may be estilrlated as follows. Introducing polar 
coordinates Q ,  7 ,  about P ,  where 9 is A unit vector, we fiud easily that 
the first term in the right is bouuded by 

(where d o is the element of area on the unit sphere, and d o is the ele- 

ment of volume) 


