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Introduction

Following the fundamental work of V. Volterra 137],138] ,|39] .l40] ,
hereditary phenomena in mechanics have been deeply studied.

A great part of the work that has been done (see|18 |, |35 |,]36 |,...)
treats the case called, by Volterra himself, "the case of closed cycle"

(see T. VOGEL |34 |) which corresponds to the case where the relaxation function
in viscoelasticity is of the type G(t-1).

However, in 1907, HATT|19] has discovered the phenomenon of creep in con-
crete whichpresents stress~ independent deformations which, in addition to
thermal dilatation, includes shrinkage ; the material properties of concrete
change indeed as a result of internal chemical reactions and the deformation
problem is coupled with complicate moisture diffusion through the material,
as well as heat conduction. For these reasons, in a first approximation, con-
crete may be regarded as an aging viscoelastic material whose creep law can
be written in a rate-type form, i.e. as a system of first-order differential
equations, involving hidden strains, with time-dependent coefficients *)

More recently it appears that also for other materijals, especially poly-
mers in a temperature depending situation, the relaxation function is not of
type G(t - T ) but following a fundamental remark of Morland and Lee|27 |,
the relaxation function can be written as G(& - &') where € = § (6) is
the reduced time (see also PIPKIN |31]).

From another point of view the extension of phenomenological laws based
on spring and dashpoit models to the temperature depending case has been pro-
posed by many experimentalists (see e.g.| 4 |) specially for metals.

In this paper we shall recall in §1 some results on the continuum mecha-
nics of materials with hidden coordinates (indeed hidden strains) and some
consequences of the Clausius-Duhem inequality on the constitutive equations
due to Coleman-Gurtin|12 | and Bowen] 10 |.

(x)For a very deep review of the basic facts on this subject see
Z.P. BRIANT| 3 |.



10

Because we are interested in the study of a phenomenon with high
temperature variations, we develop in §2, in the case of infinitesimal
strains, a linearization of the equations obtained in §1 only with respect
to strains and hidden coordinates. We conclude this analysis in §3, with
some remarks on the possibility of uncoupling the nonlinear heat ejuation,
similar to those developped by Crochet-Naghdi | 13 | for thermorheological-
ly simple solids.

In §4 we recall very briefly how the nonlinear heat equation obtained
in this way can be studied in the framework of nonlinear evolution equations
as developped in the book of Lions |24 |.

In §5 we start the study of the equation of motion (with temperature
as a data, i.e. a given function of time and space-variables),recalling some
results on duality and virtual work principle. In §6 we consider a constitu-
tive equation of Maxwell-type where the "stiffness” and "viscosity" matrix
are temperature-dependent and thus are time dependent. More precisely the
temperature is T-periodic in time and therefore the stiffness and the visco-
sity are also T-periodic. With this constitutive equation we survey, in §7
and §8 some results concerning existence, uniqueness, asymptotic stability
of a T-periodic stress-field for the dynamic and quasi-static periodic bila~
teral problem (| 61,0 91,/ 17]) and also for the quasi-static Signorini
unilateral periodic problem (l 71,1 8 b. We refer to the lectures of
G. Fichera in the present session for the corresponding Cauchy-prebiems.

The applications of our results on the thermal fatigue of metals due
to cycle heating and cooling will be deve1opped in the thesis of M. Raous {32 |.
By lack of time we cannot develop these first results ; we can only say that
the numerical experiments agree with the experimental results of F.K.G.
ODQVIST and N.G. OHLSON] 30 |"The virginal specimens behaved in a normal way,
whereas those already cracked apparently proved to be stronger against the
formation of new cracks'.
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1- Background on the mechanics of continuous medium with hidden variables.

1.1- The mechanical and thermal behaviour in the time interval € € R, of
a nonpolar body occupying the reference configuration Q@ < R3 at time
t € &  is completely determined by a vector functien p(X,t) (giving the
position at time t of a material point which has the position X in the
reference configuration Q ) and by a positive scalar function ©(X,t)
(giving the absolute temperature at time t of a material point which has
th2 position X <n the reference configuration Q ).

As usual we define F(X,t) = Grad p(X,t), the deformation gradient
tensor and we shall assume that p(X,t) is always smoothly invertible, 1i.e.

(1.1) det F(X,t) > 0 for all t€ €
Using Lagrange's coordinates, the local form of the laws of balance of

1inear momentum, of moment of momentum and of energy are the fo110wing(x) (xx)
(see |16 :

(1.2) Div FS + pf = o B
(1.3) s = s*
(1.4) P € = tr SE - Div q + pr

where préx)is the mass density in the reference position, S 1is the symme-

tric second Piola-Kirchoff (or Lagrangean) stress tensor, E = %{F*F -1) is

the Lagrangean gtrain tensor, E = O

is the Lagrangean strain rate,
Po P = fo —S_%z i; the inertia force?t f s the body force field per unit

(») If A dis an m x n matrix, A* denotes the transposed matrix.
(xx) tr(.) = trace of (.).
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mass, e 1is the internal energy of the body per unite mass, q is the
heat conduction vector, r 1is the heat supply field per unit mass.
Let us also recall that the law of the conservation of the mass allows
us to compute the mass density at the time t with the formula
p
= 2
det F = >

The local Clausius-Duhem inequality
. A+ Divid-p I >
(1.5) pn+ w3 e, 5 0

where n 1is the specific entropy per unit mass can also be written, using
(1.4), in the form

° *®
(1.6) ~pEt po0h *tr(s E)—q—ei >0

where g = Grad®
Defining the Helmoltz free energy per unit mass by

(1.7) w = € = e n
we can also write (1.6) in the form

. o« o
(1.8) -pg¥ - 6 +tr(SE)_-q—e—9- >0

1.2- The characteristics of material composing the body are usually stated

by additional equations, the so-called censtftutive equations, which give the
stress, the internal energy, the entropy and the heat conduction in terms

of the Lagrangean strain tensor and the temperature field. Obviously the
constitutive equations depend on the properties of the material that we are
modelling, and in the following we construct a model for solid-like materials
(e.g. metals, polymers, concrete,...} whose response depends to a large
extent on their past history (a qualitative explanation of this fact can ke
given in terms of various microstructural rearrangements due to dislocations
motions, longchain molecules, phase transformations,...).
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We will account for such microscopic structural rearrangements by the
introduction of additional state variables called internal or hidden coordi-
nates and denoted collectively by & which in a certain average global sense
represents the internal changes.
As is pointed out by S. Nemat-Nasser (]29 |p. 110) :

"The representation is macroscopie in the sense that there may exist multiple
(in fact, probably infinitely many) microstates corresponding to the same
values of these coordinates. However, inasmuch as these coordinates are cha-
racterized by certain constitutive relations involving various parameters,
which are fixed by means of suitable macroscopic experiments, they signify the
most phenomenologically dominant aspects of the microstructural changes”.

Onz can assume that the hidden coordinates are various tensorial quantities
that transform in a suitable way under a change of frame, here we shall assume
for simplicity that & is a symmetric positive definite tensor invariant by
orthogonal change of frame.

1.3- A thermodynamic process is a set of functions of X &€Q and te €

A - ip,e,s,f,e.Q.Y‘,n}

that satisfy (1.2), (1.3) and (1.4).

In order to be frame indifferent, the lagrangean stress, the free energy,
the entropy and the heat flux are defined as functions of the material point
and of the actual values of the state variables E, E. 8,9, £ (the thermo-
dynamic state) :

(1.9) S =8 (XE E, 8,9,E)
(1.10) v =P E E 6.8 E)
(1.11) n =% (E,Ea 0,8, E)
(1.12) q =G (XE E, 08,8, E)
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In order to fix the variation of the hidden coordinate & we shall
assume (x) :

For all _Xé& @ , there exists a function h of E, E, 8 , g, £_such
that along any process during the time interval &€

(1.13) E = h(X.E,E,0,q,€).

Moreover for all toé & and all 50 there exists a unique & (X,t) satis-
fying (1.13) for all _t € € and ¢ (X,tc) = Eom.

1.4~ The constitutive equations of materials that we have in mind are

based on analogies to spring-and-dashpot models ; indeed these simple models
display qualitatively retarded-elastic, creep and relaxation phenomena that
are encountered in polymers, concrete, metals.

Example 1 - (Thermoelasticity)
We take E = h =0 and S = K(6)E + A(6) . We have the usual thermo-
elasticity. If 8, is the reference temperature in
the reference configuration, without stress, we must
o write A(e)_=~K(e),x(e)(e-eo) where X.(9)
is the thermal dilatation tensor. e -x(e)(8- 60)

. ()
is the thermal dilatation and thus S = K(& )(E + eo).

Fig.1
Example 2- (Maxwell body)
Py & We have the relations
e
0f._.>
= Ko) [E+e -g
E | (1.14) T
A S = V(e)g
v ' £
from which it follows
(1.15) E = Vi{e)Ko) (E+e, -£)
Fig.2

(%) As has been pointed out by G. CAPRIZ and L.M. SAHA |11 |(see also f,
SIDOROFF |33]) the Clausius-Duhem inequality implies that e-it'ner'é depends
on the other fields or q? is independent of £ .
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One can also consider N Maxwell elements in parallel. This model is very
interesting for concrete (see Z.P. BAZANT | 3 |, where it is also studied
a possible dependence from the temperature and the humidity).

Example 3- (Standard Solid)

s = Kl(e)[E+eo] +K(9) [E+e° -£]
K3 < E = vi(e) k(o) [E+ e, - E1]
. E,
V=2
g
v
é
Fig. 3

Example 4~ (Jeffrey'selement)

S
(= S = We)E+KO6)[E-E]
— T P e vl [e-e]
v e E = V(e)ke)[E-¢
T

Fig. 4

With respect to the choice of a good model and the influence of the
thermodynamics we wish only quote S. NEMAT-NASSER (] 29] p. 110) :

"In general, the selection of the nhidden coordinates represents a signi-
ficant problem. An experimentalist can only monitor certain "inputs" and
measure certain "outputs". The material then represents a black box, whose
jnternal structure is manifested through such input-output relations.

The optimal selection of suitable internal variabies, minimum in number,
which provides maximum information for a given input-output setup, is an
interesting nontrivial problem outside the realm of thermodynamics.
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Thermodynamics can only provides.a general framework within which one must
operate. The detailed selection of the parameters, however, must be guided
by other considerations”.

1.5- We shall now recall here some results essentially obtained by
B.D. COLEMAN and M.E. GURTIN | 12 | and by R.M. BOWEN | 10 | on the thermodyna-
mics with hidden variables.

It is clear that in order to specify a process for the body all we need
do is to give the motion p(X,t), the temperature field 6(X,t) and the value
E,(X) of the hidden variables at some instant t & & , for then all the
other quantities can be computed. Moreover from the conservation laws one
can choose the fields f(X,t) and r(X,t) to maintain the motion and the
temperature.

Theorem 1 (] 12|, 101}).

i) The Clausius-Duhem inequality (1.8) is verified for all X € Q
and t €% and all admissible thermodynamic process A (i.e. a ther-
modynamic process which is consistent with (1.9) to (1.13))if and
only if the constitutive equations (1.9),...,(1.13) satisfy :

(1.18) ¥ and A are independent from E and g

al\

(1.19) n =- —5‘%- . ﬁ"

(1.20) tr(S-p - E-tro X £.2" >0
3 o€ 6

~

ii) If we assume a priori that h, S and q are independent from E,
the Clausius-Duhem inequality (1.8) is verified if and only if

(1.18 bis) M and ©  are independent from E and g
~ A
(1.9 bis) n=--Y ang 5 = p 2
B
(1.20 bis) trp W L, 99 o9 0
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1.6- The results obtained in theorem 1 imply some simplifications in the
energy equation (1.4) ; indeed in the case i) such equation can be written

~ » A.
(1.4bis) poh +trp X F = tr(S-p 2L )E-Div§+pr
¢] 0aE an 0

and in the case ii) such equation can be written

A
(1.4 ter) pon +trp 2 € = -Divi+opr
0 035 0

A

where n = - -0
E-L:)

.

1.7- As simple choice of the constitutive equations (1.9)-(1.13), suggested
by the examples 1,2, 8,4 and compatible with the Clausius-Duhem inequality
(see th.1) we shall assume from now on the following :

(1.21) VOGE, 8, E) = A(X8)+ Ap(X,8 ) €+ Ay(X,0 )E +

%tr Ag(X,8 ) EE+ tr A (X,0 ) E €+

% tr A(X,6 )EE

(1.22) S (LEE,0,98) = By(X.0, 9)F + o) Ay(X,0 ) + p As(X,0 )E +
P A4(x;9 )E

(1-23) a(X:EQE’G ’gng ) = - k(x‘e )g

(1.24) h(XEE.0,9,8) = =B (X,0,9) [A[(X,8) + A,(X,8 )E + Ag(X.0)c]

where : Bo’ k and B1 are positive semi-definite tensors in order to ensure
the validity of (1.20) i moreover Bo’ AZ’ A3 and A4 are tensorial quantities
symmetric in the first 2 indices in order to ensure the validity of (1.3),
and B1 is symmetric according to the Onsager principle.

Let us also remark that the expression of the entropy follows from (1.21)
and {1.19).
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2- A linearization result,

2.1- We shall now study what kind of simplification can be achieved in the
equations obtained in § 1 in the hypothesis of the infinitesimal strains ;
however we shall made no assumptions on the variation of the temperature 6
(see M. J. CROCHET-P.M. NAGHDI |13| for analogous considerations in the case
of thermorneologically simple solids).

More precisely, let us write the equations of § 1 in a non-dimensional
set-up and let us define

(2.1) u (Xot) = pi(Xst) - X, i=1,2,3;
duy %u,
§ = max isup | — » Sup | | }
i,X,t 93X i,X,t oX 3t

In the sequel we assume that & is small with respect to the unity.

We shall write that a function ¢ is O( 6") for n> 0 if there exists
a constant C> 0 such that |¢] £ C 8" uniformly in all the domain of defi-
nition of ¢ .

To construct the linearized system we shall only take the terms contai-
ning the lowest powers of § .

2.2- From (2.1) we obtain

(2.2) F = 14 +Grad u , P=u

E = %-[ Grad u + (Grad u)* ] + 0( 82)
(2.3) % ,

£ = 3 [Grad i+ (Grad 1)*] + 0( &)

Therefore if we define

~

(2.4) £ = z(Gradu+ (Gradu)*] ,E = % [orad & + (Grad i)%]
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~ ~
then £ = 0(¢8) s E = 0(6) and

~ - ~

(2.3 bis) E = E+0(6? E = E + 0(8%)

Moreover remarking that 1 = 1 - Divu+ 0(62) we find that the mass
det F

density at time t 1s given by
(2.5) p = po(l - Div u + 0(8%)) = Po *+ 0(s )

and so we can consider, in a first approximation, that the mass density is
time-independent, because Po = 0(1).

2.3- In order to linearize the equation of motion (1.2)we need some informa-
tions on the order of magnitude of the different terms that appear in (1.22).
These informations are deduced from the following restrictions on the cons-
titutive equations that will be better discussed on two examples.

Let us consider first the following initial value problem

Y+ By(X, 0,9) Ag(X,0)y = 4 (X.0,9) i y(t) = 0

where By» A5 are defined in (1.24) and where we assume 81 = 0(1), A5 = 0(1)

and ¢ = Of 6"). n 2> 0. We have existence and uniqueness of the solution
for all t € C and we can write

y-%%+y-BlA5y =y

so that we deduce

d 2 2n
el R R U R L NV ER A
and by Gronwall Lemma

ly(t)]2 € €3 62" Vte® provided € be bounded.

Cl,cz,c3 are positive absolute constants. We can prove now easily the
folliowing Lemma.
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Lemma 1-

Let h be given by (1.24) and let us consider the following initial
value problem

(2.6) £ = W E E0,98) 3 E(t)=¢ » t e
Let % be bounded and

(H1)  By(X,e, 9) = 0O(1) , Ag(X,e) = 0(1) , A (X,e) =0(1)

(H2) Ai(Xs0) + Ag(X.8) £ (X) = 0(5),
then we have

= E(t) + 0(s2 . E(R) - =
2.7) i g(t) g(t) + 0(s?) g(t) -g, = 0(s)

Bty = An roe) . Ht) = o)

where E(t) is the unique solution of

[ J
~

~ 4:‘ -~ -~
13 = h(xa E, E,0, 9,5) ’ E(to) = EO
Proof-
[y ~N ~
Take y = E-g and ¢ = - 81[A1 + A E+ Asso‘j = 0(6 ), then
we have y = 0(8) . Putting now £ - ‘E,’= y and ¢ = -BIA4(E-E) = 0(62)
we have y = 0(8%) . Q.E.D.

Recalling (1.22),(2.3 bis) and (2.7) we can now write

S . :l e d
S(X,E,E, 08,9, ) = BO(X,G »g) £+ pOAZ(X’e )+ DOA3(X:9 JE +

poha(X:8 ) (B - £)) + p A (X8 ), +

D ~ ~
Bo(X>0 ,9)(E - E) + p As(X,0 }(E - E) +
~
Poha(X»8)( - B).
Let us denote respectively by 8 and So the temperature field and the

second Piola-Kirchoff stress tensor in the reference configuration (where
E = E = 0), we have
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(2.8) SoX) = by [ Ay(X:80) + Ag(X:80) £4(X)]

from which we define BZ(X’e ,eo) by

(2.9) o[ Ax(X,8) + Ag(X,0) g (X)] = S,(X) + pBy(X,6 580) (6 - 6).
We shall also made the following assumptions

(H3) Bo(xa 8,9) = 0(1) ’ 9°A3(X’e) = 0(1) , QOA4(xse) = 0(1}

(H4) SO(X) + °oBz(x’°,’ eo) (e- eo) = 0(s8).
Having done the good hypothesis we find that

S(X, E. E.0. 9. 8) = By(X.0, ) T+ poha(X»0 )E +
o
DOA4(X,9) (g - EO) + poBz(x:e ’ eD) (9 = eO) +
5,(X) + 0(s?)

and so we can define

It

~ ~ ~
By(X> 8, 9) E+ pAs(X,0) E +poAg(X:0 ) (&= Eg) +
poBz(x’e ’ 60) (o- eO)

(2.100 %

and we obtain

S
(2.11) i
Fs

We can then take as linearized equation of motion the following

+5,+ 0(82)

o
S
o
S+Sy+ 0(82)

a
(2.12) Div[S+S°]+ pg T = PoU

with from (2.9), (2.10)

~t

X ~ ~
S+ SO = BO(X,e »9) E+ 90A3(x’e JE + p°A4(xse e + pOAZ(X’e)
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2.4~ In order to linearize the energy equation (1.4 bis) we remark first of
all that (H3) implies

(2.13) tr(S-Doa—:E)E = trB(X,0,9 EE = 0(5?)

and the hypothesis (H2) implies

A A
oY _ Y s 2
(2.14) trpos-g—— h = trpoa—a— E = 0(s2)
(]
Moreover we find from (1.21) and n = - vl
32A_ %A A, 32A
em=[—0, 1 ¢, 25+%—tr 3EE +
:3922 202 . 262 202 .
3%A 3 %A OB, o 3a
4 1 5 e 1 2 %
tr‘%‘z‘_gg*'ftr‘ggf EE]6 + E;+ae E +
3A3 . 31\4 . . Y.\ o
t EE+E + t .
tr 56 EE+rae(§ £) rae EE
Let us made the following final assumptions
3A3 3A4 3A2 aA5
(H5) g 5g> = O(1) g === 0(1) , pogt = 0(1). g == 0(1) ,
aA1
Po 35 = 0(1)
32A, R A, a‘As
Po 307 ~ 0(1) » pg g7 = 0(1) » py 55z = 0(1), P, vl 0(1),
32A

1 =
Py 557 = O(1)

~
then, recalling also (1.12),(1.23), we obtain the following Tinearization (inEE )
of the energy equation (1.4 bis) :

32A_ 32A, . 9%A, L. s 3R, & 3A, %
_p 80 1 2 8-.po [ 1 %y _2 -
(2.15) -9, ¢ [ggz+ 5 Er g £ ¢ 0P [ o B E]

= Div(k Gradg) + o’
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2.5- Summing up the previous considerations we have done a linearization,
only with respect to the infinitesimal strain,the hidden variables and the
displacement u under the assumptions (H1),(H2),(H3),(H4),(H5).
In this way we have obtained the system of equations

/"’ L1
(2.12) piv [ S+ 50] t pf = p, U
~N ~ LY ~
(2.10) S+5, = BO(X,e ,9)E + p°A3(X,e JE + Poha(Xs 0 YE + poAz(X,B )
~ ~ ~y
(1.13) E = -By(X.0,9)[A(X,0) + Ay (X.0)E + Ag(X,8)E ]
(2.8) ool Ay (X,0,) + Ag(X, 8,) EO(X)] = 54X
3%2A_ 3%A 2A, ,_. 9A, o %A, &
(2.15) - [—2+ 12 4 E]6 - p 0[—F +—2E] =
202 382 262 20 98

= Div(k Grads) + por

(2.4) T - % [Grad u + (Grad u)* ] T = % [Grad U + (Grad )" ]

to be completed with suitable initial and boundary conditions.
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3- Some examples.
3.1- As a first example we shall take the case of thermoelasticity
(example 1, § 1) with So = 0. From (2.10) we have

~ ~ .
(3.1) S = p°A3(X,B) E + pOBZ(X,e, °o) (6 - ao)
with Po A3(X, 8) = K(X,8) (the stiffness) and

Po B?.(X’ 9, 90)(6 - 60) = K(X,8) x(X.8){e- 60),

x 1is the thermal dilatation tensor. The only assumption to discuss is (H4).
If the variations of § are small near the reference 040

ie. |6 -8] = 0(8) , [8] = 0(6). |g] =0(s) ,|g]=0(8) then (H4) is satis-

fied. Moreover ,

2 Ay 9By(0 -8)

a0 36

K(8,) x(8,) + 0(6)

A Tinearization of the energy equation (2.15)
gives then the classical equations of the linear thermoelasticity. These
equations are coupled by a term of the type 8 K(eo) x(eo) E in the
energy equation ; fortunately for most applications the coupling can be
neglected (see the example of BOLEY-WIENER| 5}). Note that the heat equation
is linear in 9 .

In thecase of great temperature variations, (H4) may also be verified ;
it suffices that the product K(X,8) x(X,8) (e -eo) be small as it

appears gn some metals (see M. RAOUS |32]|). Furthermore in this case the

3A
term. ——% E. which is of 0(8), is negligible with respect to the term
L]

2

3°A 3, o

— which is of 0(1) and, in the same way, the term P8 .()TZ E is
- 2

k1] 3%Ag o

negligible with respect to the term poe -7 6 .
a6
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The heat equation, which is nonlinear in 6 is indeed uncoupled from the
motion equation.

3.2- As second example we shall consider the Maxwell model of example 2, § 1.
In this case from (1.14), (1.15), (1.22) and (1.24) we deduce that

Bl(x, 0,9) = po v-l(x, 6)

'90A4(X:e) = pOA5(x’e) = p°A3(x’e) = K(X,98)

PR, (X,0) = = pAy(X:8) = K(X,8)e, with e, = -x(X,0)(6 - 6)
where we have S, = & = 0 in the reference configuration. We see that

the only hypotheses to be discussed are (H4) and (H2), which in this case
are equivalent. Indeed the discussion can be done like in the example of
thermoelasticity investigated in 3.1. In particular it appears that in the
case of great temperature variations the nonlinear heat equation can be
uncoupled from the motion equation.

This fact has also been pointed out by CROCHET and NAGHDI |13].
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4- Some results on the nonlinedr heat equation.

4.1- Taking into account the examples of the previous section we shall at
first study a nonlinear heat equation of the type

(4.1) o, c (9) 8 - Div[ k(X,8) Grad 8] = Por{Xs83 + p ry(Xst)
subjected to the boundary conditions
8(X,t) = go(x,t) on ro (given temperature)
(4.2) n®. k(X,8) Grad & = g,(X,t) on Ty imposed flux)
n*. k(X,0) Grad 8 + a( 6- g,(X,t)) = 0 on T, (radiation condition)
and the initial condition
(4.3) o(X, to) = eo(X)

Or, in the case where s 9ys 9ys 9, are T-periodic (T > 0) in time,
the periodicity condition

(4.3 bis) 8(X, t) = 6(X, t+T) Y(t, X) 3

T,sFy» T, are open subsets of the boundary 3@ such that 3 = f;lJf].Uq}.

4.2- The problems (4.1), (4.2), (4.3) and {4.1), (4.2), (4.3 bis) can be
solved from the point of view of the nonlinear operator theory. Indeed we can
apply theorems of § 5 of BARDOS-BREZIS | 2 |. If g{X,t) =-,0(x)’ under very
mild conditions of the type

(4.4) the elements ki‘§x,n ) are bounded in n and measurable in X € @

(%) According to the trace theorems it is always possible to make the charnge
of variable 6, =06-8, where 8o = g, on To and then 8; = 0 on .
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(4.5) k(X,n ) is positive definite in the sense

PO N . R 2 ith 0
ifj ki, j(Xsn) & &5 2@ f Ei with o>

(4.6) rl(X, n) is bounded in n and measurable in X or else
rl(X, n) = r3(X)n + r4(x) with r3(X).< 0 and
2
r, €12( Q)

(4.7) a(X) in (4.2)3 is measurable and non-negative,
it is not difficult to prove that the operator

- Div( k{X,8) Grade ) - porl(X,e ) » with (4.2) is an “"operator of the
calculus of variations" in the sense of LIONS [[ 24 ; chap.2,§2] and so of
type M (see e.g. Lions loc. cit.). For a proof of this type of results see
AMIEL-GEYMONAT | 1| and KENMOCHI |21 | .

In the case of Cauchy problem additional deep results are obtained by
LADYZENSKAJA-SOLONNIKOV-URALCEVA |22 |.
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5- Duality and virtual work.

5.1- Let Q be a bounded connected open set in R" (in practice one takes
n=2 orn=3) with boundary 23Q sufficiently smooth. Let BIQ be a
closed subset of 3Q with (n-1)-measure> 0. Let v = (vl,.,.,vn) be the unit
normal to 3Q exterior to Q . HI(Q )n is the set of fields of isplacements
U= (upseeosu ) with u; € Ki(Q), i = L., n 5 (@) is the usual Sobolev
space : for their properties see |25 |.

If”g € Hl(n )n then the jrace y,u on aslzlz is well-defined and
YoU €H (asz}" 3 then uy = T vy, u; vy € H (39 ) is the normal component
of the trace of the displaceme?l%lon o .

let V = {véHI(Q)rl oYV 0 on 3,2 and vN=0 on azn}

where 329 is a closed subset of 3@ with (n-1)-measure > 0 (if meas
(8252 ) =0 then the condition vy = 0 must be dropped in the definition
of V), and let WV be equiped with the hilbertian structure induced by

1 n

HY Q) .

Let E be the space of infinitesimal tensor strain fields, i.e. of
symmetric matrices e = (eij)'i j=1 n with € € L?2(Q) and let $§ be
the space of tensor stresses fields, i.e. of symmetric matrices

- 3 2
s = (Sij)i,j=1,..,n with Si.j € L2(Q). The spaces E and $ forma
dual system with the separating bilinear form

n

(5.1) <e,s> = Jﬁ eij(x) sij(x) dx

L
i,J=1
which represents, from a mechanical point of view, the opposite of the work
of the stress s in the deformation e . From a mathematical point of view
E may be identified to $ , and then (5.1) represents the scalar product ;
we shall denote by ||. || the corresponding norm in E or § .

The load space L and the space W are in duality with respect to the
separating bilinear form <«v , ¢» which represents the work of the strength
¢ under the displacement VY ; if ¢ = (f,h), where f is a regular volume
force distributed in @ and h a regular surface force on 3Q \ aln having only
a tangential component on 3,0 (this means that z hi(x) vy (x} = 0 for
a.e. x682 Q), then 1




29

(5:2) «v, 9> = 2 jvi<x)fi(x)dx+§f Yo¥i (%) hi(x) do
o a0\9,Q
It is easy to see that this formula is true when f_i € L2(q) and
hi € L2 an\alg) but its validity can be extended to a much more general
situation, at least when both boundaries of 3;2 and aZQ are regular in aQ.
D will denote the symmetric gradient operator

u
axj axi

(5.3) Du o= (3(

i,J = 1,..,n
It is a linear continuous operator from Hl(n)n into E.
Thanks to Korn's inequality and to the fact that meas (ala )>0,Dis a

one-to-one bicontinuous mapping from V' onto DV and DV is closed in E (see
e.g. DUVAUT-LIONS |14 |chap. 3).

Let tD denote the transpose of D , defined by
(5.4) < Dv,s> = «v, Ds>» VWEV , Vs €5

It is easy to see that tD is linear, continous and onto ; formally

tDs = ¢ means (we use the following classical notations : Sy, = £ S:.viVis
n N i, 3747

Si7 T jil Si% ~ SN Vi and s = (s;7))

n
- ___L = 3
(5.5) j)=:1 axj sij fi in @
n
(5.6) jzl Si5 V3 = hy on 20 \(3,2 (@) 3,0 )
(5.7) sst = b on 2,0

and the methods of LIONS-MAGENES | 25 | render this interpretation rigorous.
For a more detailed analysis of the duality and the virtual work prin-
ciple, see MOREAU |26 |, NAYROLES |28 |.
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6- A viscoelastic constitutive equation with periodic coefficients.

Let T be a positive number. Let us assume that 6(X,t) is the
unique T-periodic solution of the T-periodic boundary value problem associa-
ted with the nonlinear heat equation (4.1) and let us consider the constitu-
tive equation of Maxwell type as in example 2 of §1.4, i.e.

K(%, o(X,t)) [E+ e, -£]

(6.1) .
V(X, 8(X,t)) £

"l nY
"

where e, = - x(X0)( o- eo) is the thermal dilatation field which corres-
ponds to a non-stressed state in the reference configuration Q(So = 0).
For simplicity we put

(6.2) K(X,t) = K(X, 8(X,t)) . V(X,t) = V(X, 6(X,t))
(6.3) s = S (The total stress)
(6.4) e = T +e, (The total strain)
and then
s = K(X,t) [e-¢
(6-5) s = V(i,t)g :

We assume :

Al- K(X,t) and V(X,t) are symmetrical fourth order tensor, measurable and
bounded on 2 x R and such that for almost all (X,t)

Kijem = Xjiem = Kigme = Xomij
(6.6)

Visgm = Viizm ™ Vijme = Vemij
(6.7)  K(X,t) = K(X, t+T) V(X,t) = V(X, tsT)

and there exist 0 <k <k , 0<y £V such that for all symmetrical
matrices ("i j)
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i

2 T X 2
'ifj Vij < i3 Kisam(Xot) Vij Vam < K E.J Vij

(6.8)

i<

T v? \<2

(X,t) v. 2
5V € g et vig vy <V 2y

ij

A2- The differential system

(6.9) a‘*" Lix,t) K(,t) y = 0

is uniformely (in X € Q) exponentially stable @

Let A(X,t,t) be the fondamental resolvant of (6.9) such that
A(X,t,1) = J = Identity. From A2 we have for almost all X

(6.10) | At t) | & € expl-cy(t-1)) for t >

where Cl, C2 are some positive constants (» ) Furthermore from (6. 5),

(6.10) we can obtain and integral correspondance (x) between s and e
of the form

t
(6-11) S(xst) = f F(x’tﬁT ) [e(xpt) = e(x,T ) J dT

where F(X,t,t) = %—T(i (Xsty 1)

4 G(x’t'T ) = K(x’t) A(X,t,‘t )
provided the initial

Eo(X) results from a "past® strain history €, such

t
()
that : go(X) =j A(x,to.t) (1) dt . We remark that

(6.12) F(X,t + T, T 4T) = F(X,t,1)
Obviously, we can also (formally) write the inverse form -

- t

(6.13) e(X,t) =g (X) +K 1(X.'c) s(X,t) + f v‘l(x,v) s(X,v) dv
t

(]

(x) In fact, if V'K -

is symmetric, then A1 => A2 witn c; = 1 and c, =

(xx) with aging.



