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PREFACE

Shannon's theory of information appeared on the mathematical
soene in 1948; in 1958 Kolmogorov applied the new subject to sol-
ve some relatively old problems of ergodic theory. Neither the ge-
neral theory nor its special application is as well known among
mathematicians as they both deserve to be; the reason, probably,
is faulty communication. Most extant expositions .of infaormation
theory are designed to make the subject palatable to non-mathema-
ticians, with the result that they are full of words like "source"
and "alphabet". Such words are presumed to be an aid to intuition;
for the serious student, however, who is anxious to get at the
root of the matter, they are more likely to be confusing than help~-
ful. As for the recent rgodic application of the theory, the com-
munica¥ion trouble there is that so far the work of Eolmogorov and
his .school exists in Doklady abstracts only, in Russian only. The
purpose .of these notes is to present a stop-gap exposition of so-
me of the general theory and some of its applications. While a few
of the proofs may appear slightly different from the correspon-
ding ones in the literature, no claim is made for the novelty of
the results. As a prerequisite,. some familiarity with the ideas
of the general theory of measure is assumed; Halmos's KNeasure
theory (1950) is an adequate reference,

Chapter I begins with pelatively well known facts about con-
ditional expeotations; for the benefit of the reader who does not.
know this technical probabilistic concept, several standard proofs
are reproduced. Standard reference: Doob, Stochastic processes
(1953). A special ocase of the martingale convergence theorenm is

proved by what is essentially Lévy's original method (Théorie de
5
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tladdition des veriables aléatoires (1937)). The reader who knows
the martingale theorem can skip the whole chapter, except possibly
Section 9, and, in particular ., egquation (9.1).

Chapter II motivates .and defines information. Standard refe-
rence: Khinohin, Kathematical foundations of information theory
(1957). The .more recent .book of Feinstein, Foundations of informa-
tion theory (1958), .is gquite technical, but highly recommended.
The .chapter ends with a proof MeMillan's theorem (mean convergen-
oe); the reader who knows that theorem can skip the chapter after
looking at it .just long enough to absorb the notation. ‘Almost eve-
rywhere ‘convergence probably holds.-A recent .paper by :Breiman (Ann.
Math. Stat. 28 (1957) 809-811) asserts.it, but that paper has an
error; at the time .these lines were written the correction has not
appeared yet. In any case, for the ergodic application not even
mean convergence is necessary; all that is needed .is the convergen-
ce of the integrals, whioh is easy to prove direotly.

Chapter :III studies entropy (average amount of .information);
all the facts here are direct :consequences .of the definitions, via
the machinery .built up.in the first two chapters.

Chapter IV contains the application to ergodic .theory. In ge-
neral terms, the .idea .is that information theory sugdests a new
invariant (entnopy) of measure-preserving transformations. The new
invariant .is sharp enough to distinguish .between some hitherto
indistinguishable .transformations (e.g., the 2-shift and .the 3-
shift). The .original .idea .of using this invariant is due to Kol-
mogorov - (Doklady 119 €1958) 861-864 and 124 (1959) 754-755). An
improved version of the definition is. given by Sinai (Doklady

124 (1959) 768-771), who also computes the entropy of ergodic
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automorphisms of the torus. The new invariant is in some respects
not so sharp as older ones. Thus for instance Rokhlin (Doklady

124 (1959) 980-983) asserts that all translations (in compact a-
belian groups) have the same entropy (namely zero); he also begins
the study of the connection between entropy and speotrum. Much re-

mains to be done along all these lines.
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CHAPTER I. CONDITIONAL EXPECTATION

SECTION 1. DEFINITION. ‘We :shall work, throughout what follows,
with a fixed probability space
x, 8., p.
Here X is a non-empty set, é is a field of subsets of X, and P is
a probability measure on é .. The word "field" in these notes is
an abbreviation for "collection of sets closed under the forma-
tion of complements and countable unions". A probability measure
on a field of subsets of X is a measure P such that
P(X) = 1 ;
Suppose that 8 is a subfield of é and f is an integrable
real funotion on X. If
b a(e) = J’C £ 4P
for each C in 8 , then Q is a signed measure on G , absolutely
continuous with reapeét to P (or, rather, with respect to the re-
striction of P to (3 ). The Radon-Nikodym theorem implies the exis-
tence of an integrable funection f* , measurable @ , such that
afe) = J, £* ap
for each C in § , The funotion £* s uniquely determined (to
within a set of measure zero); ite dependence on f and @ is in-
dicated by writing
e - B(2/8) .
The funotion B{£/® ) is called "the conditional expectation
of £ with respect to B " It is worth while to repeat the charac-

teristic properties of conditional expectation; they are that

(1:1) E(£/6 ) is measurable §
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and
(1.2) Ic E(£/&) dP = Ic £ 4P
for each C in @ .

SECTION 2. EXAMPLES. If § 1is the largest subfield of A ,
that is C::é , then f itself satisfies (1.1) and (1.2), so that
E(2/4) = ¢,
This result has a trivial generalization: gince f always satisfies
(1.2) (Ic £ dP = Ic £ dP), it follows that if the field (5 is such

that f is measurable G , then
{2.1) E(£/ %) = ¢

To look at the other extreme, let 2 be the smallest subfield of
/S , that is the field whose only non-empty member is X . Since
the only functions measurable 2 are constants, and since the only
constant (in the role of E(£/# )) that satisfies (1.2) is IC f 4P,

it follows that
(2.2) B(£/2) = [ £ aP .

The constant IC f dP is sometimes called the absolute (as opposed
to conditional) expectation of £ , and, in that case, it is deno-
ted by BE(f).

Here is an illuminating example. Suppose that X is the unit
square, with the collection of Borel sets in the role of-é and
Lebesgue measure in the role of P . We say that a set in & is
"vertical" in case its intersection with each vertical line L in
the plane is either empty or else equal to XN L . The collection

& of all vertical sets in 6 is a subfield of é . A function f
10
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is measurable 6 if and only if it does not depend .on its second
(vertical) argument; it follows easily that if f is integrable,
then

E(2/8)(x, y) = [ £(x, u) du .

SECTION 3. ALGEBRAIC PROPERTIES. Conditional expectation is a
generalized integral and in one form or another it has all the pro-

perties of an integral, Thua, for instance,
(3.1) E(1/f) =1,

wlere this equation, ss well as all other asserted equations and
inequalities involving conditional expeotations, holds almost eve-
rywhere. (To prove (3.1), apply (2.1).) If f and ¢ are integrable

funotions and if a and b are oconstants, then
(3.2) ~E(af +bg/) = aB(£/8) + bE(g/B) .

(Proof: if C is in G , then the integrals over C of the two sides

of (3.2) are equal to each other). If ¢ ; 0 , then
(3.3) B(2/8) 2 0.

(Proot: if C = {x : B(2/8®)(x) < 0}, then C is in & and

IC f 4P = 0; this implies that P(C) = 0 ). It is a consequence of

(3.3) that

[

(3.4) |ecev )| S E(l2]/78) .

(Proof: both |£] - £ 20 and |£] + ¢ 2 , and therefore, by

(3.2) and (3.3), both B(-£/B) S E(2|/8) ana B(£/8®) S B(|2]/8) ).

Conditional expeotations also have the following multiplicati-

ve property: if f is integrable and if g is bounded and measurable

11



P.R.Halmos

€, then
(3.5) E(2¢/8) = B(2/8)¢g .

Since the right side of (3.5) is measurable & , the thing to prove

is that
(3.6) Ic E(£/ & )¢ dP = jc £g 4p

for each C in E;. In case g is the characteristic function of a

set in (5 , (3.6) follows from the defining equation (1.2) for
conditional expectations. This implies that (3.6) holds .whenever

€ is a finite linear combination of such characteristic functions,
and hence, by approximation, that (3.6) holds whenever ¢ is a boun-

ded funotion measurable g

SECTION ‘4. DOMINATED CONVERGENCE. The .usual .limit theorems
for integrals also have their analogues for conditional expecta-
tions. Thus if 2, ¢, and ? are integrable funotions, if |t | £ g

and fnf* f almost everywhere, then
(4.1) E(f /8) »E(2/8)
almost everywhere and, also, in the mean. For: the proof,. write.

= o & i - f],. CT0 31 )
g = sup (e, - 21, !fn+1 I Ifm2 ;| .,

observe that the sequence {gn} tends monotonely to O almost every-
where and. that gn §_2g-.:It-follous that the sequence {Eign/é )}
is monotone deoreasing and, therefore, has a limit h almost every-

where. Sinoce

(4.2) Jnap S [E(g/8) ar = [g ap,

12
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and since | g, AP0, this implies that E(gn/g )= 0 almost every-

where. Sinoce, finally,
(4.3) lece,78) - B(e/6)| S u(le, - 2l/E) (g /6),

the proof of almost everywhere convergenoce is complete.

Mean oconvergence is implied by the inequality
<
(4.4) f|E(fn(’G} - e(2/8)| ap ¢ ﬂrn - £| ap
and the Lebesgue dominated convergence theorem.

SECTION 5, CONDITIONAL PROBABILITY, If A is s measurable set
(that is A is inAd ) ana it
£ = o(4)
(where o(A) is the characteristic funotion of A), we write
B(2/8) = p(A/E) .
The funetion P(Afgl is oalled "the conditional probability of A
with respect to G ", The oharacteristic properties of conditional

probability are that

P(A/ &) is measurable &
and

J'c p(a/8) ap = P(a p C)
for each C in (& . If A is in &, then
(5.1) P(A/&) = o(a) ,
and, in any case,
(5.2) P(A/2) = P(A).

For thie reason the constant P(A) is sometimes called the absolu-

13
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te (as oppossd to conditional) probability of A.

The converse of the conclusion (5.1) is true and. sometimes
useful. The assertion is that if P(A/(S) is the characteristio func-
tion of some set, say B, then
(5.3) A ie inf

(and therefore B = A). To prove this, note that
j'c o(B) aP = P(AN C) ,

and therefore P(A N C) = P(BN C) for each C in & . Since P(A/8)
is measurable G , the set B itself belongs to G . It is therefore
permissible to put C = B and to put C = X - B; it follows that BC A
and AC B (almost), so that B = 4 (almost).

Just as conditional expectation has the properties of an inte-
gral, conditional probability has the properties of a probability

measure. Thus if A is a measurable set, then
0 SpP(a’B) £1,

and if {An} is a disjoint sequence of measurable sets with union

A, then
P(A/B) = £ p(anfB) .

SECTION 6. JENSEN'S INEQUALITY. A useful analytic property of
integration is known as Jensen's inequality, which we now proceed
to state and prove in its generalized (conditional) form.

A real-valued function F defined on an interval of the real

line is called convex if
F (ps + gt) £ pF(s) + qF(t)

whenever 8 and t are in the domain of F and p and g are non-nedative

14
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nurbers with sum 1. It follows immediately, by induction, that if

t4,.+.,%, are in the domain of F and Pys+..,Pp, are non-negative

n

numbers with sum 1, then
n < o B
(6.1) N21=1 pyty) = 2 piF‘(ti) .

Suppose now that F is a continuous convex function whose do-
main is a finite subinterval of [0, W), suppose that g is a mea-
surable funotion on X whose range is (almost) included in the do-
nain of F, and suppose that G is an sarbitrary subfield of 45 .

Jensen 8 inequality asserts that under these conditions
(6.2) P(E(g/8)) 2 E(F(8)/8)

almost everywhere. Since g is the limit of an increasing sequence
of simple funotions, and since F is continuous, it is sufficient
to prove (6.2) in case

g = ZA o(A)tA

where the summation extends over the atoms of some finite sub-

field of‘é . If ¢ has this form, then

F(g) = ZA o(A)F(t,)
and

B(g/ 8) - 5, P(/B)Y,

Since E(F(g)/8&) = ZA P(A/B)F(tﬂ), the inequality (6.2) is in
this case a special case of (6.1).

In the extreme case, & =4 , the conditional form of Jensen's
inequality reduces to & triviality (F(g) S F(g)); in the other
extreme ocase, &= 2, it becomes the classical absolute Jensen's

inequality
15
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F(f g ap) £ [ F(g) aP .

SECTION 7. TRANSFORMATIONS. Later we shall need to know the
effeot of measure-preserving transformations on conditional expec-
tations and probabilities. Suppose therefore that T is a measure-
preserving transformation on X; this means that if A is measurable,
then T_lA is measurable and

B(T71A) = p(A) .
(Por present purposes T need not be invertible).
It 6 is a subfield of é , then
g
is the collection (field) of all sets of the form T_lc with C in
©; it £ is a funotion on X, then £T is the composite of £ and T.
The basic change-of-variables result is that if f is integrable,
then

J. 2ap=[ - ¢T4qP
c 1 lc

for each measurable set C. If, in particular, C is in ] , then

£T 4P

I o g(er/1 8) ap = J .
1 1¢ ¢

™

= [ tap = [ 'E(£/8) aP
c o}

=J ., B(2/8)Tap .
"¢

o -1 X
Since both E(£T/T 18 ) and E(2/B)T are measurable T &, it fol-

lows that

(7.1) E(rt/T'le ) = E(¢/ B)T .

-1
Since o(A)T = o(T "A), this implies that

(1.2) p(r 4/ 8) = p(a/E)T .
16



