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DIFFUSION OF IONS IN A PLASMA 
WITH APPLICATIONS TO THE IONOSPHERE 

by 
V. C. A. Ferraro 

(Queen Mary College, University of London) 

1. Derivation of the diffusion equations in plasmas 

1. The term 'plasma' ,was first used by Langmuir for the state 

of a gas which is fully ionised (for example, the high solar atmosphe­

re) or only partially ionised, (for example, the ionosphere). Our main 

interest in this course will be the diffusion of ions in such a plasma, 

arising from non-uniformity of composition, of pressure gradients or 

electric fields. 

We begin by considering the simple case of a fully ionised gas 

and for simplicity restrict ourselves to the case when only one type of 

ion and electrons are present. 

2. The velocity distribution function 

We make the familiar assumption of molecular chaos, in which 

it is supposed that particles having velocity resolutes lying in a certain 

range are, at any instant, distributed at random. It is therefore most 

convenient to use six dimensional space in which the coordinates are 

the resolutes of the position vector r and velocity v. The state of 

the plasma can then be specified by the distribution functions 

fat (t,~,~) ,where t is the time, that characterise each particle 

component 0(.. , for example, the ions or the electrons The quantity 

(1 ) 

then represents the number of particles in the six dimensional volume 

element dr dv. In the simplest case, the plasma consists of single 



-4-

V. C.A. Ferraro 

ions ( a.. = i) and electrons (~= e). In more complicated cases, the 

plasma may consist of several ion species in addition to neutral par­

ticles (4'= n) such as atoms, molecules. exited atoms, etc. The total 

number of particles of constituent DC< in the element dr is obtained 

by integrating (1) throughout the velocity space. This number is. by 

hypothesis, n", dr and thus n« =je(t, r. v ) d v (2). The beha-
.... ... - -C( -lit 

viour of the ionised gas is described by a system of equations (Bolt-

zmann equations) which can be derived as follows. Suppose that each 

particle of mass is acted on by force m F"" then in a 
IIC.- ... 

time dt in which the particles of constituent Of, suffer no collisions, 

the same particles that occupy the volume of phase space dr dv 
--fIl 

at time t would occupy the volume of phase (.r + v dt)(v + F dt) 
- -II( - r;& 

at time + dt . The number in this set is 

(,,(t + dt, r + v dt, v + F dt) 
.... Cit-I/. 

and the difference 

E (t + dt, r + v dt, v + F dt) - f (t, r, v ) dr dv :reJ, - -(II. -01 -f(. c¥; - -«. - ~ 

therefore represent the difference in the gain of particles by collisi.ons to 

this final set and the loss of the particle to the original set in time 

dt. This must be proportional to dr dv dt; and we denote it by 
~ 

Crt dr. dv III. dt . Taking the limit as dt -+ 0 , we arrive at Boltz-

mann's equation for f~, viz 

(3) 
f 
~ + (v .M) f + (F .'Vv ) f = C 

-d. V " -(II. -Ill ol It 

where \J v stands for the gradient operator 
- .. 

in velocity space. 

'0 
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3. Charge neutrality and the Debye distance 

In general a plasma will rapidly attain a state of electrical 

neutrality; this is because the potential energy of the particle resulting 

from any space charge would otherwise greatly exceed its thermal ener­

gy. Small departures from strict neutrality will occur over small di­

stances whose order of magnitude can be obtained as follows. The elec-

trostatic potential V satisfies Poisson's equation. 

(4) 
2 V V =-47C(Zn. - n )e 

1 e 

Here Ze is the charge on an ion and -e that of the electrons. In 

thermodynamic equilibrium , the number densities of the ions and elec­

tions respectively are given by 

(5) n. = n.(o) exp(-ZeV/kT.), 
1 1 1 

n = n(O) exp (eV/kLt) , 
e e ~ 

where k is the Boltzmann constant, T., T are the ion and electron 
1 e 

n~o) and n(o) are the values of n. and n temperatures 
1 e 1 e 

for strict neutrality so that n(o) = Zn~o) . In general, departures from 
e ~ 

and 

neutrality are small so that we may expand the exponential to the first 

power of the arguments only. We have approximately 

(0) ZeV (0) eV 
Zn. - n :Zn. (1 - --. ) - n (1 +-) 

1 e 1 uT t e uTe 

and hence 

(6) 

where 

(7) 
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The quantity D has the dimensions of a length and is called 

the Debye distance, The solution of (6) for spherical symmetry is 

(8) 

where e" is the charge on the particle. For small distances r 

from the origin (r < < D), (8) reduces to the pure Coulomb potential 

of the charged particle. For large distances(r > > D), V -+ 0 exponential­

ly . Thus in a neutral plasma in thermodynamical equilibrium the Cou­

lomb field of the individual charge is cut off (shielded) at a distance 

of order D. Hence, we may aSbume that the particles do not interact 

in collisions for which the impact parameter is greater than D. The 

Debye shielding is not established instantaneously; oscillations of the 

space charge will have a frequency w = (47rtl2/m J(SinCe the dis-
o e e) 

placemente of the electrons (or ions) bodily by a distance x gives rise 

to an electric field of intensity 47Cn ex lending to restore neutrali­
e 

ty) . Thus the time required to establish shielding is of the order 

~_1 
w 

o 

4. Diffusion of test particles in a plasma 

A particular particle, which we call 'test particle', in a plasma 

will suffer collisions with the other particles in the plasma, which we 

call 'field particles' . Electrostatic forces between the particles have a 

greater range than the forces between neutral molecules in an ordinary 

gas. Consequently, the cumulative effect of distant encounters will be far 

more important than the effect of close collisions, which change comple-
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tely the particle velocities. We shall therefore suppose that the de­

flections which the test particles undergo are mostly small. The motion 

of the test particle is most conveniently descibed in the velocity space, 

i. e., a space in which the velocity vector! is taken as the position 

vector and the apex of this vector is called the velocity point of the 

particle. Referred to Cartesian coordinates the coordinates of these 

points will be denoted by v , V ,v . 
X Y z 

As the test particle changes its position in ordinary space, its 

position in velocity space changes either continuously or discontinuously 

due to encounter with fixed particles. In general the disp;lacement is 

complicated. (Fig. 1) 

o 

FIG. 1. 

It is clearly impossible, and indeed futile, 

to trace the motion of a single particle 

and we are forced to consider a statisti-

cal description of the motion. In this, in­

stead of a single particle, we consider an 

~ assembly containing a large number of test 

particles which have the same velocity v 
-- -0 

initially. 

Suppose these are concentrated around the point v in the velocity 
-0 

space . At subsequent times the cloud will spread, changing both its 

size and shape, as a result of successive encounters. 
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We now require to find quantities which 
.1fo (1=0) 

'IIi " w ill adequately describe the process. One 
~, 
IS-jj?l such quantity is the change in velocity 

0')-_____ _ 

FIG.2. 

tl!. of a test particle produced by the 

encounters. Suppose that v is parallel 
-0 

to the z-axis and consider the resolutes 

Jjv ,Av ,L1v of Ll v . Suppose that 
x y z 

(llv). is the change in Llv produced 
Xl x 

by the ith encounter. Then after N 

encounters, 

N 

IJ.v = L (Av). 
X i=l x I 

We assume that all the encounters are random, but as we have alrea­

dy seen, we cannot predict the change Ll v for a single test particles. X _ 

However, we can define an average value of t1 v , say Ll v for the 
x x 

large assembly of particles under consideration. If the distribution of velo~ 

cities is isotropic, then !l v =0, by symmetry, and likewise .dv .= 0. _ x Y 
But /Jv need not vanish since the assembly (or cloud) has an initial 

z 
velocity in the z-direction. However the mean square of Jj} will 

. x~ 
not vanish . This mean value will contam terms of the form (~v). 

X 1 

and (/J v ).(dv ). : If the collisions x 1 x J 
are small we may expect 

that successive collisions will produce, on the average, the s~ave-

rage change as the first collisions. Thus the N terms rAv)~ are 
Xl 

all equal. But the mixed products (Llv ).( Av ). will vanish when 
x 1 X J 

averaged over all particles considered since successive collisions are 

un correlated . Hence 
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(9) 
- ----z Lh 2 = N(Av). 

x X 1 

The dispersion of the points in Fig. 2 will therefore increase like 

-IN, but not, in general, equally in all directions. But the centre of 

gravity may be displaced by an amount proportional to N. (Fig. 2) 

The dispersion of the points in the velocity space produced by 

collisions of the test particles with the field particles is analogous 

to the diffusion of particles in an ordinary gas. To measure the rate of 

diffusion in the v direction, we consider the average 
x 

value of (9} 

per unit time. The resultant value of ~ v 2 , measuring the increase 
x 

of particles per second, will of velocity of dispers ion of a group 
2 

be denoted by < Av > and called a 'diffusion coefficient', a term due to 
x 

Spitzer • If the velocity distribution of the field particles is isotropic, 

the diffusion coefficients < !:J. v > and <i1 v Ll v > vanish identically, 
x x y 

The encounters between test and field particles whiCh we are 

considering are assumed to be binary encounters only . (;fq 

Let ~ be the velocity of a field particle relative to a test particle. 

Then there will be 
2 

<Avl/ >. <!J.v 1/ > and 

only three independent diffusion coefficients, namely, 
2 

< .6.v,L >, where vII and v.L are measured 

respectively parallel and perpendicular to v. Their values will depend 

on the velocity distribution function of the field particles. 

The justification for this will be given in Section 7. 
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5. Binary encounter of two charged particles 

(Hyperbolic orbit) 

FIG.3. 

Consider the motion of charge e2 relati-

ve to charge e1 ; let £1 and £2 be the 

position vectors of e 1 and e2 relative 

to a Newtonian origin. Then the eEluation of 

motion of the charges are respectively 
e e r .. 1 2- •• 

mr =+--- mr =-
1-1 3' 2-2 

e e r 
1 2-

3 
r r 

where £ = £2 - £1 and m1 and m2 

are the masses of the charges. Hence 

•• II ... 

r = r - r - -2 -1 
1 

-e e (­
I 2 m 1 

1 r +-, ...... 
m I 3 

2 r 

that is,the relative motion is the same as that 

of a particle under a central force at 

A varying inversely as the 

distance whose strength is 

square of the 
ele2 
-- }\There 

m 12 In m 
1 2 is the reduced mass. (Fig. S). 

Let v be the relative velocity of the charges at infinity and 
00 

p the impact parameter. The energy integral is, with the usual nota-

tion, 

whence 

(10) 

The Dolar eauation of the orbit is 
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.t 
(11 ) r" 

1 + e cos1 

where -t is the semi-latus rectum and e the eccentricity. As 

r -+ 00, gJ'" '" - w so that (11) gives 

Also AC" ae ; hence 

cosw -
e 

sinw = .E­
ae 

2 
Thus 

2 2 1 _p_ 
I " sin w + cos w "2' + 2 2 or 

2 2 
e = 1 + P 2 gi ving 

or using (1) 

( 12) 

e a e 

1 cosw=R 
1+ L 

2 
a 

sinw = 

6. Calculation of diffusion coefficients 

a 

p 
tanw = E 

a 

Consider the scattering of test particles (<<,) by a flux of field 

particles (~) • The spatial density of the latter is 

dnp" f, (~' ) d~' 
where v'is the velocity of the particles and f p the distribution 

function of the field particles. Consider the collision of a test particle 

•. Ct with a field particle P of this flux. Then the velocity ~ «. of the 

test particle is related to the velocity v of the centre of mass of 
-g 

the two particles and their relative velocity u by 



hence, since 

(13) 

-- 12 -

v = v + u 
-tt -g 

v is unaltered oy the encounter, 
-g 

mctfJ 
J1v ,,-L1u 

-(i ma..-

V. C. A. Ferraro 

where mOltfJ is the reduced mass of m~ and m p' and l1u 

the change in u produced by the encounter. 

Also, in taking the average of tre change of velocity over the 

test particles in the assembly, the summation reduces to a summation 

over all particles of the flux incident on a fixed scattering centre. 

The number of particles moving through an area dA = pdpdj' of a plane 

1L perpendicular to 1:1 in unit time is 

(14) dnp I ~ J d A " f~ (v') d;'.' u dA 

Multiply this by the components of the vector A -::c/, given by (13) 

and integrate over all the plane 'l( and then over the velocities 

of the field particles we find 

(15) < Ll vk > "Sfp (-::') w k d-::' (k = x, y, z) 

where 

(16) 

where 

(15) and (16) are the 

m 2 r 
w kl = ( ~) Jll uk l1 u t ud A 

~t....f. 
diffusion coefficients . It will be convenient to com-

pute these integrals relative to a coordinate system in which the z-axis 
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is along ~ . 

For referring to Fig. a . and Fig. 4b . 
X 

e ;:. 
ac. 

3-
L 

FIG.4b 

we have 
FIG.4a 

Au = usin 6 cos ~ 
x 

l1u = usin 8 sin, 
y 

.l1u =-u(1 -cos 6) 
z 

Also from (12) and the fact that 6 = 11: -2w we have 

(17 ) 

where 

Then 

whilst 

6 •.. p J. 
tan -

2 P 

ect ep 
Pj, =-2 

mtl~u 
PPJ. "PP,l. .1 u = 2u -- cos (f), LJ u = 2 u -2-2 sin 0 

x 2 2 J Y .r 
P +pJ., 'I. P +P,l.. 

6('(' ~ -1~ 
J. t'+~l. 

Integration with respect to p and 1 over the plane gives 

w = 0 =w 
x Y 

) w 
= moLp Au ud A. 

z met z 
plane 
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If the limits of integration ,for pare 0 and 00, the integral 

diverges; however, we have already seen that the Coulomb field of 

individual charges is cut off at distance of order D, the Debye di­

stance, Hence we can take D as the upper limit for p in the integral, 

We then find 

(18) 

where 

( 19) 

me(, 

1 +­
mp 

--2-
41tu 

m 
1+~ mp 

=-:\--2 
4'lru 

'D 
1 =) pdp = log 

2 2 e 
p +p 

o J.. 
P.J,. 

It has been tacitly assumed that D» P.l. ; to illustrate that this 

is likely to be the case in general, let us take T i = T e = 
70 5 -3 = 1 ke V ( 10 K), n. '" n = 10 em ,and Z = 1 , then 

1 e 

and 

1 
D = ( kT 2)2 1 - 3 

81( fII; - - X 10 em 
2 

2 
1 -10 
"2-'(10 em 

so that Dip - 107 , Hence in 
:.L 

(19) we may neglect PJ. compared 

with D in the numerator and write 

(.!9a) )., - log E- = log [_3 
t PI l 3 

... 2e 
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Likewise ) 
m 2 2 

w = (~) (flu) u 
XX mill x 

m 2 r PPJ. 2 
dA = ( ;p) J (2u "T2 COSI) updpd1 

CL plane P +p 
..L. 

1 (4'ICQ ~2 ~D 3 d ___ K P P 

- 4 '" u mol . ( 2 + 2. 2 
o P ~) 

1 1 (4mft'~ot~\2 ( A- 2) 4"mJ .... J neglecting terms of ordert ~ 2 

Again w yy = w xx and Woe p = 0, a. f~: Finally 

m"p 21 2 mot 2 ( p1 2 
"zz = (--) (tJ uz) u dA = (m p) J (- 2u -2-2-) updp d~ 

l'I\t "" plane p +p 
.L 

and the integration with respect to p can, in fact, be carried out 

from 0 to 00 since the integral is finite ; 

we find 

t.1... 2 
w = 49t(~) 

zz m u 
at 

Since this is A times smaller than w or w it may be set 
xx yy 

to zero. We can now express wk and wkf, as a vector or ten-

sor respectively. In fact, 

1 + '"-t 
-A. "¥ 

41tu2 

u 
--k... 

u 
(20) W = 

k 

Wkf (: : }(: : :)- (:' : :) 

(21) = A (S kl - \ 2 ul ) 
u 
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where 

(22) 
A _ ~ _1_ (4 7Ct~12 

-(A- 2 )4'7tU m 
cl 

Finally 
m~ ) u 

< l::l v > = - (1 + - )Q ~ 
k mp w, u3 

f (VI) d VI 
~ - -(23) 

(24) 

where u = v - VI 

(25) 

It can be shown that the third and higher diffusion coefficients 

< A v k A vJ.A v m' . > are smaller than the first two diffusion coeffients by 

a factor of .A . This means that the motion of Coulomb particles can 

be visualized as a diffusion in velocity space, The approximation in 

which only the first two diffusion coefficients are considered is called 

th e Fokker- Planck approximation. 

7, Justification of the assumption of binary encounters in the theo-

The assumption 

the interaction range 

smaller thatn the mean 

is certainly justified for short-range force. If 

d(effective diameter of the molecule) is much 
-1/3 distance between the particles, n 

where n is the density of the gas, the sphere of action , of vo-

lume 

is 

will contain only a small number of particles N ,that 
d 

3 
Nd = nd «1. 
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Under these. conditions the probability of multiple collisions, involving 

three or more particles simultaneously, is very small. A description 

in terms of binary collisions is adequate. 

Coulomb forces acting between particles of a plasma are not 

short-range forces. The potential energy between two such charges e 1 

and e2 is 
e e 

(2 fi) 
1 2 r 
-- exp (--) 

r 0 

where r is the distance apart of the charges. Thus the interac­

tion between them extends at least as far as the Oebye distance 0, 
-1/3 

and for conditions in which we are interested 0» n and the sphe-

re of action contains many particles, i. e. , 

(27) 
3 

NO = nO »1 

In this case a given particle will interact simultaneously with many par­

ticles and the results derived earlier on the basis of binary collisions is 

suspect. A rigorous analysis shows that the formulae derived yield logari-

thmic accuracy. However, a non-rigorous, but plausible discussion can 

be given alonl5 the followirg lines. 

Let us consider a test particle moving through the plasrraand 

suppose that it is so massive that its velocity can be treated as 

r:onstant • Draw a cylinder of radius p with the trajectory as axis 

(Fig. ~1 

() () 
FIG. 5. 
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Collisions of the test particles with field particles for whtich 
-1/3 p > > n will be many-body collisons. Those characterized by im-

-1/ '3 
mact parameters p < < n are binary collisions . We shall show that 

the method used to treat binary collisions need not be restricted to 

collisions with impact parameters 
-1/3 

to parameters » n . 

-1/3 
p < < n ,but can be extended 

Now, when r «D, the potential energy between the charges 

is simply e 1 e / r so tha t the presence of other particles has no effect 

on the interaction between two particles separated by a distance smaller 

than D. Thus results derived on the hypothesis of binary collisions 

apply for all impact parameters smaller than the Debye radius, i. e. , 
-1/3 

P « D. Because D» n ,in the present case the collisions can be 
-1/3 

regarded as binary interactions even when p» n as long as p « D. 

Accordingly, even if p - D, the difference between the exact interac-

tion formulae which takes account of other particles, and a pure Cou-

lomb interaction, is small (by a factor of order 1) . Thus, cutting off the 

Coulomb interaction for the impact parameter p = D provides an appro­

ximate method of taking into account the effect of multiple collisions for 
-1/3 

which p »n . 

8. Diffusion in velocity space. 

From a microscopic point of view , the change of spatial coordi­

nates of a particle during a collision can always be neglected. Hence, as 

far as the spatial part of the phase space is concerned, the motion of a 

particle: corresponds to a continuous point to point variation. 

On the other hand, collisions have a marked effect on the conti­

nuity of motion in the velocity space. The velocity can be changed abruptly 
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by a single near collision:" essential in a vanishingly small time inter­

val. Hence, a particular velocity point ! in a cloud of particles in 

velocity space can be 'annihilated' by a collision and 'recreated' at 

some remote point without passing through intermediate points in the 

velocity space. Thus in general the effect of collisions cannot be expres-
~. 

sed in the kinetic theory by introducing a ten 

describing the divergence of flux in velocity 

space. But this will certainly only be the 

1/" case for near collisions in which the 

J--------- velocity of the particle is changed abruptly. 

1'x FIG. 6 

1). In the case of coulomb forces, the change 

in velocity, characterised by the quantities 

<~ vk > and <L~vk Av,e. > is due to the 

effect of remote interactions and the cm nges in velocity are small. For 

example, if .A = 15 , 

/L1! I 
v 

and so very small. 

then the relative 

P;l. -AD = e _ .... 
p p 

change in particle velocity 

-6 D 
10 (~, 

P 

If these interactions are referred in velocity space, the whole 

process may be regarded as a form of diffusion. The motion can be re­

garded as nearly continuous. 

9. Calculation of the diffusion coefficient for a Maxwellian 

distribution of veloci ties. 

The expressions (23) and (24) may be expressed more conve­

niently by introducing the super-potentials. In fact, since 
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we have 

Hence (23) and (24) can be written 

(28) 

(29) 

where 

(30) 

(31) 

which have been iermed 'super-potentials' by Rosenbluth et al. For 

a Maxwellian distribution function 

m 3/ 2 - 2kT 
f(v') = n( --) e 

- 21(n T 

Chandrasekhar found that 

(32) 
1 m~ mpv 

<fl vI,> = - -1Ita Q (1 -I-- ) G (-- ) 
2 .. I¥P m p 2kTp 



(33) 

(34) where 

- 21 -

2 2 <!:l vl. > = <6v > + xx 

is the usual error function and 

(35) s (x) = ~(x) - x~'(x) 
2x2 

V. C. A. Ferraro 

Values of G and ~ - G are given by Spitzer and others. 

10. Relaxion times. (Collision interval) 

The term "relaxation time'! is used to denote the time in which 

collisions will alter the original velocity distribution; or again, the time 

that the ions and electrons in a gas will attain, through collisions. a 

Maxwellian distribution. 

Various relaxation times can be defined ; the time between colli~ 

sions (collision interval or the reciprocal of the collision frequency) may 

be defined as the time in which small deflections will deflect test parti~ 

cles through 90 0 • More precisely, if 't' 0 is the 'deflection time', we 

have 

(36) < L\v~ > 'to 
2 

= v 

Substituting from (33) we find 

3 
1:" 2 v 

o npQcLp(~~- Gil) 
(37) 

An energy exchange time 't' E can likewise be defined by the relation 
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(38) 

the change of energy 

(39) l:l E =.! m(2v~v +4v2 +.:1 2 
2 11 11 'J. 

If only dominant terms are required 

2 2 2 2 
< AE > = m v <A v > 

11 

and (38) gives 
3 

(40) 
v 

An important special case is that of a group of ions, or a group of 

electrons, interacting amongst themselves. If we consider such a group 

whose velocity has the root mean square value for the group, then 

( ;;,; f 1. 225. 

In this case we find that 1:D / "t'E = 1,14 so that 'tD "" ~ and is 

a measure of both the time required to reduce substantially any ani­

sotropy in the velocity distribution function and the time for the kinetic 

energies to approach a Maxwellian distribution. We shall call this parti­

cular value of "t' D the 'self-collision interval' for a group of particles 

and will be denoted by 1: c From (37) we have 

1 31 
mZ (3 k T) i 2 't = --'---.~~-

c 4 4 'l. 
5.7 1 it'ne Z log ... '" 

(41 ) 

where T is in degrees K, m is the mass of a typical particle of 

the group, It may be written AmH where m H is the mass of a pro­

ton For electrons, A = 1!25 so that the self··collision time for elect-
1 . 

rons is 43 that for protons, provided the ions and electrons have the 
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same temperatures. 

We consider next the approach to equilibrium of a two com­

ponent plasma; to fix our ideas we consider the case when the consti­

tuents are ions and electrons. There are three stages involved in the 

process. First, collisions between ions and electrons lead to an isotro­

pic, velocity distribution of electrons, and the same time collisions bet­

ween electrons themselves establishes a Maxwellian distribution. Secondly, 

collisions between the ions themselves establishes an isotropic velocity 

distribution amongst the ions. Thirdly, the ions and electrons which have 

already attained Maxwellian distribution, but possibly at different tempe­

ratures T. and T ,will be brought to the same temperature by colli-
1 e 

sions between the ions and electrons. 

using 

(43) ltv, A v, = v, v, - v. v, 
1 1 1 1 1 1 

Using (28) 

(44) 

since 

(45) 
2 <flv, !:Jv. > = - 2Q AV flJJA = - 2Q (D 

1 1 ~r T,.. M(lJP 

Since the distribution of velocities are Maxwellian, this may be rewritten 
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(46) 

where 

Also 1 3/ 
4'l(.v3 (..!. m )'Z t 2 

(47) c: (~) =-= 2" '" 
2 2 ).. olp 010 ~~p 1[~ e.p ~log 

€ mot 
where = k(Tcc + - T, ) . After some algebra, (46)can be redu-

ced to 
0( m~ 

dTa. T -T 
(48) = 

~ QI 

dt 't' ", 
where 3/2 

Trt Tn 3/ 2 3 mit. mpk 
(49) 7:. - +....:.! ) 

Otp J. 2 2 
(-

8(2 7t) 2. ~ to( lop log ~ mQl. mp 

It is easily verified that 

.... :I :tr * /fnMM 7:"" : '7: . : t' . : 'z::. = 1: -: - : -
ee 11 el le m m m 

where T_ ..... T ~ and where M is the mass of the ion and m the 

electronic mass. 

Equation (48) was first given by Spitzer; it shows that if the 

(T~ T(4) 
velocity, which is oc. - + - ,does not 

m rnA * " ,. 
~ot~ is nearly constant and departure from equi-

mean square relative 

change appreciably, , 

partitions decrease exponentially. 

11. Relaxation towards the steady state 

The solution of Boltzmann's equation for non-uniform gases is 

found by successive approximation. We write 
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where f 
o 

f = f (1 + e ) , 
o 

is the Maxwellian distribution function and is small 

compared with unity . We have seen that in a plasma of two constitu-

ents each constituent: will approach its Maxwellian distribution in a 

time equal to the relaxation time 't" and the two constituents will attain -equal temperatures in a relaxation time . As a first approxi-

mation , therefore, we can take the collision term C to be of the form 
De 

f - f 
o 

-~ (50) 

so that if f is the distribution function at time t = 0 and f the 
o 

Maxwellian distribution function, then departure from a Maxwellian state 

f - f -+ 0 with time as e -t/,,; . 
o 

12. Equations of continuity and motion for a fully ionized gas 

We consider the plasma to be a mixture of positive ions (i) 

and electrons (e) and denote their number densities 

and their velocities by v. and v respectively. Then 
-1 -e 

(51) n = r f. dv. , 
i J 1 J. 

n = Sf dv 
e e--e 

by n. and n 
1 e 

where f. and f denote the velocity distribution functions for the ions 
1 e 

and electrons respectively and dv. and dv denote an element of volu-
-1 --e 

me in the velocity space for ions and electrons, respectively. Denoting 

their masses by m. and m and the densities of the ion and electron 
1 e 

gas by Pi and P e respectively, we have 

(52) P = n m 
e e e 

Denote by V. and -ev the mean velocities of the ion and electron gas 
-1 
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(53) n v ='v f dv 
e-e J-e e -e 

V. C. A. Ferraro 

It is convenient to introduce the total number density nand 
'0 

total mass dens ity Po' defined as n ::in + n 
o i e 

(54) Po "Pi + fe 
and the mean velocity v of the plasma element defined by 

-0 

- -(55 ) f . v. + P V 
1-]. e-e 

Let V and V be the peculiar or thermal velocities of the ions and 
-i -e 

electrons, respectively, defined by 

(56) V. = v. - v • 
-1 -1 _0 

Then it follows from (55) that 

(57) 

V = v -v 
-e -e -0 

The partial pressure for the ion and electron gases, am total pressu­

res defined in a frame of reference moving with the mean velocity 

v are respectively given by 
-0 

(58) = r V V Pe e-e e' 

The hydrostatic partial pressures for ions and electrons are defined 

by 

(59) 

and the corresponding mean kinetic temperature by 
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(60) p, " kn,T" 
1 1 1 

p "kn T 
e e e 

Boltzmann's equation for the two distribution functions f and fare 
i e 

(61) 
a ftt 
~ + (v • 'V) f .. + (F • 'Vv ) f = C • Q! " i, e 
11 t -0£ "" -It -tJ. /J. lit. 

whe"re m, F" and m F are the forces acting on an ion and electron 
1 -1 e-e 

respectively. If these are produced by an electric field E and magnetic 

field B , then 

(62) 
ei 

F, " - (E + v,)C B) , 
-1 m, - -1 -

1 

(E + v ,eB) 
- -e-

where e. and e are tIE charges carried by an ian and electron 
1 e 

respectively. 

We next form the moment equations; if t (~at) be any function of mo­

lecular properties for the constituent «. of the plasma, then by multi­

plying equation (61) by Jill.' integrating partially and remembering that 

(63) 

we find 

3(naL ~)" - "S (64) 1 +y.(n .. Cb v ) - n F. V ~" tD C dv 
t ... Jot. -a(, 0(. -0( "'C. Jilt... - '" 

The right-hand side represents the change of the mean value of $Jot 
due to collisions. This vanishes if 1oe." 1 and (64) gives 

~ nat S nl( 
-r:- +V·(n v) + 'I. (n V)" ~ +'V.(n .. val) = 0 at oc, -0 Ol -at ot ... - .. (65) 

which is the equation of continuity for the component c/, • Multiplying 

the equations of continuity for the ions and electrons (65) by m. and 
1 


