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Extratto dagli Annali delle Scuola Normale Superiove di Pisa
Serie ITT. Vol. XIIT. Fasc. II (1959)

ON ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

by L. NIRENBERG (New York) (¥

Outline.

This series of lectures will touch on a number of topics in the theory
of elliptic differential equations. In Lecture I we discuss the fundamental
solution for equations with constant coefficients. Lecture 2 is concerned
with Calculus inequalities including the well known ones of Sobolev. In le-
ctures 3 and 4 we present the Hilbert space approach to the Dirichlet pro-
blem for strongly elliptic systems, and describe various inequalities. Lectures
5 and 6 comprise a self contained proof of the well known fact that « weak»
golutions of elliptic equations with sufficiently «smooth » coefficients are
classical solutions.

In Lectures 7 and 8 we describe some work of Agmon, Douglis,
Nirenberg [14] concerning estimates near the boundary for solutions of
elliptic equations satisfying boundary conditions. This work is based on
explicit formulas, given by Poisson kernels, for solutions of homogeneous
elliptic equation with constant coefficients in a half space.

Throughout, for simplicity we treat one equation in one unknown.
The material will on the whole be self contained, though of course not
all proofs can be included. However, we shall attempt to indicate those
of the main results.

(*) Questo ciclo di conferenze ® stato tenuto a Pisa dal 1° al 10 settembre 1958, e
ha fatto parte del corso del C.I.M.E. che ha avuto per tema: «Il principio di minimo
e sue applicazioni alle equazioni funzionali ». Tale corso si & svolto in collaborazione con
la Scuola Narmale Superiore e IIstituto Matematico dell’Universitd di Pisa. In questi
‘Annali saranno successivamente pubblicati i corsi di conferenze tenuti dai professori
C. B. Morrey e L. Bers,
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Lecture I. The Fundamental Solution.

I would like to start with a few general and somewhat unrelated
comments. In studying differential equations one is usually interested in
obtaining wunique solutions by imposing suitable boundary or initial condi-
tions, the kind depending on the so - called «type» of the equation - elliptic,
hyperbolic, etc. However, the type classification for general equations has
not been carried out, and in many cases it is not known what boundary
conditions to impose. Indeed for equations that change type — and we
are all familliar with the initial work in this field due to Professor Tricomi —
the nature of the boundary conditions is far from obvious.

Thus if one considers an arbitrary equation without regard to type it
is a natural question to ask whether there exist solutions at all. In fact
there are occasions when one simply wants some solutions. Such occur
often in differential geometry. Take a well known case: to introduce
isothermal coordinates with respect to a given Riemannean metric on a
two dimensional manifold. This reduces to, a local problem of finding
nontrivial solutions of a differential equation in a neighborhood of a point.

Another question is: are there solutions in the large of a given
equation. For the preceding this is answered by uniformization theory for
Riemann surfaces.

In this talk we will consider for some special cases the question: For
a given differential operator L are there solutions of Lu = f for « well
behaved » functions /. Of course equations with analytic coefficients always
have local solutions, obtained for instance by power series expansions
(Cauchy-Kowalewski).

Recently Hans Lewy [1] exhibited an equation with (= coefficients
having no solutions ewen locally. Since it is easy to deseribe, we present it :

In 3-space with coordinates x,y, t, set 2 = 4 iy, write the Cauchy-
Riemann operator as i_ =1 (i zi), and consider the differential

z 2 \ox oy
equation

d , . 9 op(t)
==+t —|u=—=
<8z+ 6t> ot

where the right hand side is a continuous real function of ¢ alone which,
for convenience, is writlen as a. derivative of a real function .

THEOREM : If there is a continuously differentiable solution w of the
equation in « neighborhood of the orvigin, then vy (t) is real analytic.
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Thus for any non-analytic y there is no solution near the origin. (The
proof may be easily modified to show that there are also no « generalized
golutions »).

01 .
Proof: If we integrate g_cd 0 over a circle |z[P=8=>0, z=s12¢9,
2
we establish easily the identity

27

/—dt)—-//zude.

Now set { =s-4it and U ({) =[z wdB. Integrating the equation for u

over the circle we find that U satisfies

0 .0 dy
2%\ =9,
(as+’at>U Tt

or

&+ 5i) T+ 2ain=0.
It follows that V()= U+ 2a iy is a holomorphic function of { =8 it
in a domain near the origin with re { =8> 0. But on s =0 the function
U, i.e. the real part of V', vanishes, and therefore V can be continued
analy tically across s = 0. Hence y is analytic.

[1] Lewy also constructs a function F such that the equation
Lu=F has no <«smooth» solution in the neighborhood of any point.
Lewy also conjectures that there are homogeneous equations with € coeffi-
cients having no solutions in the neighborhood of any point.

The simplest class of differential operators L of arbitrary type, for
which one might expect solutions u of

(L1) Iu=f

to exist, for all well behaved functions f, are operators with constant
coefficients, In the last few years a considerable study has been made of
general differential operators with constant coefficients. (See Ehrenpreis [2],
Hormander [3], Malgrange [4]. Solutions of (1.1) can be found, at least
locally, if one knows that a fundamental solution B of L E =4 (the Dirac
0 function) exists. This is a (possibly generalized) function E such that

Ex Lu=u
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for all (> functions u with compact support. We shall denote the class
of such functions by Cy. Here * denotes convolution. Then if f is in C;
the function » = F « f is a solution of (1.1).

Malgrange [4] and Ehrenpreis [2] proved the existence of a fundamental
golution for any differential operator with constant coefficients. However it
is not difficult to construct one explicitily, as Hormander, and also Tréves [5],
have shown, and we shall now describe such a construction.

First we fix our

NoraTiON: We consider functions u (x) of n variables » = (x,, ..., 2,)
and denote the differentiation vector by D =(D,,..,Ds), D;=0d/ow;.
The letters g, y, u,» will denote vectors f = (8, ,..,B,) With non-negative
integral coefficients f;, and we set | f|= 3 f;. Otherwise for any vector
E=(& .y &), | €] will represent its Euclidean length |£[> =X |&[?, and
Eep=2&n;. We write
=i o' =ph. ol
for convenience we shall also, on occasion, express a general m* order
partial derivative of a function w by D™ u.C; will denote the class of %
functions with compact support.

We consider now a differential operator L of order k¥ with constant
coefficients, which we may write as a polynomial in D of order k.

L= L(D).

In constructing the fundamental solution let us first argue in a heuristic
manner. Introduce the Fourier transform of the function wu ()

(e = fe—wu(mdx,
integration heing over the entire n-space. Then
o ~
LDy = L(i & u(é).
So if u=E= Lu:fE(w—y)Lu(y)dy then

w=HE LGEEUE
or
1

LGg’

B=
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or

(1.2) E(w)=(2n)—”f—ei—wid§
Lig "

Problem : give formula (1.2) a meaning.

In attempting to do this (and there are many ways) there are two
difficulties that occur. The first is the non-integrability at infinity, duo to
the fact that we are integrating over the full n-space. The second difficulty
is caused by the real roots & of the polynomial L (i §).

The first difficulty is easily overcome. It essentially expresses the fact
that is general F is a distribution, i.e. a finite derivative of a continuous
function. Instead of constructing E directly we shall construct the funda-
mental solution Ey of the operator (1 —ANL=(1 ——ZD%)NL(D). We

1

shall construct a fundamental solution Ey having continuous derivatives
up to any given order, by taking N sufficiently large. We may then take,
in the distribution sense,

(1.3) B=(1— A By,
i.e. for fin C5 the function
u=Ey*(1—dINf

is a solution of Lu =f.
Thus we consider, for p(§)=1-4 2% EJ?

gk

(1.4) E'N=(2n)‘”f dt.

PN L(i &

Taking N large eliminates the first difficulty, i.e. the trouble at infinity.

Now to handle the second difficully. We may assume, after a possible
rotation of coordinates, that the coefficient of DE in L(D) is 0, say
unity. Cousider L (i&) as a polynomial in &,. We shall first integrate in
(1.4) with respect to the variable &,, keeping & = (& ,..,&—) fixed,
however we shall move the line of integration from the real line to a
parallel line lying in the complex £, plane.

For fixed real & there are k roots &, of L(i&). In the strip

lgm En | < % in the complex &, plane there is therefore a line parallel to

the real axis whose distance from any root is at least (2% - 2)~!, as one
eagily sees. Let us a choose one such line dm &, = ¢ (&) whose distance to
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any root is at least (4% 4 4)~'. The choice of ¢ (&) depends on ¢’, but it
iy easy to see that ¢ = ¢(£’) may be chosen so as to be continuous except
on a set of & of (n — 1)-dimensional measure zero.

Setting n =75 (&)= (0,...,¢(&)) we now take as definition

. b ¢ (Ein(e) i
(1.4) Iy = pr(Hin)L(«t(erin»'E

where integration is first with respect to &, .
Since

PEHin@)]=— wnd [ LGEHin) =kt 4

we see that Ey has derivatives up to any given order, if N is large enough.
We have finally to verify that for we (f

u=EN*(1—A)NLuEfEN(w-—y)(l—A)NLu(y)dy‘.

Setting (1 — AN L (D)= Ly (D), the right hand side equals

(2m)—" O e D (D)) d
) HLN ey (e y

Since % has compact support its Fourier transform '1;(5) can be extended
to complex vectors & as an entire analytic function, and since u € (> the

derivatives of u die down faster that any power of |£| as we go to infinity
in a strip | Jm & | < constant. Thus, interchanging the order of integration
in the above, we find that it equals

—n eia(&+in) . o N '
) fmﬂmu«sw»u(sm)d

= (2 n)_”j gW(E'H"] ._I_ 7 17

Because of the behaviour of u of infinity we may shift the line of inte-
gration of the &, parallel to itself and find that this expression

= (2n)" f Gty (B)d & =u (2).
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Thus- the function Ey defined by (1.4) is a fundamental solution for the
operator Ly. The desired fundamental solution of Lw then is given by (1.3).

One sees easily that the fundamental solution Ey given by (1.4)” has
exponential growth in the x, variable.

TFor further important work on fundamental solutions for equations
with constant coefficients we refer to Hormander [6].

Consider now elliptic differential operators with constant coefficients.
These are operators L whose leading part L’ — consistiug of the terms
of highest order — satisfy

L’(&) 30 for real &0,

We shall have need later of the fundamental solution for a homoge-
neous elliptic operator with constant coefficients, i.e. L’ = L. For such,
of course, fthe fundamental solution first .constructed by Herglotz is well
behaved at infinity. We shall use the following form of it, given in I
John’s book [7].

1 ”;’q/(w.g)kﬂ @ E

[&]=1

where integration is over the full unit sphere with d ¢ as the element of
area, ¢ is a non-negative integer of the same parity n, i.e. ¢ +n is even,
and the principal branch of the logarithm is taken with the plane slit
along the negative real axis.

From (1.5) we obtain as a special case, for L = 4 power, the following
identity which is due to F. John and used extensively in [7], represen-
ting the & function in terms of plane waves: For w in (g°

1 ntq

(1.6) u=—-m£‘ 2‘ [/(w-f)qlogﬁTjEdwE*u .
|&l=1

In [7] John derives (1.6) from the known expression for the fundamen-
tal solution for a power of the Laplacean, and then derives (1.5) from (1.6).
This may be done as follows. Suppose K (v . &) satisfies

LK(w.5)=(x.5)qlog“——5,

@
then a fundamental solution of the operator L is given by

1 ntq
—WAZ fK(w'E)dW§.
- I§l=1
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But such a K is easily found. If we set # . £ = ¢ then K (o) satisfies

d\k

L¢) (d-c;) K (o) = o%log ofi,

a solution of which is

with ¢;q an appropriate constant. If we insert this into the above expres-
sion for the fundamental solution of L we obtain the expression

1 e i U RY
—eapiroi?’ | 1w ( —+c’°")
|&

which differs from (1.5),only by the term involving ¢, . But this term is
a polynomial of degree &k — n which is therefore a solution of Lv=20,
and so may be ignored.

It should also be possible to derive (1.5) from the heuristic formula
(1.2). (1.5) aserts that

(L.7) f @ Ekﬂ fdw;

(27”

ntq
is a fundamental solution for.the operator 4 2 L. Let us attempt to de-

rive this expression from the corresponding expression of (1.2):

n+q P
(1.8) (—1) 2 @a) /m"ﬂmédg

Arguing heurisitically again let us modify the expression by introducing
polar coordinates in the & space

E=on, o=|E&], |[|n|=1.

Then (1.8) becomes

(1.8) (— 1ytath (2 gy f [ O it d g d w,

[nl=1 0
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Let us now write the heuristic expression

oo

(1.9) [eié’”"i o1 kdg

0

as a well defined contour integral

1
(L9y o [eiemn gm1=ak (log (— 0) + ©)

21
e

where the contour € is a curve which goes from 4 oo in the complex g
plane, encircles the origin counterclockwise and returns to -4 oo along
the real axis, the branch for the logarithm is the same as above, and the
constant ¢ is chosen so that

[e"g o~!muk (log (—o)+e— %’) do=0.
é
The expressions (1.9) may be evalnated explicity, and on insertion

into (1.8)", yields the expression (1.7). We leave the calculation to the
reader.

Lecture II. Calculus Inequalities.

A priori estimates play a central role in the theory of partial diffe-
rential equations. They are of various kinds — pointwise estimates for
derivatives of solutions and their modulus of continuity, and estimates of,
say, L, norms of solutions and their derivatives — and it is naturally
important to nnderstand the relationships between these various estimates.

For instance, the well known results of Sobolev assert that if the m’th
order derivatives D™ wu of a function w (x,,..,x,) (with compact support)
are in L,, 1 <r < oo then lower order derivatives DJu, j<m belong to
L, for some p, or, if r is sufficiently high, the DJu are bounded and
satisfy a Holder condition with a certain exponent a«.

Since we shall often make use of it, let us recall here the notion of

HOLDER conNTINUITY. A function f(r) defined on a set § in a Euclidean
space satisfies a Hdolder condition there with exponent o, 0 <a <1, if

@ —rw]

,yeS lx—yl

(2.1) [fla=[/li=
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is finite. It is Holder continuous (exponent a) in a domain if it satisfies a
Holder condition with exponent « in every cempact subset of the domain.

This lecture is concerned with calculus inequalities relating integral
and pointwise estimates of functions and their derivatives., The recent
important result of de Giorgi [11] on the differentiability of solutions
of regular variational problems seems in fact to be based on a calculus ine-
quality asserting that certain integral estimates imply Hdolder continuity.
We shall consider functions « (x) defined in n-dimensional Eunclidean space
and belonging to L,, and whose derivatives of order m belong to L,
1<q, r<<oo. We shall present interpolative inequalities for the L, and
Holder norms [ ], of derivatives Diw, 0<j<'m, for the maximal range
of p and «. Our iuvequalities are a combination of, and include, those
usually called of Sobolev type (which hold also for fractional derivatives,
and rather straightforward proofs of which may be found in [8]), and fami-
liar interpolative inequalities such as

M < constant M, - M,

where M;is e.w.b. of the L, norms of the derivatives of order ¢ of a
function w, i =0,1,2. The proofs use only first principles and are enti-
rely elementaty. (No attempt will be made here to obtain best constants).
The inequalities is this section were presented at the Int’e Congress in
Edinburgh August 1958, where we learned that almost equivalent results
had also been proved by E. Gagliardo.

In this lecture we shall use the following

1 .
NoTATION : For — oo <{— < oo we defing the norms and seminorms
p

|wl|, for functions u (x) defined in a domain () in n-dimensional spaces :
For p >0

||, = the L, norm of w in Q.

1

{fred

2
For p < 0 set s =[—n/p], —a =254 n/p and define
|ul,=e.u.b.[Du? if 2>0,

lulp=c.u.b.|D'u| if a=0,
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where e.w.b. is taken with. respect to all partial derivatives Ds of order
s, and over points in Q.

We define | DJu|, as the maximum of the | |, norms of all j-th order
derivatives of u.

We shall express our result for functions u defined in the entire
n-space K", Extension to other domains will be described briefly in the
remarks after the theorem.

THEOREM : Let w belong to Ly in E™ and its devivatives of order m,
D™, belong to L,, 1 <<q, r<<oo. For the derivatives Diu, 0 <j <m,
the following inequalities hold

(2.2) | D7 u|, < constant | D™ u | | u]s™",
where
j 1 m 1
= -7 1—a) —
» n+a(7' n)"l’( “)qa

for all a in the interval

(2.3) Lozt

(the constant depending only on mn, m, j, q, v, a), with the following
exceptional cases

LIfj=0, rm<n,q=oco then we make the additional assumption
that either u tends to zero at infinity or w€ Ly for some finite izv> 0.

2. If 1<<r<co, and m —j — afr is a non negative integer then (2.2)
holds only for a satisfying j/m < a<1.

We shall not give a complete proof of the theorem here but shall
indicate the main steps. First some comments.

1. The value of p is determined simply by dimensional analysis.

2. For a =1 the fact that u is contained in L, does not enter in
the estimate (2.2), and the estimate is equivalent to the results of Sobolev
(note that ‘we permit r to be unity).

3. That j/m is the smallest possible value for « may be seen by
taking w = sin A #, { () where { is in O; : For large 1 we have |u |, =0(1),
| Diuly=0(44), | D™u|, =0 (A™) where no 0 can be replaced by o.

4. It will be eclear from the proof that the result holds also for u
defined in a product domain

—oolH <o, 0<y<Loo:s=1,.,k:t=k+41,..,n,

and hence for any domain that can be mapped in a one-to-one way onto
such a domain by a sufficiently « nice » mapping.
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5. For a bounded domain (with «smooth» boundary) the result
holds if we add to the right slde of (2.1) the term

constant | u [; .

for any ?l’> 0. The constants then depend also on the domain.

6. Similar estimates hold for the L, norms of D/u on linear subs-
paces of lower dimension, for suitable p .

7. Similar interpolation inequalities also hold for fractional deriva-
tives, but their proof is not so elementary.

The theorem, in its full generality should be useful in treating nonli-
near problems. We mention in particular that from (2.2) for a =j/m,
g = oo it follows that the set of functions « which are bounded and have
derivatives of order m belonging to L, forms a Banach Algebra. For r =2
this is called the Schauder ring.

The proof of the theorem is elementary and contains in particular an
’elementary proof for the Sobolev case a = 1. In order to prove (2.2) for
any given j one has only to prove it for the extreme values of a,j/m and
unity. (If Case 2 holds some additional remark has to be made.) For in
general there is a simple

Interpolation Lemma : if — oo <A<l u<v< oo then

e el

v—2 v—~4
lu’l1£("lu|1 Iu‘l
u 7 N

where ¢ is independent of w.

The lemma is easily proved; for 2> 0 it is merely the usual interpo-
lation ineqnality for L, norms. :

Let us turn now to the proof of the theorem, or at least to the main
points. Counsider first the Sobolev case, « =1. It suffices to consider the
case j=0, m =1, from which the general result may then be derived.
If » > n(2.2) asserts that u satisfies a certain Holder condition, and an ele-
mentary proof due to Morrey has long been known. We shall sketch it here
for functions defined in a general domain .

Definition : A domain Q) is said to have the strong cone property if there
exist positive constants d, 1 and a closed solid right spherical cone V of fixed
opening and height such that any points P, ¢ in @ (the closure of Q) with

|P=g|<a
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are vertices of cones Vp, Vy lying in @ which are conrguent to V and
have the following property : the volume of the intersection of the sets:
Vp, Vg, and the two spheres with conters P, Q and radius |P— @], is
not less than 1| P — Q|

‘We now prove the assertion

If u has first derivatives in Ly, r > n, in a domain D having the strong
cone property, then for points P, Q in QD with |P — Q| <d, we have

|uiﬁ-——li%)’gconstant[I)n |
|P—q| "

where the constant depends only on d, 2, V, n and v.
(From this follows easily an estimate for [u]1 ny, depending on the
r

domain).

Proof: Set s =| P — Q| and let Sp(Sg) be the intersection of Vp (Vo)
with the sphere about P (¢) radius s. Set SpNSg= 8. If R is a point
in § we have, on integrating with respect to R over &8,

Volume of § . |u(P)—u(Q)|§f|u(1’)—u(R)IdR—|—
S

—l—f[u(R)—u(Q)]dR.
S

Because of the strong cone property the left hand side is not less than
As"|u(P)—u(Q)].
The first term on the right may be estimated as follows. Introducing polar

coordinates g,#, about P, where 7 is a unit vector, we find easily that
the first term in the right is bounded by

4
ou Ju
n—1 d —lde < tant " —
fg d w, 9[‘89' o < constan 8_”89
N 0 Sp

P

dx
Qn—l

(where d w is the element of area on the unit sphere, and d » is the ele-

ment of volume)
r 1 ” r—1
e {firva
Sp

0
< constant s” (/
s

u
do
P




