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SEMI-GROUPS AND TEMPORALLY INHOMOGENOUS 

EVOL UTION EQUATIONS 

by T. KATO 

INTRODUCTION 

These lectures are concerned with the Cauchy problem for the time­

independent evolution equation 

(E) 
du dt + A(t)u = fIt) , u(o) = u • 

o 

The unknown u = u(t) and the given function fIt) take values in a Banach 

space X ; A(t) is a (in general unbounded) linear operator in X depending 

on t. 

It will suffice to mention here only a few examples of (E). 

Ex. 1. A parabolic differential equation 
n 2 

~ - r: a (x t) ~ 
() t j',k=1 jk ' UXjoxk 

n () - £. a,(x, t) ~ - a(x, t)u = fIx, t) 
j=l J ()Xj 

is in the form (E) with an obvious definition of A(t). The boundary conditions, 

which may depend on t , are included in the definition of A(t). 

" Ex. 2. The Schrodinger equatiop 

-1 UU A _ i u t + L.l U - V(x, t)u - 0 , 
3 

x ~ R 

also has the form (E). Here A(t) = i( ~ - VI. , tl) is i times a self.a­

djoint operator (at least formally) in X = L 2(R3). 

Ex. 3. The wave equation 

= IJ. u 



4

- 2 -

3 
in x E. R may be reduced to the form (E) by writing 

J 
()t 

u o 

.:L 
uXl 
.iL 
()x2 
Q 
uX3 

o 0' o 

o o o 

T. Kato 

u 

o 

where vI' v 2' v 3 are auxiliary functions. This has the form (E), where u 

is replaced by the 4-(' Jmponent vector function (u, vI' v 2' v 3)' 

In what follows I want to deduce several sufficient conditions on A(t) 

and f(t) in order that (E) has a unique. solution. 
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§ 1. GENERATION OF DIFFERENT TYPES OF SEMI-GROUPS 

1. Let us consider (E) first in the special case when A(t) = A is independent 

of t : 

(E ) 
o 

du -+ Au = f(t) 
dt ' ' 

u(o) = u • 
o 

The solution is formally given by 

-tA ft -(t-s)A 
(So) u(t) = e Uo '+ 0 e f(s)ds. 

The problem is, therE:iore, essentially that of constructing the exponential 

function e -tAo This is exactly the problem of generating a semi-group 
. -tA) . t e f from a given operator A . 

In what follows we consider only strongly continuous semi-groups on 

[0, 00 ). Thus l e -tA} is a semi-group if and only if e -tA is strongly con­

tinuous for 0 !; t <. 00 with e -OA = 1 and has the semi-group property: 
-tA -sA -(t+s)A 

e e = e for all s, t ~ O. 

The generation of such semi-groups has been discussed in detail in 

Professor Phillips' lectures. We reproduce here some of his results that 

we need, with several addition~l remarks. 

Definition 1. 1. We say -A €: (Bo) if 

1) A is densely defined and closed. 

2) any 'A > 0 belongs to the resolvent set p( -A) of .A, with 

\ ( A +A) -n I ~ ~ , n = 1, 2, 3, .... 

where M is a constant independent of " or n. 

Theorem 1. 2. 

\ e-tA I I. I with 

(D) 

Let -A e: (Bo). Then there exists a unique semi-group 
tA . I e - \ {M such that 

d -tA -tA -tA - e u = -Ae u = - e Au 
dt 
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-tA 1.-1 
for u E- 0 A' e commutes with ( 1\ + A) . 

Proof. See Phillips I lectures 

Remark 1. 3. If -A f (Bo), it follows that all complex A with Re A > 0 

belong to f (-A), with 

n = 1, 2, .•. , • 

n-l -tA 
This is seen by considering the Laplace transforms of t • e (see 

Phillips). 

Definition 1. 4. If M - 1 above, t e -tA f is called a contraction semi-group. 

The subset of (Bo) determined by M = 1 will be denoted by (Co). (Note that 

M ~ 1 in general). 

2. We now introduce another subset of (Bo) which is important in our problems. 

Definition 1. 5. We say '-A t (Ho) if 

1) A is densely defined and closed 

2) The spectrum tI'(A) of A ·is a subset of a sector 

I arg A I ~f "' w , w > 0, and 

for \ arg A I £ ~ + W - E 

Remark 1. 6. (Ho) c (Bo). This is not obvious from the definition, but fol­

lows from Theorem 1.7. below (again take the Laplace transforms of 
n-l -tA 

t e ). 

Theorem 1. 7. Let -A f (Ho). Then there exists a unique semi-group 
\ -tA I 
l e j such that for t > 0 

-tA d -tA -tA B 1) 
(0 1) -e A ~ - e = -A e E 

dt 

(I) 
We denote by B the set of all bounded linear operator in X with domain 

X. 
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i e -tA 1 can be continued analyticallY to the sector I arg t I..::: c0 , t r 0, 
-tA -tA: 

with (D') preserved. Furthermore, e and tAe are uniformly bounded 

in any smaner sector : 

I e -tA 1\ ~ f.ll , \ til Ae -tA I £. M ~ I arg t I f LV - € 

tA ~ 1) 
and e- _ 1 strongly when t~" 0 in this smaller sector 

-tA 
Proof. We can define e by the Dunford integral: 

(1) e-tA = _,1_. j e A\A+A)-ldA f B, t >0, 
2lf 1 ' 

C 
h C · .. (A) f -i g t i 9 were 1S a curve, runmng m r - , rom DC e 0 ,;.0 e 

where ~ .:::: 9 < ~ + w . Thus the integral is absolutely convergent and 

defines an operator of 8 

The semi-group property follows from the standard argument with Dun-

ford integrals. We have namely 

(2) J IS 
-sA = _1 _ A (\, + A)-l d ).. I 

e 2-' C,e 1\ 
" 1 

where C' is obtained from C by a slight shift to right. Multiplying (1), 

(2) and using the resolved equation, we have 

e-tAe- sA = (_1_. )2J ( e t\t+A's_l_i( A+A)-l_(A '+A)-lJdAdA', 
211" 1 cJc, N-A L 

where the order of integration is arbitrary. 

Now 1 eAt _d_A - = 0 and 
C X-\ 

2_. AS 
11 1 e 

since C lies to left of C', Hence 

e-tAe-SA=_21. 1 e)"(t,,+S)(A+A)-ldA 
if 1 C ; 

-(tts)A 
= e , 

(1) For analytic semi-groups, see [15 J as well as the book by Hille-Phil­
lips. 
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proving the semi-group property of l e -tA} . 

That e -tA has an analytic continuation is obvious from (1). In fact 

the integral of (1) converges for any t with 1 arg t 1« B - ~ , hence for a-

ny t with ! arg t /L to ,by taking S suitably. Moreover, 

d -tA 1 j At \ -1 \ 
(3) dt e = 211" i C ~ e ( fI tA) d II f B, t r 0 • 

Since A (A tA)-l = 1 - A(A tA)-l and Jc A eAt dA = 0, 

\ -1 1-1 
(D') follows from (3) (note that A(I\ tA) AC A(/\ tA) ). 

To prove the uniform boundednessof e -tA, we change the integration 

variable from A to A' = A t in (1). The corresponding integration path 

tC can be deformed to a path C', independent of t , which runs from 
-i 9 ' ti 9 \ 

00 e to fX) e with r;;, = ~ + t ,t > 0 being very small. 

The resulting expression 

-tA 1 1 A' A' -1 d A ' e = -- e (- t A) -
2lf i C' t t 

is true for any t r 0 with I arg t \ ~ w-c. Since 

\ (f+A)-l/:; M/lfl=Mlt!/IA'I, it follows that 

(3)' I .-tA! ~ 2~ ~,I.A'I II~~'II • M' 
~ 

I -tA I In the same way one proves Ae { Milt lit ,. 
-tA 

To prove e -> 1 , t -> 0 , we note that 

(e-tA _l)M-= -21 .1 eAt [(AtA)-1 - A -liudA = 2~' r·eAt(AtA)-IAU ~A 
lfl C .- Ill) 1\ 

if u c D A' Hence for t ~ 0 

-tA 1 J \ -1 d). (e - l)u -?> - --, (II tA) Au - = 0 
2lr 1 A 

(the integrand is O( A -2) for A -) 00 , Re /\ ). 0). 

Since e -tA is uniformly bounded for I arg t 1ft;; - C as proved a-
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-tA 1) 
bove and since DAis dense, this proves that e -7 strongly, q, e, d, • 

Remark 1. 8, Theorem 1. 7, implies that, if -M(HO), e -tA sends X into 
-tA 

D A and e u is always differentiable for any u EX, if t f O. This is 

a great difference from the case -Af(BO), where e -tAu E DAis in general 

expected only for u e D A' 

Remark 1. 9. There are many examples of operators of (HO). Generally spea­

king, any strongly elliptic partial differential operator with "ordinary" boun­

dary conditions belongs to (HO), Furthermore if X is a Hilbert space, the-

re is a rather general sufficient condition for -A E- (HO), Suppose that the 

numerical range N A = {(Au, u) II u I = 1, u E D A l of A is a subset of a 

sector I arg,.\\ ~ ~ - w, w>O, If, in addition, there is at least one point II 
exterior to NA that belongs to f (A), then -A E (HO)2). 

3. We now consider the solution of the inhomogeneous equation (E ). 
o 

Definition I, 10, By a solution of (E) we mean a function u(t) with the fol-

lowing properties, 

1) u(t) is (strongly) continuous for 0 ;:; t ::; T , u(o) = Uo ' 

2) u(t) is (strongly) differentiable for 0 < t ~ T , 

3) u(t) E D A(t) for 0 L.. t ~ T so that A(t)u(t) makes sense. 

4) (E) is true for 0 < t ~ T . 

The same definition applies to (E ) when A(t) = A is constant. 
o 

Theorem 1, 11. Let -A ~ (BO), Then any solution of (E ) is given by (S ) 
- 0 0 

if f(t) is continuous for 0 ~ t ~ T, Conversely, u(t) given by (S ) is a solu­
o 

tion of (E ) if u 6 DA and f(t) is continuously differentiable. In this ca-
o 0 

(1) The uniqueness of ~ e -tAl with the properties stated follows from Theo~ 
rem 1,2. 

(2) This is due to the fact that I (A +A)u I ~ dA I u I for any u fDA where dA 
is the distance of A. from N A' It follows, under the condition stated, that 
( \ +A) -11 :; 1 I dA ~ Mil AI ' -
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se Au(t) and du(t) / dt are continuous 1). 

Proof. Let u(t) be a solution of (E ). Then 
o 

T. Kato 

d -(t-s)A () -(t-s)AA () -(t-s)A( A ( ) f( )) -e us=e us+e -us+s = 
ds 

= e -(t-s)f(s) 

-(t-s)A 
since u(s) E D A and e E B. Integration on s then gives (So) im-

mediately. 

Conversely, suppose Uo .:::: D A and f(t) is continuously differentiable. 

Since e -tAu satisfies the homogeneous equation and the initial condition by 
o 

Theorem 1. 2, we need only to consider the second term of (S ). In other 
o 

words, we may assume Uo = O'Js 
Noting that f(s) = f(o) + f'(r)dr , we have then 

tOt t 
u(t) = f e-(t-s)Af(o)dS +j dr j e -(t-s)Af'(r)ds . 

o 0 r 

But (see Lemma 1. 12 below) 

jt -(t-s)A 
A e ds 

o 
J t -sA -tA 

= A 0 e ds = 1 - e , 

-(t-r)A 
1 - e . 

Hence Au(t) exists and 

J
t 

-tA - t-r A Au(t) = (1 - e )f(o) + (1 - e ( ) )f'(r)dr 

°t 
-tA J -sA = f(t) - e f(o) - 0 e f'(t-s)ds . 

On the other hand 

(1) This theorem is due to Phillips [8 J . 
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d d J t -sA -tA J t -sA ill u(t) = ill e f(t-s)ds = e flo) + e fl(t-s)ds 
o 0 

Hence ! u(t) = - Au(t) + f(t). as we wished to show. 
d 

By the way, the continuity of illu(t) and of Au(t) are obvious from 

the above expressions. 

Lemma 1. 12. Let -A E (Bo). Then 

J t -sA -rA -sA 
A e ds = e -e , 

r 
-sA d 

Proof. If u E DA, we have Ae u = - -

nuou8 in t). 

Hence 

ds 
-sA -sAA ( h' h . t' e u = e u w lC is con l~ 

-sA -sA -rA -tA Jt )t 
A e u ds = Ae u ds = (e - e )u . 

r r 

(The first equality is a direct consequence of the closure of A). For any 

J t -sA It -sA 
v ~ X , let u fDA' U -> v. Then e u ds -> e v ds and 

t n n r n r 

J -sA -rA -tA -rA -tA 
A( e u ds) = (e - e ) u -> (e - e ) v. It follows, again by 

n n 
r j t -sA -rA -tA 

the closure of A, that A e v ds exists and equals (e - e ) v. 
r 

q. e. d. 

Theorem 1. 13. If -A ~ (HO), the continuous differentiability of f(t) in the se 

" cond part of Theorem 1.11 can be replaced by a Holder continuity. Furthermo-

re, u(t) of (So) is analytic if f(t) is analytic on [0, T] . 

Proof. Again we may assuIX\e u = O. Then o 

u{t) • ;: .(t-s)A{f{s) _ f{t))ds + J: e -{t-s)A1{t)dt . 

Therefore (see Lemma 1. 12) 
t 

Au(t) =) 0 A e -(t-s)A(f(s) - f(t))ds + (1 - e -tAl f(t) . 
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. . I -{t-s)A I const Note that the mtegral eXIsts because ,Ae ~ t:s- (see Theorem 1. 7) 

and I f{s) - fIt) I ~ const{t-s)& ,9 > 0 • 

This shows that Au{t) exists and (closure of A{t)!) 
t 

A(t)u = A Joe -(t-s)A(f{s) - fIt)) ds + (I - e -tA)f{t) . 

On the other hand, the construction of ()u{t)/u t requires a little detour. We 

define 

J t-i: - t-s A u It) = e ( ) f{s) ds 
t 0 

Obviously u ~ It) -';> u(t) for t -'> 0 , locally uniformly in t. Also 

d - t A J t- £ -(t-s)A Cit u f (t) = e f(t- t ) - 0 A e f{s) ds ; 

th . tal' t' A -(t-s)A. t· f t B t 't . e 10 egr eX1S s smce e IS con muous or s ~ - t. u 1 IS 

easy to see that the limit for ~ ~ 0 of this integral exists and equals Au(t) 
II 

(use again the Holder continuity of fIt)), so that 

d Cit u £ (t) -) fIt) - Au(t) . 

Moreover, this convergence is locally uniform in t. Hence it follows that 

d~ u(t) exists and equals fIt) - Au(t), by.a well known theorem in differential 

calculus. 

If fIt) is analytic, u f It) is also analytic: dUE (t)/dt given above exi­

sts for complex t in some neighborhood of the interval [2 € , T] • But 

u i (t) ~ u(t) is true locally uniformly in t for these complex t. It follows 

that u(t) is analytic. q. e. d. 
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§ 2. THE CASE IN WHICH .A(t) ARE GENERATORS OF 

ANALYTIC SEMI·GROUPS WITH CONSTANT DO· 

MAIN FOR A(t)h. 

T.Kato 

1. First we note that the equation (E) is very simply dealt with if A(t) Eo B 

and strongly continuous in t. If we consider the homogeneous equation 

du/dt + A(t)u = 0, the Elolution can be constructed by a straightforward succes­

sive approximation: 

ClCJ 

u(t) =.L uk(t) , u (t) = u 
o 0 

k=o 

uk(t) =·f A(s)uk_1 (s) ds , 
o 

k = 1,2,3, ... 

This is equivalent to writing u(t) = U(t,O)u and deterrmining U(t, 0) from the 
o 

differential equation dU(t,O)/dt = .A(t)U(t,O), U(O,O) = 1 , by successive ap-

proximation (the derivative is strong derivative). More generally, we can solve 

the differential equation 

(1) 
C> 
() t U(t, s) = .A(t)U(t, s), U(s, s) = 1 

by successive approximation. The family of operators U(t, s) constructed in 

this way will be called the evolution operator (or the Green function). 

The evolution operator has, in addition to (1), the following properties: 

(2) 71 
~ U(t, s) = U(t, s) A(s) 
"' s 

(3) U(t, s) U(s, r) = U(t, r). 

To prove this, it is convenient to consider another differentiable equation 

? 
~ V(t, s) = V(t, s) A(s), 
uS 

V(t, t) = 1 • 
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This can again be solved by successive approximatiori. 

Then 

'Vs 
V (t, s) U(s, r):: V (t. s)(A(s) - A(s)) U(s, r) = 0 

T. Kato 

so that V(t, s) U(s, r) is independent of s. Putting s = t and s = r , we ob­

tain U(t, r) = V(t, r) , and hence U(t, s) U(s, r) = U(t, r). q. e. d. 

With the use of the evolution operator, the solution of (E) can be ex­

pressed by 

(S) u(t) ~ U(t, O)u 0 + J: U(t, ,) 1(,) ds , 

Now the above method does ~ot work when A(t) is not bounded. The­

refore we want to construct the evolution operator for unbounded A(t) by a 

limiting procedure, by approximating A(t) by a sequence A (tl of bounded 
n 

operators (this is the way the semi-group e -tA was constructed in Phillips' 

lectures as the limit of e -tAn, A being bounded). We choose 
n 

(4) A (t) = A(t)J (tl = n{1 - J (t)) , 
n n n 

1 -1 
J (t) :: {1 + - A (t)) , 
n n n 

n = 1,2,3, .• 

If A (t) (or J (t)) is strongly continuous in t , we can construct the evolution 
n n 

operator U (t, s) by the simple method described above. Then we want to 
n 

show that s-lim U (t, s) exists, which will be the evolution operator U(t, s) 
n 

for the unbounded case. 

This method is seen to wo:rkunder certain conditions on A(t). We have 

namely 
1) 

Theorem 2. 1. Assume that 

1) -A(t) f (HO) uniformly for 0 f t -<0- T. This means that there are 

constants M > 0, t.V > 0 such that 

(1) This theorem is first proved by Tanabe (see [10, 11, 12 J ). The last propo­
sition regarding the analyticity is due to Komatsu (7]. The proof given here 
is somewhat different from theirs. See also Yosida [17]. 
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and 

I A(t) -1 I ~ M . 

ii) D A(t) = D is independent of t. This implies that A(t)A(s) -1 E B 

for any sand t. 

-1 II 
iii) A(t) A(O) is Holder continuous (in norm), This is equivalent to 

that 

I -1 I i A(t) A(s) - 1 .:: M(t-s) , 

Then there exist a unique evolution operator U(t, s) with the following proper­

ties: 

1) U(t, s) f B and strongly continuous for 0 ~ s !f t ~ T, 

2) U(t, s) U(s, r) = U(t, r), U(t, t) = 1 , 

3) U(t, s) is strongly continuously differentiable in t for t > s , with 

C"J .::st U(t, s) = - A(t) U(t, s) 

4) If u f D, then 

';s U(t, s) u = U(t, s) A(s) u , 

I A(t) U(t, s) I ~ 

s ~ t , 

const. 
t-s 

If, in addition, A(t) -1 is analytic in t , then U(t, s) has an analytic continua­

tion for complex s, t such that I arg (t-s) I are sufficiently small. 

Remark 2.2. a) ii) and iii) express thatA(t) depends on t "smoothly", No­

te that U) of ii) is equal to the iN - ~ of Def. 1. 5, for some fixed ~ . 

b) The assumption \ A(t) -1 I (M is ~ade only for simplicity; if this is not the 

case, then we may make a transformation u(t) _> e - ~ t u(t) in (E) so 

that the new equation has A(t) satisfying the above condition (this is allowed 

since we are interested only in a finite interval 0 :: t ::: T). c) The assurop·· 

tions ii) and iii) will be weakened later. But it should be remarked that these 
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2 
are satisfied if A(t) is an operator in X = L (.Il.) determined from an ellip-

tic differential operator with smooth coefficients on a bounded region .n.. 
with a smooth boundary, with the Dirichlet boundary condition. In this case 

D A (t) = H2m( il ) n H:(.Q..) and is independent of t. 

2. Proof of Theorem 2. 1. 

We construct the approximating operators A (t) by (4). A (t) is 
n n 

bounded by I An(t) I ~ (M+l)n since IJ n(t) I ~ M. But the important fact is 

that -An(t) belongs to the class (HO) uniformly in t and n in the sense sta­

ted in i) of Theorem 2. 1'. We have namely 

( 5) 

(6) 

-1 -1-1 
A (t) = A(t) + n , 

n 

Also a straightforward computation leads to 
2 

(~+A (t))-1 = n 2 (n~ +A(t))-1 +~ 
n (n+ A) n+" n+t1 

from which an elementary geometric consideration gives 

(7) 1/ 11 I arg 1\ ~ 2' + oJ 

where M' is in general different from M but may be taken independent of 

n. Finally, we have 

A (t) A (s)-1 = A (t) (A(s)-1 + 1..) = J (t) A(t) Als)-1 + 1 - J (tl, 
n n n n n . n 

(7') 

A (t) A (s)-1 - 1 = J (tl (A(t)A(s)-1 - 1) , 
n n n 

hence 

(8) I An(t) An(s)-1 - 1 I ~ M jA(t)A(s)-1 - 1/ ~ M2(t_s) 
co 

In particular I A (t) - A (s) I ~IA (t) A (s)-1 - 111 A (s) I ~ 
2 en n n n n 

~ M (M+l) n(t-s)- , so that A (t) is itself Hglder continuous. 
n 
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Therefore, the evolution operator U (t, s) for A (t) can be construc-
n n 

ted as stated above. 

To prove that s-lim U (t, s) exists, however, we have to deduce other 
"1->00 n 

expressions and estimates for U (t, s). To this end we first note the identity 
n 

: U (t, s)e -(s-r)An(r) = U(t, s)(A (s) _ A (rne -(s-r)An(r) 
"s n n n n 

Integrating on r ~ s ~ t , one obtains 

(9) 

where 

(10) 

t 
-(t-r)A (r) ) 

U (b, r) = e n + U (t, s) K (s, r)ds , 
n n n 

r 

K (s, r) = - [A (s) A (r) -1 - 1J A (r)e -(s-r)An(r) 
n n n n 

K (s, r) has the estimate 
n 

(11) , Kn(s, r) I :; C1~ 9 
(s-r) 

where C is a constant independent of n. This follows from (8) and 

I -(s-r)A (r) I -1 
An(r)e n ~ C(s-r) ,which is in turn a consequence of 

-A (r) E- (HO) (Theorem 1. 7. ). 
n 

(9) may be considered an integral equation for U (t, r). This may be 
n 

written symoblically 

(12) U = U(o) + U '* K 
n n n n 

and can be solved by successive approximation: 

( 13) 

:.c 

U = S-n "'--
k=o 

U(k) = U(k-1) * K . 
n n n 

The possibility of this successive approximation is guaranteed by the estima-

1) . I (0) I te (11) for Kn and the eshmate U (t, r) ~ C (we use the same symbol 

(1) The important fact is that K are dominated by an integrable kernel inde­
n 

pendent of n. 
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C to denote different constants). It follows that the series (13) is convergent 

uniformly, being majorized by a series independent of n • 

Now we can let n -> oc·· • Then 

(14) U(o)(t, s) -,. U(o)(t s) = e -(t-s)A(s) 
n s ' 

(14) is exactly the construction of the semi-group e - 1: A(s) as the limit of 

e - 1:' An(s) (see Phillips' lectures). 

Also 

(15 ) 
-1 -(t-s)A(s) 

K (t, s) -;> K(t, s) = -(A(t)A(s) -l)A(s)e 
n s 

by (7') and J (t) --7> 1 (which is a basic fact proved in the generation of semi­
n 

groups, see Phillips) and 

(16) 't"')O, 

which follows from (3) of § 1. We note that the strong convergence (14) and 

(15) are uniform in sand t (for t-s ~ \)( > 0 in (15) ). 

It follows from 04) and (15) that U(l) (t, s) = uta) *" K (t, s) -> u(1)(t, s), 
(2) (1) (2f, n n s 

then U (t, s) = U 't K (t, s) ---i> U (t, s), and so on. In view of the fact 
n n n s 

that the series (13) is uniformly majorized, we conclude that 

(17) U (t s) = \ U(k)(t s) 
n ' L. , 

k n 
(k) _ I I ? U (t, s) = U(t, s),. U(t, s) ~ C . 

Since it is easily seen that the strong convergence (17) is uniform in s, t for 

s ::: t , U(t, s) is strongly continuous for s ~ t. Also 2) of Theorem 2. 1. fol­

lows from the corresponding relation for U (t, s). 
n 
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3. Proof of Theorem 2. 1., continued, 

We uae another identity 

-dd e -(t-a)An(t) U (a, r) = e -(t-a)An(t)(A (t) - A (a)) U (a, r) , 
ann n n 

whence we obtain 
t 

U (t,r) ;::.e-(t-s)An(t) +J e-(t-s)An(t)(A (t)A (s)-1_ I )A (s)U (s,r)ds. 
n n n n n 

r 
Multiply this equation with A It) from'left and write Y (t, s) = A It) U (t, s); 

n n n n 
then 

(IS) Y (t,r) = y{o~{t,r) +Jt H (t,a) Y (s,r)ds 
n n n n 

r 
where 

(IS) may be written symbolically as , 

(20) Y = y(o) + H * Y . 
n n n n 

We want to solve (20) again by successive approximation: 
IX) 

Y = L y(k) 
n k=o n 

(21) y(k) = H ¥ y{k-1) • 
n n n 

Here, however, we have a slight difficulty that did not exist in (13), for y(o) 
n 

has the uniform (independent of n) estimate ly~O){t,S) I ~ C{t:-s)-1 where 

(t_s)-l is not integrable. Thus the uniform estimate of y(1) is not quite sim-
-- n 

pIe, although its existence is obvious (An (t) E B!). 

Here we give only the result : 

(22) I y(1)(t, s) I ~ C 
n 1- e 

(t-s) 
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of which the proof will be given in n. 7. 

Once (22) is established, the further successive approximation pro­

ceeds smoothly, for the right member of (22) is integrable as well as that of 

(23) I Hn(t, s) \::: Cl _9 
(t-s) 

which is proved as in (11). By an argument similar to that given in n. 2, it 
(k) 

follows that (21) is uniformly majorized and that each term Y has a strong 

limit y(k) for n -> 00. Hence 
n 

(24) A (t) U (t, s) = Y (t, s) _. l> Y(t; sl, 
n n n s 

(24) gives (see also (5)) 

-1 -1 
U (t, s) = A (t) Y (t, s) ~ A(t) Y(t, s) . 

n n n s 

Since U (t, s) ~U(t, s) by (17), we must have 
n s 

-1 
U(t, s) = A(t) Y(t, s). This 

means that A(t)U(t, s) exists and equals Y(t, s) E.- B if t > s . Thus we ha-

ve proved 

(25) I A(t) U(t, s) I !: C 
t-s 

The differentiability of U(t, s) is proved in the following way. Since 

JU (t, s)u/u t = - A (t)U (t, s)u and U Itt, s)u ~U(t, s)u , A (t)U (t, s)u-) 
n n n n n n 

-~Y(t, s)u = A(t)U(t, s)u uniformly for t ~ s+a , it follows that ()U(t, s)u/2 t 

exists and is equal to -A(t)U(t, s)u. That is, U(t,s) is strongly differentia­

ble in t for t ) s , with the strong derivative -A(t)U(.t, s) E B. 

Similarly, we have 

() 
;:;- U (t, s)u = U (t, s)A (s)u 

(IS n n n 

If u E D = DA(s)' we have An(s)u -l>'A(s)u, n-.> x, uniformly in s (see 

" Phillips) so that ,; s Un(t, s)u ----7 U(t, s)A(s)u. The same argument as above 
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U 
then proves that -;::- U(t, s)u = U(t, s)A(s)u . 

~'s 

If A(t) -1 is analytic in t in a neighborhood !J of 0 f. t =- T , the 
-1 -1-1 

same is true with A (t) = (A(t) + n ) . Therefore U (t, s) can be conti-n n 
nued analytically to t ~ /j , s ~ ~ . Now the expression of U (t, s) by the se-

n 
ries (13) holds true when the variaples t, s, r are supposed to lie on a straight 

line in d having a small angle 9 with the positive real axis, uniformly 

with respect to 9 ,and each term U(k) is seen to converge for n -'> 00 
n 

to U(k) uniformly (on the line as well as in 8 ). Thus U (t, s) converges 
n 

strongly and aocally)un~formly to a U(t, s) as long as J arg(t-s) I are sufficien-

tly small. It follows that U(t,5) is strongly analytic in such a region of t and 

s. But since strongly analyticity is equivalent to analyticity (in norm), U(t, s) 

is analytic. This completes the proof 0f Theorem 2. 1. 

4. We now consider the inhomogeneous equation (E). 

Theorem 2. 3. Let the assumptions of Theorem 2. 1. be satisfied. Then the con­

clusions of Theorem 1. 13. are true (with (Eo) and (80 ) replaced by (E) and (8), 

respectively). 

Proof. Almost the same as for Theorem 1. 13. The only modification requi­

red is to note that 

A(t)U(t, s) = A(t)e -(t-s)A(t)+ Y'(t, s) 

00 

Y'(t, s) = r y(k}(t, s) 
k=l 

see (20), (22), (24). Hence 

I Y'(t, s) I ~ c 
(t_s)1-9 

A(t) J t U(t, s)ds = J t A(t}U(t, s)ds :: 1 - e -(t-r)A(t) + J t Y'(t, s)ds 

r r r 

by Lemma 1. 12 (Y'(t, s) is absolutely integrable). 
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5. Generalizations, 

To improve Theorems 2. 1. and 2. 3. , we need the fractional powers 

A(t) 0\ of A(t). 

When -A e (BO), the fractional powers A C\ can be defined in a na­

tural way 1). Here we assume, for simplicity, that A-I E- B in addition. 

Then we can first construct the Dunford integral 

(26) _Ii( 1 J _01 -1 
A = - -2-' z (z - A) dz 

11 1 L 
E B , 0< > 0 • 

where L is a curve from - rYQ to - Do passing between z = 0 and (j (A). 

The integral converges absolutely since 

I (z_A)-1 I { M/Im(-z). 

Since this is a Dunford integral 

it is easy to see that A o{+:'l, = A'" AI:> 

If 0 <" .'( <: 1, L may be taken as the 

double ray (0, - xc ), yielding 

(27) 
-0( 

A 
sin 1fC{ 

IT 

Then we define A" as the inverse of A-' ; note that A-X. is invertible 
-n -(n- x) -'x -n 

since A u = 0 implies A u = A A u = A u = 0 , u = 0 , where 

n is a positive integer larger than ~ . 

We need also the following expression, which if3 valid for -A t (HO). 

(27') A i., e- LA = _1_. 1 (-A)~ eAt' (A+A)-l d A . 
2111 C 

This can be proved by verifying that (27') gives e _t A when multiplied by 

(26) (cf. the proof of Theorem 1. 7). It follows from (27') that 

(27") lAx' e-lX,IL_C_, 
- 1(;\ 'I 

(1) These fractional powers are considered by many authors; see, for exam­
pIe, [3] , [4] , [16] and the references given ther~. 
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We can now state generalization of Theorems 2. 1. and 2. 3. 

Theorem 2. 4. 1) Assume that 

i) - A(t) f (HO) uniformly (as in i), Theorem 2. 1. ). 

ii) D A(t)h = Dh = const. for some h = 11m with a positive integer m. 

This implies that A(t)h A(s) -h c B for any sand t. 

iii) A(t)h A(e ) -h is H~lder continuous with an exponent ~. > 1 - h , 

\ h -h I 9 so that A(t) A(s) - 1 ~ M(t-s) . 

Then the conclusions of Theorem 2. 1. are true (with D replaced by 

Dh in 4)). In the last statement of Theorem 2. 1. (analyticity), the analyti-
-h 

city of A(t) should be assumed. 

Theorem 2.5. Under the assumptions of'Theorem2. 4., the conclusions of 

Theorem 2. 3. are true. 

Remark 2. 6, Theorem 2. 1. is a special case of Theorem 2. 4. for m = 1. 

The assumption that D A(t)h = const. is supposed to be weaker than that 

D A(t) = const., but there is no general proof valid for Banach spaces X. In any 

case this is true for accretive operators A(t) in a Hilbert space. In other 

words, D A = DB implies D A ex = DB:.x if X is a Hilbert space and 

-A, -B ( (BO) are such that Re(Au, u) :? 0 , Re(Bu, u) ~ 0 (u E: D A = DB)' 

Furthermore, it has been proved by Lions that, when A is an operator in 

X = L 2( il) determined from a strongly elliptic differential operator of or­

der 2m on a domain Sl.. with a smooth boundary, A 0(, has a domain indepen­

dent of the coefficients or of boundary conditions for D( < 114m. 

Outline of the proof. Here it is impossible to give a complete proof which is 

in principle the same as the proof of Theorem 2. 1. We shall indicate brie­

fly the essential points in the proof. 

(1) A similar theorem was stated by Sobolewski [9J in the special case whe­
re A(t) are a positive self -adjoint operator in a Hilbert space. 


