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PREMESSA

Le onde superficiali elettromagnetiche, pur essendo
note da lungo tempo, hanno acquistato negli ultimi anni un'im-
portanza notevole in un gran numero di applicazioni.

La loro teoria presenta problemi matematici di alto
interesse. Non di rado si presentano anche curiose e dibattu-
tissime difficoltd riguardo all'interpretazione fisica dei ri-
sultati matematici,

L'abbondante fioritura di studi sulle onde superficia-
1i che si & avuta recentemente, si trova purtroppo sparsa nei
periodici pil disparati e riflette punti di vista molto diversi.
Fra sentitissimo il bisogno di una introduzione e di una messa
a punto d'insieme per coloro che si vogliono dedicare all'argo-
mento.

A questo scopo ha voluto rispondere il corso organiz-
2at0 a Varenna dal Centro Internazionale Matematico Estivo dal
3 al 12 settembre 1961. In questi appunti, compilati dagli auto-
ri, sono condensate le lezioni del corso, che ebbe grande succes-
80 e fu accompagnate da molte interessanti discussioni.

Come coordinatore del corso tengo & ringraziare tutti
gl'insegnanti che hanno portato il loro contributo e si sono
sobbarcati alla fatica di mettere per iscritto le loro lezioni.
Voglio anche rivolgere a nome di tutti gli studiosi della mate-
ria un vivo ringraziamento al C.I.M.E. ed in particolare al Di-
rettore Prof. E.Bompiani ed al Segretario Prof. R.Conti per a-
ver resa possibile la realizzazione del corso in modo coel feli-
ce e proficuo.

Sono sicuro che queste lezioni rappresenteranno un



contridbuto utilissimo alla letteratura internazionale su questo

ramo della matematica applicata.

G. Toraldo di Francia
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A DISCONTINUITY PROBLEM ON SURFPACE WAVES @
The excitation of a grounded dielectric slab

by a8 wavegulde .,

C. M. ANGULO )
L J
Institute for Defense Analyses, Washington D.C.

Introduetion

The present discussion illustrates the solution of
one discontinuity problem associated with the excitation of sur-
face waves, The concepts developed in previous lectures by Zuw~
eker and Felaen a.re‘used repetedly throughout the discussion. 0=
ne important point to emphasize is the usefullness of the modal
dnalysis method which enables us to set up immediately the trans-
form equation to apply the Wiener-Hopf technique.

The problem is illustrated in figure 1 . The inpui e-
nergy is containmed in the dominant T (Hy = 0) mode of the par-
tially filled waveguide propagating from y = + X to y = 0. The
dimensions of the guide and the thiclness of the slab are restri-
cted to the range for which only one surface wave (the lowest)”
exists along the slab and only one mode (the dominant TM) can pro-
pagate inside the partially filled wavegulde. These conditions

are 2) :
-1/2
Kd <T(¢) (1a)
-1/2 1/2
Kh { are tan{-(i) ta.n[(&) Kd]} (1)
- 1/2
0 ( arc tan &-(i) Vztan[(a)/Kd]}(r'r (1)
+)

On leave of absence from Brown Uniyersity, Providence R.I.
5
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meld plafa mekl plile

Fig. 1
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where K = W { /xo go)va, { %e the relative permittivity, 4 is
the thickness of the dielecirie, and d + & is the height of the
parallel plate waveguide as indicated in Pig.1(s).

Becauge of the discontinuity at y = 0 where ¢he wupper
plate is terminated, the energy incident upon the discontinuity
will be partly reflected bask into the wavegnide, partly transmit-
ted to the surface wave In the grounded dielectrie sladb and par—
t1y radiated. We are interested in finding the three powexr ratioes
for different valuss of Kd and Kh.

Since %he structure shown in Pig.1{a) does not vary fn
the x direction and the incident wave is the lowest T mode ia
the partially filled waveguide, all the fields excited will de
independent of x and will have Ez = Hy = Bz = 0.

The structure shown in Fig.1(a) is regarded mathemati-
cally as a homogeneous parallel plate elr waveguide {with walls
at y = + oo ) and extending from & = 0 to 8 = ¢ o0 ecamected t0
8 homogeneous parallel plate waveguide of length d , fllled with
dielectriec of relative permittivity { (also with walls a%
¥ =% 00 ) and terminated by an electric wall at 5 = -d. Inside
the first waveguide there is an obstacle, 8 semi-infinite perfec-
tly conducting plane, placed at z = h from y = 0 to y = + o0,
Fig.1(b) illustrates the above description. By removing the
¥ = const. walls to infinity, the structure of Fig.1(a) is ob-
tained.

The modal analysis of a parallel plate waveguide with
walls at infinity represents the transversal fields (E, and Kx'

7



C.M.Angulo

in our case) in terms of their Fourier {ransforms in the cross-
section (variable y, in our case). In the successive sections
we shall proceed as follows

1) The equation relating the Pourier transforms of the
fields at the semi~infinite obstacle will be derived by the modal
analysis method.

2) The Wiener-Hopf technique will be applied to the so=-
lution of the equation obtained, and the exact fields will be ex-~
pressed as the results of integrations in the complex plane.3_5)

3) These integrals will be evaluated only at points
far away from the discontinuity. The evaluation will be carried
out by analyzing the relationship between the singularities of
the integrands and the analytical forms of the far fields, which
are known. In fact, for y < 0 the principal contribution on the
surface of the slab must be the principal surface wave propags~
ting along a grounded dielectric slab, and for y >0 and z ( h
the fields must be those of the dominant mode in a parallel pla-

te waveguide partially filled with dielectric.
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THE EQUATION FOR THE POURIER TRANSPORMS OF
THE PIELDS A? PLANE z = h

We first separate Ex and Ey into the incident and seatw
tored fialdm; in a second step, we find the expreasions for the
Fowrler transforms of the secattered flelds for s ( h end z ) h;
end¢ finally we match the bowndary conditions at £ = h in terms
of the Fourier transforms.

16t us represent the fields everywhere as ¢

B =H+ g’Cx (2a)
E =E + {2
¥ oy (gr

where loy end Hox are the components of the dominant T mode ef

the partially filled parellel waveguide end ) end ng are
the soattered fields. For — d ( z ( h we have

_— {coah [K(z-hfsﬂ (g} cos [K(z+d)rﬂ u(-z)}
ox eosh(kha') cos(Kdr')

X

(3a)
X exp [JKH * 5‘2)1/23']

I Es' tanh(Khs') {Binh [K‘z-h)a']

oy Wie sinh(Ehs')

u(z) -

- sin [K(zﬂl)l"] u(-z)} exp [JK(hs'z)szJ (3v)
sin{Kdr')

Por h ( z we have
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Hox = O . (30)
Eoy =0, (3d)

The {time dependence is taken as eﬁ"t.

The funetion u(z) represents Heaviside's umit step fune-
tion, zero for negative argument and one for positive argumentss
The quantities r' and s' are the modulus of the wave numbers in
the 02 direetion in the dielectric and in the air respectively
normalized with respeet to K for the incident mode. They are the
solutions of the following equations

r2ig2c €y (4a)
¢ fj . tan (Edr') (40)
r' tanh (Khs')

We will find below the gquentity s similar %o 8'.s re~
presents the modwlus of the wavenumber in the 02 directiom, in
the air, normalized with respect $o K for the lowest TM surface
wave in a grounded dielectrie slab.

The scattered fields can be represented by their Fou-

rier transforms

-

U (313) = 1 I z)e_myd (58)
o emv? ) 1 1
-1 = iy
“{gy(m) G 7? LV(N{.z)e 4  (5p)
1 >
(M s2) an)7? [%x(y,z)cﬁlyiy (50)

-1 i Ny
) = L g (el Vo (s
10
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Maxwell's equations require that the transforms be so-
lutions of the transmisaion line equations 3

av( t’) .-
—ﬂ-_u 1 € 22( 48) (6a)
aI(m,
il L :érch.s) (6v)
as
fors )hand forkh >z ) -d.
In the air,
1/2
é" ¢=(K2"qz)/ (6e)
a
. 1 2 2 -1/2 &)
a7, " PEE - M) ‘
In the dielectric
2 2 1/2
- G, = e =) (o)
4 2 2 »1/2
Id"i;g wéﬂi(xé-ﬂl) . (6¢)

If we recall Pig.1, we ses that the solutions for V
and I can be writien immediately from the theory of transmission
lines for the two regions s > h and £ ¢ h , as follows 8 Por zdh,

V(Nis) = V(0 ey (- AT (18)
I(nl,s) = !.V(wl .h’)exp {-1 éa(a-h)} v (Tv)

Pork )s) 0,

11
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VM 8) = V(nn) o8 ( (a-b) -
—JZaI(frl,h_)Sin % (z-h) (8a)

I(«l.z = (b )eos é (z-h) -
AL éa(z-h) (8b)

Pinally, for 0 >z ) -4,

V(N 2) = [V('rl,h_)cos f_ian + 0,10 1 )stn %ah].

sin éd(z +4d) (80)

gin édd

I(rYl,z) = [I(«l,h_)cos éah + ;iYaV('fl.h_)sin §ah] :

cos éd(z +d)

ecos Z’dd
%‘ tan(éah)tan(lﬁfdd) - ﬁa

54 o ¢
; tan( é dd) ‘tan( ah)
The relationship between the values of V and I at z = h_

(8d)

where

EBSEEIALEY . (80)

and at z = h+ are obtained from the boundary conditions of % 1
and % at z = h. Let us first define the following new quanti-

ties
v ("[oh W /% {7, h)e 7 dy (9a)
V(1) = / ¢ (3, med ey (90)
ql (21)’ /2

12
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+ 1 T

(m4h) = / (ysh,)- 7‘ (yeh_)| M2 (9)
(q'(l (21“)/ o[%x ! x']e ’
f[%x(Yoh % (Y'h)] '”[ydy (9d)

It is obvious that
V() = ¥nm) - v*(al ) + v‘(»l +b) (10a)

and
I("lvh,,,) - I("l'h_) = (g+( ’Ylnk) + zr-(nlh)o (10b)

Two constants will appear very often in the equations

below, so for convenience we will represent them as follows :

& =(1*82)1/2 8y 0

8y = 1+ 5'2)1/2 a,>0 .

Pron the remaining boundary conditions at z = h, we
odbtain the following results 1

gy=0 for ¥,>0, (11a)
therefore

v+(n1.h) =0 (11b)

and

Holr) - L lrin) = Bulab) or yco,  (120)

therefore

Zf( B) = -3 sech (Khs‘)
1 = (2?)1/2[n|+x52]

13

(12b)
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provided Imag " { Imeg (-Kaz).

Therefore, all the boundary conditions at z = h are sa-

tisfied if 22 2
. 2 we (K2 - 1) ]
z(w].h) 2 ; G("])v (q.h)
(K - M ) (K 2- "] )
sech(EKhs')
+ (138)

(2x)V? (m + Eap)

where
om0 2oy
G('r[) = ; X ; ; X (13v)
) K2 &y - ’VK '
ti ) 5)\2 2 1/2
. 14} i(K2 2)1/2 tan [(Kzé - ]
1/2

2
tan [(Kg ) ,le)vth . (¢ - ) . [(Kza ) ”[2)1/2d]
¢ (£ - ,,12)1/2 .
The quantity s is the modulus of the wavenumber in the
02 direetion in the air normalized with respect to K for the lo-
west ™M surface wave in the grounded dielectric slab.

A study of the behavior of the functions in (13a) per—

mits ws to apply the Wiemer-Hopf technique and solve for 3+

end V .

14
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THE SOLUTION OF THE EQUATION
FOR THE TRANSFORMS

+ -
The behavior of f] (-/vl,h) and V (rvl sh) in the oomplex
0 Blane is deternined by the ssymptotie benavior of X, ant
%,y a8 well as by the singwlarities of the transformed Kernel

2 on(Kz af - 'ftz)

G('Yt) . (14)
2 _ L 21/2,,2 2 .2
(X n )12 %" 1 )

We will come back later to (14). Let us proceed now
with a physieal derivation of the dominant terms of the far fields.

In our problem we can obtain all of the excited fields
from the x component of the magnetic field. The problem may be
compared with the two-dimensional field excited along a grounded
dieleotriec slab by a magnetic line source along the OX axis, If
- /2 ¢ ¢° { 0and 4 is very large, we will not be able to no-
tice any difference between a magnetic line and a texminsted pa=
rallel plate waveguide propagating the lowest E mode. Therefore,
the nature of the solution for both problems is the same for that
region of space. However, as 40 inereases, the angular dependen~
o0e will be different for the two problems.

In the case of the magnetie line, we would have only the
gurface wave for ¢° % - T /2, all other terms being of order

=3/2
f or lower. As ¢ inoreases, the surface~wave contribution
]
becomes negligible and the dominant term varies like -1/2 (a1~

ways for large P). Pinally, when ?o grows to M /2, the 9-1/2

15
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3/2

terms are not present and we have only terms of order f- or
lower and the surface wave.

Por a grounded dieleetriec slab excited by a parallel
plate waveguide, we will hav‘e algo the surface wave and terms of
order f-3/2 and lower if 4)0,/\«, - T/2, As ¢o inoreases, the
surfaoe wave contribution becomes negligible and the dominant ternm
varies 1like f-1/2. Finally, when 1)0 increases to M /2, the
fields will go %o zero as f'y 2 ot least and the surface wave
will not reappear if we remain outside the waveguide,

It is therefore justified to write the form of the far
fields for K 0 )y 1end W/2 y § 3 - W/2 es tollows :

e JEp cos LKr(z+d)]
T ad) e, oo [T

+ e’Kszu(Z)] (11/((#0) . exp (JEya,) (15a)

1/2 e IEf
Ey= (g:v' T (J:'—;) ¢ 'Po) f1/.2 . ¢o

+ 3sC (_&) 1/2 Mu(-z) +

20 sin(Krd)

. e-KSZu(Z):’ Peg,) e amrey) (150)
9(150):0 if %97-&-0 tan (a1-s) (15¢)
(#( ¢°) =1 if —?;—0 { - are tan (ay - 8) (15d)

The transmission coeffieient to the surface wave is re-

16
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presented by C, The new quantities 4)0 and P are the usual cy-
lindrieal coordinates illustrated in Pig.1(a) : r is the norma-
1ized wavenumber in the dielectrie in the 0Z direction for the
lowest ™ surface wave in the grounded dieleotric slab. Finally
gl 4)0) is a funoction of the observation angle ¢ o *

Inside the partially filled parallel plate waveguide
and far away from the discontinuity, we have only the inoident
and reflected wave assoeiated with the only propagating mode.

Therefore,
%x = BH _ exp S ~32Kya2} (16a)
for Ky ))1 and -d (8 h
%y =- B em { - jZKyaz} (16v)
for Ky 31 and -d {z{h.,

B is the reflection coefficient. The quantities K , Ka1 and Ka‘2
migt have small negetive imaginary parts for dissipative media.
Prom a detailed examination of the singularities and ze-
ros of (14) and from the asymptotic expression of the fields gi-
ven in (15) and (16), it follows that V-(’Vl.,,h) is analytiec in the
lower haelf of the ovl plane for Imag Ul  Imag (-Ka,) and ifs sin-
gularities are a braneh point at /Vl= - K and a simple pole at
’Vl = - Ka,. \
It also follows that 6} ( wl,h) is analytie in the up-

per half of the Nl plane for Imagfvl y Imag (Kaz) and its singu-
larities are a branch point at /Yl = K, a simple pole at /Vl = Ka?_.

17
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and a countable infinite number of pecles on the negative imagi-
]
mary axis M| = 'dlﬂi\ ™).
In a slightly dissipative medium, f , ¥V and 6(n) a-
re analytic in a common narrow stirip of width 2wd along the

real axis, where

o<wd<]xmagxl (17a)
0 { Wy (lImag (Kazﬂ (17v)
0 (wy( |Inag (Ea,)| . (17c)

The regions where j+ and V° are analytic, their sin-
gularities relevant to the integration, the overlapping strip
and the branch cuts, are shown in Pig.2, We restrict ourselves

$0 remain on the Riemamn sheet where
2 2,1/2
Imag(K-rv\)/ (0

ffe now decompose the function G:
o) = exp] ) = 1"y} (182)

/00+jwd
Y= n off) a§ (16b)

where

() Note: ij\“il are the roots of
» 2 2.1/2
3 2 2.1/2]  (E%-"°) 2 ,2,1/2
tan|h(K"=N") +——E———2—7—tan(Ke- y’fal =0
[ W } e(K -4q )1 2 [ ! ]
encluding ﬂl= 1Ka2.
18
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is analytic for

Imagn\ A
and
/%0 -;]wd

oy s S 1n G(g)
[ e €

b-n

-vo-;]wd-

.

is analytic for Imagql P Wy

.

WN
\

LN

N

.

ias of V°

® Singularities of ¥

Fig.2 = The l1—p1ane

19
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Substituting (18a) into (13a) we can now group the terms

with the same regions of regularity, as follows @
K- 1/2 - Ea.) *im)
oy £V A v |
-
1/2
seeh(khs') (K—'Y,)’ ('/\-Kaz)
-aexp{{(wl} 7
('yl + Kaz) (Nl 'Ka-])
2 sech(Kns') (X + K32)1/2 8,
X X

1/2
(27) "]+ Ka, ay + &,

4 exp { {7 (1)

2 W M+ K, -
°1/2 X X V(/v].h)x expi ' ("?)‘}

(K+/vl) ’Vl+Ka2

2 sech(Khas') (L + Ka, )1/2 v 8y

e | {0 ——
I (am)V2 41 + Kay a; * 8,

The last terms on each gide of the previous eguation a-
re identical. They have been added in order to eliminate the pole
at Nl = - Ka of the left hand side of the equation.

The asymptotie behavior /Vl—b oo of the unknown functions

and V in their respective regions of regularity is given

6). The phy-

by the behavior of the unknown field around the edge
sical requirement that the field scattered by the edge must have
8 finite amount of energy requires:
V(M yh)
f

asg ﬂ-Aaooin the region of regularity. These conditions are iden-

—3>0 and M“f(ul.h)—)o

7
tical to those for the scattering of a plane wave by half a plane.
20
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We can now proceed with the customary reasoning of the Wiener-Hopf
technique. The left hand side of the above equation is analytic
in the upper half of the plane including the narrow strip

[| mmeg M| < Wy and the right hand side is enalytic in the lo-
wer half including the narrow strip. Therefore, they must be ana-
lytic continuation of each other representing an entire funetion
of /rl « Purthermore, both gides approach zero as /Yl approaches
infinity. Thus, the entire function is zero. Equating both sides

to zero we obtain 1/2
2a, [K + Kaz] (1 - Ta,)

.,,( n) = } sech(Khs') 1
g W= 1/2 '
(27) ('r] + Kap) (K-m) " "(aq + a2)(4‘ - Kay)
. €XD [{+(-K82) - f("q)]} (19a)
and
- - J sech (khs')
v (”‘lih) = X (19v)
weo(zTr)Vz(/q + Xa,)

(K + ’Y\)VZ 8,(K + K32)1/2

X ' exp { X’+(-Kaz) - ['(*v] )}

21
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CALCULATION OF THE FAR FIELDS
The "voltage® is now known for z = h, since
V(mb) = v‘(wl.h) . (208)

As for the "current® transform, we recall (7b) for

I(m, h,) = T,¥(#, b) (200)

Therefore I(d‘, h+) is known. Moreover, (10b), (12b)
and (19a) yield I(W), h_), once I(«l, h, ) has been found. There-
fore, I(N\, h,) and I(N\, h_) are now both known.

The kmowledge of V and I for z = h gives us the expres-
sions for V and I anywhere, as indicated in (7) and (8).

Finally, the inversion of V and I by (5) yields the e-
xact expressions for the fields everywhere.

However, this solution everywhere 1s only formel, sin-
ce the inversion of the transforms is practically impossible, Ne-
vertheless, we can obtain all the information that we want by car-
rying out the inversion for the far fields at points of observa-
tion for which the method of steepest descents is easier’to apply,
and comparing the results with (15) and (16). In this way we-can
obtain the expressions for the coefficients B, C and g((?o) which
give us the complete knowledge of the far fields.

The inverse transforms of spe01a1 interest to us are

Ey(y’ h) = (gy(Yv h) =

f v (q ") d (21a)

(em)?

23
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forz=h, y {0}

Bl 8,) - B (vy B) + (v B) = Fom m) - otz ) =

$o0
—— / [7"("\ ) - 3 ecn () ] e""\’a'q (21%)

em¥2 /| (21r)1/2(~l+xa2)

for z = h, y > 0y and 400

v ( NI .h)o"J '1 Toxp {-ﬂxzﬂlz) 1/"’(z’.--h)} d’v’

-1

E (y,2) = ﬁ (7i8) = :
7 ’ (27) /2
i (210)

for z) h.

The path of integration is indicated in Fig.2.

The integrals are evaluated for the far fields by the
methafd of steepest descents for the limiting case of zero dissi-
pation. For convenience these integrations gre not carried out
in thé Nl plane but in a new ) plane. The coordinates are also
changed from cartesian to polar coordinates, as illustrated in
Fig.1(a).

2 2.1/2

Nl=Ksinv (kK - Nl) =X cos) (22a)

y=§>sin(P° g~-h-= ?coa q)o. (22v)
With this change, the integrals (21) become

X -
E(yph) = ———— |V (Esin ¥ .h).exp{-;lKS) coa()’f% )}pow ay
A (23a)

forz=h, y (0}

24
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Ex(Yl. h+) - HX(Y1h.) + Hox()’rh_) =

K " . sech (Khs')
= U (K gin Yy 'h) - j y /2 X
(2 11’)1/2 - K(2*rr)1 (sin) + &)

A
x cos ) exp{ -K EJ j eos( p -T—;)} vy (23b)

forz=h,y>0, and
-

E_(yy 2) =

V(Ksiny, h) X
y (21)V/2 f

A
X exp {-jK §) cos(y - Sbo)} cosy d v (23¢)

forz >h .
The path of integration is shown in Fig.3.

+f
rl'
AN
Any 7
Y

Y

Fig.3 = The Y -plane
25
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The saddle point for (23a) is obviously et » = - /2,
and the steepest descent path is the path B 1 in Pig.3. The in-
tegration indicated in (23a) is carried out along the path r 1
and not elong the path /\ « The result is equal to 2 " times
the residue of the integrand at the pole sin V = - &y plus the
agymptotic series obtained from the steepest descent integration.

-1/2
§

bution of the expansion is zero since cos (- T /2) = 0. Therefo-

g,-s/z

However, because of the factor cos Y s the order contri-

re, if we neglect terms of order or lower we can write
for large §) y (Leeey y& 0)

B (vi) = - (2T) /2 R P

{('v] + Ka,) v'('rl.h)}.

- -Ka
”\ 1 (24a)

This represents the surface wave excited along the groun-

ded slab,
If we evaluate (15b) for the given observation point

z=h ¢=_1_T_
o 2

y &0 Q very large,

E(yih) = $s0 (%)1/2 o o IR (24b)

0

we obtain

Equating the right hand members (24), one obtains i
(2m"2 (6|2 ; Ksh
{(h‘.+ Ka,)V ("l ,h)}e °

'1]->-Ka
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The evaluation of the limit yields finally ¢
ay(1 - 35.1)1 2(1 + 3,2)1/;2
C=] ! ¥ sech (Khs') ¥
s(aq + a2)

X exp{Khs+ F (-Ka)- f (=Ka )} (25a)

The saddle point for (23b) is at » = T/2 and the
gteepest descent path is ™ in Fig.3. The residues at the poles
on the imaginary axis of thg Y plane decay exponeatially with an
increasing positive y and are negligible for Ky >) 1. These poles
correspond to the non-propegating ordinery modes in the parallel
plate waveguide with the dielesetrie slab, and we expected a negli-
gible contribution for Ky >> 1. The asymrtotic expansion does not
contain a term of order ﬁ) -1/2 for identical reasons that the

integral discussed in the previovs paragraph did not. The domi-

nant contribution to the integral (23t) is therefore :

1/2 -Ka
% (v n,) - Lo = - 2m) g6 7 x

j § sech(khs')
X lim {(M - Kap) [ (s h) - } (26a)
| >%a ! l em)V2(n + 1)

-3/2

where only terms of order S? or lower have been neglected and
Ky > 1. The expression (26a) clearly represents the reflected sur-
face wave in the parallel plate waveguide evaluated at the upper
plate.,

If we evaluate (15a) and (16a) at the point of observa-

%z =h ¢ :E
o 2
27
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