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A Sketch of the Theory of the

Boltzmann equation

Carlo Cercignani
Istituto di Matematice
Politecnico di Milano

Milano, Italy

In this seminar, I shall briefly review the theory of the
Boltzmann equation. How the latter arises from the ILiouville
equation has been discussed in O.Lanford's lectures.

We shall write the Boltzmenn equation in this form

4 _
’%ti + _f.:;g = Q(%)?) (1’)

where t, X, _g_ denote the time, space and velocity va-
riables, while :{ is the distribution function, normalized

in such a way that

fedcae =M @)

where M 1is the mass contained in the region over which the
integration with respect to x extends.
Cé({;g) is the so called collision term, explicitly obtai~

nable from the following definition

Q (@;%) - 2_%; 5@’% fg-ts—t, ?)B(QV)Jg.gng ()
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where 5 is an ausiliary velocity vector, V is the re-

lative speed, i.e. the magnitude of the vector V ?’E*,

‘(') \e(.) %‘ (g') etc., where _gj and E* are related

and g through the relations expressing conservation

of momentum and energy in a collision
E'rf =58

2 1 2 (4)
E,', = §+§'

(5)

equivalent to

£=§-n(nY) (6)
[ eeny ™

where n 1is a unit vector, whose polar angles are 6 and
& 1in a polar coordinate system with __V as polar axis.
Intesration extends to all values of _g, and between O
and W/ with resovect to 9) from 0 to 2w with respect
to ¢. Finally B(QV) is related fo the differential cross
section g-(QV') by the relation

B(QJV)= V“""GG‘(Q/V) (8)

and m 1is the mass of a gas molecule., For further details
one should consult one of my books E‘l ,2].

(1) is valid for monatomic molecules and is more ge-
neral than the Boltzmann equation considered by Lanford in
his lectures, because it is not restricted to rigid spheres,
but allows molecules with any differential cross section.
The case of rigid spheres is obtained by specializing B(QV)

as follows
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B(e,V) = Vd o8 wsB ()

where d is the sphere diameter. Another important cese i=
offered by the so called Maxwell molecules.

The latter are classical point masses interacting with s
central force inversely proportional to the fifth vower of
their mutual distence; as a consequence, it turns out that

B(@,v) is independent of V.

It is clear that initial and boundary conditions are requi-
red in order to solve the Boltzmann equation, since the latter
containg the time and space derivatives of -f. The boundzary con-
ditions are particularly important since they describe the in-
teraction of the gas molecules with solid walls, but particu-
lar difficult to establish; the difficulties are due, mainly,
to our lack of knowledge of the structure of the surface laver~
of solid bodies and hence of the interaction potential of the
gas molecules with molecules of the solid., When & molecule im-
pinges upon a surface, it is adsorbed and may form chemical
bonds, dissociate, become ionized or displace surface atoms,

The simplest possible model of the gas~surface interaction
is to assume that the molecules are specularly reflected et
the solid boundary. This assumption is extremely unrealistic
in general and can be used only in particular cases. In fene-
ral, a molecule striking a surface at a velocity 5' reflects
from it at a velocity 5 which is strictly determined only
if the path of the molecule within a wAll can be computed exac-
tly. This computation is impossible because it depends upon a
great number of details, such as the locations and velocities
of all the molecules of the wall. Hence we mey only hope to
compute the probability density R(g'——sg) thet 2 molecule



12

striking the surface with velocity between &' and £'+dE' re-
emerges with velocity between § and §+d§ . If R is kmom,
it is easy to write the boundary condition for e_ E_,_Z_] :

I5-n €x,8,1) =5'.£i~(§;§)f(5') [$:a]dE" (o)

where n is the unit vector normal to the wall and we assumed
the wall to be at rest (otherwise _f, _S_) must be replaced
by f-g‘,/g-gq , Y, denoting the wall's velocity.)

In general, R will be different at different points of the
wnll and different times; the devendence on x and t is not shown
exnlicitly to make the equations shorter.

If the wall restitutes all the gas molecules (i.e. it is non-
vorous and nonadsorbing), the total probability for an impinging
molecule to be re-emitted, with no matter what velocity _§:I is

unity:

SR(E—8)dg = 1
x! (11)

)
An obvious property of the kernel K(g-)g) is that it cannot

assume negative values

R(g'—-g)z 0 (12)

Another basic property of the kernel R ) which can be cal-
led the "reciprocity law" or the "detailed balance“, is written
as follows [1, 2] :

#0] £ (8) R(E=> ) = 180] REE=E)LE) o)
where {(g) is proportional to vxp [‘f%lm;)], where T, is
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the temverature of the wall (in other words, {’(E) is & Veywel=
lian distribution for a gas at rest at the temperature of the
wall),

We note a2 simple consequence of reciprocity; if tre imminrsin-
distribution is the wall Maxwellian .é and mass is corncerved
at the wall according to Eq.(11), then the distribution function
of the emerging molecules is again { or,in other words, the
wall Maxwellian satisfies the boundary conditions. In fact, if
we integrate Eq. (13) with respect to _g' and use Eq. (11) we

obtain

Sl (2) RE=E)4E = 52 ]4(9)

: (§2>0)

and this equation proves our statement, according to Eq. (10).

(14)

It is to be remarked that Eq. (14), although a conseauence of
Eq. (13) (when Eq. (11) holds) is less restrictive than FEg. (1?)
and could be satisfied even if Eq. (13) failed.

As a consequence of the above properties, one can prove [2]
the following remarkable theorem:

Let C(za be a strictly convex continuous function of its
argument ? Then for any scattering kernel R(S’-’f) sati-
sfying Eqs. (11), (12), (14), the following inequality holds

.({, _g.“'.‘ C(a') &S. <0 (15)

where { is the wall Maxwellian, ? =-f/{° and interfration
extends to the full ranges of values of the components of E,
the values of .e for 51\)0 being related to those for 5._@40
through Eq. (1.6). Equality in Eq. (15) holds if and only if
(:7 almost everywhere, unless R(g-'—»g) is proportional
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to a delta function,

As a corollary, the following inequality holds [2]

jE'L.‘- {&3\%{5 < —liif E‘i"&]wu (16)
vhere [ﬁ’@LJQ denotes the normal heat flux fed. into the gas
by the solid constituting the wall and R is the gas constant.

We want to generalize the H-theorem, considered <m O, Lan-
ford's lectures, to the case of a gas bounded by solid walls

which may or may not be at rest., To this end we define

M = fgeqpds (17)
gze- - §§ @L«t@ e («<=1,2,3) (18)

and observe that

Bt bx 5("&{‘ QRA)4s (19)

(A sum with respect to £ from 1 to 3 is understood).

o

Now, the following identity holds for any ¢ 4} 2 provided

the integrals make sense:

fir Qlbg) 4 =& (o, P =) (Pa L9,
-ﬁ%)B(&V)J;dsda (20)

This identity follow by straightforward manipulations;
for details, see [1 53

Applying Eq. (20) to the case p= %{'/3 { )

obtain

[eof QA =§{;K¢v~g N’)@ %JVZ;B(QV)J_&,Jﬂ&sOm)
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where the inequality follows from the fact that (1-R) e"?k is
always negative, except for A = 1, where it is zero., Hence e-

gquality in Eq. (21) is valid if and only if

{—’#; = M: (22)
or letting ? denote {a%‘g

i ]
P+H% =P % (23)
This equation is satisfied trivially by @ = 1 and, as =
consequence of Egs. (4) and (5),by $ = f.’ (i = 1,2,2) and
q>=§zl- it can be shown [ 2 ] that there a no other li-

nearly independent collision invariants (such is the name for
the solutions of Eq. (23)). As a consequence, the most gene-

ral distribution function satisfying Eq. (22) is given by

{: W\o(&f _LD'S _'_an.) (24)

where a, b , ¢ are constant. Eq. (24) can be rewritten in the

following form

.@ = ?(QWRT).BIZWPE (g"i)

2,
K } (25)

where ?/ v, T are new constants related to the previous
onef and have the meaning of density, mass velocity and tempe-
rature associated with the distribution function # according
to well-known formulas [1,2] . Eq. (25) gives a laxwellian
distribution.

Eqs., (19) and (21) imply that

:%g—(—.?&so (26)

2.9
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where the equality sign applies if and only if { is MNaxwel =
lisn, i.e. is given by Eq. (25).

If we integrate, both sides of Eq. (26) with resvect to x
over a region R bounded by solid walls, we have, if the boun-

dary OR of R moves with velocity wu,:

H ) <
%{," - 5&(K~&-M&°@)ds-o (27)

where 45 is a surface element of the boundary MM ana n
the inward - normal. The second term in the integral comes from
the fact that, if the boundary is moving, when forming the time
derivative of H we have to take into account that the region of
integration changes with time. ’

If we use Eq. (16), Eq. (27) becomes:

% < —%j——&fci'ﬁ%' 43 (28)

where we replaced 5 by _E‘—go in Eq. (16) as required. Eg.
(28) generalizes the H-theorem, showing that H decreases with
time if there is no heat exchange between the gas and the
walls, Also, equality in Eq. (28) applies if and only if { is
Maxwellian. Eq. (28) suggests that H: be interpreted as -'1/5:
where 1 is the entropy of the gas, since it satisfies the
same inequality (Clausius-Duhem inequality). This identifica~
tion is validated by evaluating H at equilibrium, when € mist
have the form indicated in Eq. (25); in such a case m=-FRH
turms out to have the same dependence on S: and T as the en-
tropy in ordinary thermodynamics.

Let us now briefly examine the problem of solving the Bolt-
zmann equation; because of the nonlinear nature of the collision

term Q({,e) » this is a difficult problem. A very particular
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class of solutions is offered by lWexwellian distritutions, Ta,
(25), which describe states characterized by the fact tha* nei-
ther heat flux nor stresses other than isotropic pressure are
present. If we want to describe more realistic nonequilibriun
situations, we have to rely upon approximate methods, tvpicslly

verturbation techniques. The simplest approach is to write
2 s
(:{,(1 +ef, ¢ ety + ) (20)

where {, is a Maxwellian and ¢ is a "small paraneter",
which may or may not appear in the Boltzmann ecuztion. In the

second case, g will appear in the initiel and houndary condi-

tions and the equation for &: e\'i. will be
R *Ro_ L .
X 4+ 8o — =
by | 3 (30)
where

L& = QK L8) (31)

is called the linearized Boltzmann operator. Eg. (30), in turn,
is called linearized Boltzmann equation. If one introduces a

Hilbert space M where the scalar product is given by

(34) = [£,95 4% (32)

then L is a symmetric operator in'M:

@, Lk) = (L?J&) (33)

In addition, L is non-negative

(&,L&) <0



and the equ2lity sism holds if and only if h is & collision

invariant., In =uch a case

L&=0 (35)

i,e, the collision invariants are eigenfunctions associated
with the fivefold degenerate eigenvalue A = 0 of the opera~
tor L A1l these propertjsfollow irmediately from Bq. (31) and
(20), if the circumstance that (o satisfies Eq. (22) is pro-
verly taken into account.

Eq. (35) suggests investigating the spectrum of L ; this
problem arises when we look for the solution of Eq. (30) in
the space homogeneous case ('a?v/a_)_( = O) . Eg. (34) shows that
the spectrum is contained in the negative real semiaxis of the
).—plane; it turns out that the spectrum is extremely demendent
uvon the form of the choice of the function DB (9,V> apoea-
ring in Eq. (3). It is completely discrete for the case of Max~
w21l molecules, while it is partly discrete and partly continuous
in the case of rigid spheres. For further details, one should
consult Refs. [1,2] .

An interesting problem arises when one investicates the so- -
lutions which do not depend on time t and two space coordinzstes,

82y ¥, and Xy 03 in this case one has to solve the equation
1% (36)

in the unknown a\: f\,(xi‘gtlg,_)gs):k(x&,g ), The similar-ity

between this equation snd Eg, (30) with D&/a; = (0 suggests

that we look for solutions of the form

g - e %(E_) (37)
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where g satisfies

Lx&: AE.!@’ (38)

which is the analogie of Lﬁ:lf» The first gquestion is whether
the solutions of Eqg. (38) are sufficient to construct the Teneral
solution of Eq. (36) by superposition. Next comes a study of
the set of velues of A for which Eq. (38) has a solution
(different from 3: 0).

The problem here is more difficult beczuse there is an inuer
rlay between L and the multiplicative onerator E‘ o In cddia
tion the existence of the collision invariants satisfying ¥z,
(35) prevents L from being a strictly negstive operator. In
spite of this, it is possible to show [2] that the general

solution of Eq. (36) can be written as follows:

2= 2 A, + 5 B I p)ent] <[] 7) 6
-A,te\"*e().. (A‘lgfms(;ﬁfﬁ(x)) (39)

where are the eigensolutions of Eq. (38), g ere the five
Y L . . =% . - Y, g, = §25RT
collision invariants \,&:L Y= g\_ (¢=1,2,3 A N
(T, being the temperature 1n the basic Maxwellian ﬁ . Here
we have assumed that the ).S form a continuous set, otherwi~
se the corresponding integral has to be repleced by the sum
e X
Z, ™ g (¥ A
It is clear that the general solution given in Eq. (29)

is mede up of two parts, hA and hB y given by

boe 2 At < 2RO R o
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Ao Aw
L =_£ "’; e M ‘b(.{) Ax"’)' (41)

where the "eigenvalues" )\ are of the order of the inverse of
the mean free path Cé] « It is clear that hB describes space
transients which are of importance in the neighbourhood of
boundaries and become negligible a few mean free paths far from
them. The circumstancethat Eq. (41) contains exponentials with
both 7L>O and >\< 0 is exactly what is required to describe

a decay either for x>7X or x, <3c'1 , where X, is the

1 1

location of a boundary.

The general solution given by Eq. (39) then shows that, if
the region where the gas is contained (either a half space or
a slab of thickness d, because of the assumption that h is
independent of two space coordinates) is much thicker than the
mean free path {; then hB will be negligible except in boun-
dary layers a few mean free paths thick. These layers receive
the name of "Knudsen layers" or "Kinetic boundary layers". Out-
side them the solution is accurately described by the asympto-
tic part h, , defined by Eq. (40); it can be shown [2] that if
we compute the stress tensor and heat flux vectors arising from
hA , they turn out to be related to the velocity and temperature
sradients by the Navier-Stokes-~Fourier relations ,with the fol-
lowing expressions for the viscosity coefficient ,& and the‘

heat conduction coefficent k ¢

p=- (RTQ)%JQ € L"(Si.) s (42)
- (L SR ESds o
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These results can be extended to more general rrotlers [}]
Very interesting problems arise when the inecourli%y d;g>{
is not satisfied, i.e. the mean free path is commrr-ble with

the slab thickness [j, 2] ; their treetment is, rowever, te-

yond the limits of the present seminar.
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Chapter I. Elementary Qualitative Theory of Differential Eauations.

This series of lectures will be concerned with the statistical
theory of dissipative systems and, at least metaphorically, with its
applications to hydrodynamics. The principal objective will be to try to
clarify the question of how to construct the appropriate ensemble for
the statistical theory of turbulence. We will not, however, come to
this point for some time. It should be noted at the outset that the
relevance of our discussion to the the_ory of turbulence is dependent on
the guess that, despite the fact that fluid flow problems have infinite-
dimensional state spaces, the important phenomena are essentially finite
dimensional. This point of view is not universally accepted [4]. Om
the other hand, the theory is not restricted to fluid flow problems; it
also applies to a large number of model systems arising, for exeample, in
mathematical biology [7].

The methods we will discuss are limited in that they appear not to
have anything to say about such traditionally central issues as the
characteristic spatial properties of turbulent flow, the dynamics of
vorticity, etc. Instead, they attempt to clarify the apparently stoch-
astic character of the flow and its peculiar dependence-independence on
initial conditions. To explain what this means, let us look briefly at
two important but not completely precise distinctions —— between conserva-
tive and dissipative systems and between stable and unstable ones.
Intuitively, when we say that a system is conservative, we mean that,

once it has been started in motion, it will keep going forever without

*

It may be that this ceases to be true for "fully developed. turbulence"
and that what we say here applies to turbulence at relatively low Rey-
nolds numbers and not at high Reynolds numbers.



further external driving. Mathemetically this is usually reflected in
the fact that the equations of motion may be written in Hamiltonian form,
with the consequent conservation of energy and phase space volume. Among
numerous examples, let us note

a. the Newtonian two-body problem

b. the motion of a finite number of frictionless and perfectly

elastic billiard balls on a rectangular table.
These examples illustrate the distinction between stable and unstable
systéms. The Newtonian two-body system is stable in the sense that the
effects of small perturbations of the initial conditions grow slowly if
at all and hence that long-term predictions about the state of the system
are possible on the basis of approximate information about the initial
state. In the billia_.rd system, on the other hand, even very small changes
in the initial state are soon amplified so that they have large effects.
If the system is started out repeatedly, in almost ‘but not exactly the
same way, the long-term histories will almost certainly be totally
different. In this sense, although the motion is strictly speeking
deterministic, it is from & practicael point of view effectively random;
the coarse features of the state of the system at large times depend on
unobservably fine details of the state at time zero.

Consider next dissipative systems. Intuitively, these have some
sort of frictional mechanism which tends to damp out motion and must
therefore be driven by external forces if they are not simply to stop.

A methematical transcription of this notion which is as general as the
correspondence "conservative = Hamiltonian" does not seem to exist, but
it ie¢ grnerally not difficult to agree on whether a given dynamiceal

system is dissipative or not. We will consider systems driven by time-



