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Introduction 

Following the fundamental work of V. Volterra 1371, I381 a 1391 ,1401 , 
hereditary phenomena in mechanics have been deeply studied. 

A great part of the work that. has been done (see 118 1,135 1,136 I,. . . ) 
treats the case called, by Volterra himself, "the case of closed cycle" 

(see T. VOGEL 134 I) which corresponds to the case where the relaxation function 

in viscoelasticity is of the type G(t--c ). 
However, in 1907, HATT 1191 has discovered the phenomenon of creep in con- 

crete whiohpresents stress- independent deformations which, in addition to 

thermal dilatation, includes shrinkage ; the material properties of concrete 

change indeed as a result of internal chemical reactions and the deformation 

problem coupled with complicate moisture diffusion through the material, 

as well as heat conduction. For these reasons, in a first approximation, con- 

crete may be regarded as an aging viscoelastic material whose creep law can 

be written in a rate-type form, i.e. as a system of first-order differential 
6 equations, involving hidden strains, with time-dependent coefficients . 

More recently it appears that also for other materials, especially poly- 

mers in a temperature depending situation, the relaxation function is not of 

type G(t - i ) but following a fundamental remark of Morland and Lee 127 1, 
the relaxation function can be written as G(5 - E') where E = E ( 0  ) i s  
the reduced time (fee also PIPKIN 1311). 

From another poirit of view the extension of phenomenological laws based 
on spring and dashpot models to the temperature depending case has been pro- 

posed by many experimentalists (see e.g. 1 4 /) specially for metal s. 
In this paper we shall recall in 51 some results on the continuum mecha- 

nics of materials with hidden coordinates (indeed hidden strains) and some 

consequences of the Clausius-Duhem inequality on the constitutive equations 

due to Coleman-Gurtin / 12 1 and Bowen 1 10 1. 

(r)For a very deep review of the bas; c facts on this subject see 
Z . P .  BATANT I 3 I. 
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Because we are interested in the study of a phenomenon w i t h  high 
temperature variations, we develop i n  9 2 ,  in the case of infinitesimal 
s t rains ,  a linearization of the equations obtained i n  51 only w i t h  respect 
t o  s t rains  and hidden coordinates. We conclude th i s  analysis in 53, w i t h  

some remarks on the possibility of uncoupling the nonlinear heat equation, 
similar t o  those developped by Crochet-Naghdi 1 13 I for  therrnorheological- 

ly  simple solids. 
In 54 we recall very briefly how the nonlinear heat equation obtained 

i n  th i s  way can be studied in the framework of nonlinear evolution equations 
as  developped i n  the book of Lions 1 24 1 . 

In 95 we s t a r t  the study of the equation of motion (with temperature 
as  a data, i . e .  a given function of time and space-variables),recalling some 
resul ts  on duality and virtual work principle. In 56 we consider a constitu- 
t ive equation of  axw well-type where the "stiffness" and "viscosityn matrix 
are  temperature-dependent and thus are time dependent. More nrecirely the 
temperature i s  T-periodic i n  time and therefore the s t i f fness  and the visco- 
s i t y  are  also T-periodic. With t h i s  constitutive equation we survey, i n  97 

and 58 some results concerning existence, uniqueness, asymptotic s t a b i l i t y  

of a T-periodic stress-field for  the dynamic and quasi-static periodic b i la -  

teral problem ( 1  6 1 ,I 9 1 ,I 17 1 ) and also for  the quasi-static Signorini 
unilateral periodic problem (1 7 1 , 1 8 b. We refer t o  the lectures of 

G .  Fi chera i n  the present session for  the corresponding Cauchy-prcblems . 
The applicaiions of our results on the thermal fatigue of metals due 

t o  cycle heating and cooling will be developped i n  the thesis of M. Raous 132 1. 
By lack of time we cannot develop these f i r s t  resul ts  ; we can only say tha t  
the numerical experiments agree wf t h  the ecperimentaT results of F.K.G. 

ODQVIST and N.G. OHLSONl 30 f"The virginal specimens behaved i n  a normal way, 
whereas those already cracked apparently proved t o  be stronger against the 
formation of new cracks!'. 



1- Background on t h e  mechanics o f  continuous medium. with hidden v a r i a b l e s .  

1.1- The mechanical and thermal behaviour i n  t h e  time i n t e r v a l  '?? C R , o f  
a nonpolar body occupying t h e  re fe rence  conf igura t ion  Q C Ft3 a t  t ime 
toE 'C? is completely determined by a vec tor  func t ion  p(X.t) (g iv ing  t h e  
p o s i t i o n  a t  time t of  a mater ial  po in t  which has t h e  p o s i t i o n  X i n  t h e  
re fe rence  conf igura t ion  Q ) and by a p o s i t i v e  s c a l a r  func t ion  B(X.t) 
(giving t h e  a b s o l u t e  temperature a t  time t o f  a mate r ia l  p o i n t  which has  
th. p o s i t i o n  X 9n t h e  re fe rence  conf igura t ion  S l  ). 

As usual we d e f i n e  F(X,t) = Grad p(X,t), t h e  deformation g r a d i e n t  
t e n s o r  and we s h a l l  assume t h a t  p(X,t) is always smoothly i n v e r t i b l e ,  i .e. 

(1.1) d e t  F(X,t) > 0 f o r a l l  t e e  

Using Lagrange's coordinates ,  t h e  loca l  form o f  t h e  laws o f  balance o f  
l i n e a r  momentum, o f  moment of  momentum and o f  energy a r e  the fol lowing (4 (Xw) 
( s e e  116 1) : 

(1-2) Div FS + pof = 0, 

. 
(1-4) Po E = tr SE - Div q +par 

where q,=p#)is t h e  mass d e n s i t y  i n  t h e  re fe rence  posi t ion.  5 is  t h e  synme- 
t r i c  second Piola-Kirchoff ( o r  Lagrangean) s t r e s s  tensor .  E = $F'F - 3 ) is . aE t h e  Lagrangean s t r a i n  t ensor ,  E = - is t h e  Lagrangean s t r a i n  r a t e ,  .. 3 is t h e  i n e r t i a  fo rcea t  f is t h e  body f o r c e  f i e l d  p e r  u n i t  Po P = Po a t 2  . 
(x)  If A is an m x n matr ix,  A' denotes t h e  transposed matrix. 
(xx) t r ( . )  = t r a c e  of (.). 



mass, E i s  the internal energy of the body per unite mass, q i s  the 
heat conduction vector, r i s  the heat supply f ie ld per unit mass. 

Let u s  also recall that the law of the conservation of the mass allows 
us t o  compute the mass density a t  the time t with the formula 

"0 det F = - 
P 

The local Clausius-Duhem inequality 

where q i s  the specific entropy per unit mass can also be written, using 
(1.4), i n  the form 

where g = Grad 8 

Defining the Helmoltz free energy per unit mass by 

we can also write (1.6) i n  the form 

(1.8) - P, ~1 a - p0q6 + t r ( ~ . ~ j - f i  2 o e 

1.2- The characteristics of material composing the body are usually stated 
by additional equations, the so-called cansti'tutive equatjons, which give the- 

s t ress ,  the internal energy, the entropy and the heat conduction in terms 
of the Lagrangean s train tensor and the temperature field. Obviously the 
constitutive equations depend on the properties of the material that  we are 
modelling, and i n  the following we construct a model for  solid-like materials 

(e.9. metals, polymers, concrete,. . . ) whose response depends t o  a large 
extent on their  past history (a qualitative explanation of th i s  fact  can be 
given in terms of various microstructural rearrangements due t o  dislocatians 
motions, longchain molecules, phase transformations,...). 
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We will account for such microscopic structural rearrangements by the 

introduction of additional state variables called internal or hidden coordi- 

nates and denoted collectively by E which in a certain average global sense 

represents the internal changes. 

As is pointed out by S. Nemat-Nasser (129 Ip. 110) : 

"The representation is macroscopic in the sense that there may exist multiple 
(in fact, probably infinitely many) microstates corresponding to the same 

values of these coordinates. However, inasmuch as these coordinates are cha- 

racterized by certain constitutive relations involving various parameters, 

which are fixed by means of suitable macroscopic experiments, they signify the 

most phenomenologically dominant aspects o f  the microstructural changes". 

On? can assume that the hidden coordinates are various tensorial qutntities 

that transform in a suitable way under a change of frame, here we shall assume 
for simplicity that F is a symmetric positive definite tensor invariant by 
orthogonal change of frame. 

1.3- A thermodynamic process is a set of functions of X E 0 and t a '?? 

that satisfy (1.2), (1.3) and (1.4). 

In order to be frame indifferent, the lagrangean stress, the free energy, 
the entropy and the heat flux are defined as functions ofthe material point 

and of the actual values of the state variables E, E, 0 . g, E (the thermo- 

dynamic state) : 



I n  order t o  f i x  the  va r ia t i on  o f  the  hidden coordinate 5 we sha l l  
assume ("1 : 

For a l l  X e R , there ex i s t s  a funct ion h o f  E, ' 6 ,  8 , g, 5 such 

t h a t  alonq any process durinq the t ime i n te rva l  B 

Moreover f o r  a l l  toe and a l l  E0 there ex i s t s  a unique ( (X,t) sa t i s -  

f y i nq  (1.13) f o r  a l l  t E e and 5&t,) = COW. 

1.4- The c o n s t i t u t i v e  equations o f  mater ia ls t h a t  we have i n  mind are 

based on analogies t o  spring-and-dashpot models ; indeed these simple models 

display q u a l i t a t i v e l y  retarded-elastic, creep and re laxat ion  phenomena t h a t  

are encountered i n  polymers, concrete, metals . 
Example 1 - (Thermoelasticity) 

We take 5, = h 5 0 and S = K( 0 )E + A(B ) . We have the usual thermo- 

e l a s t i c i t y .  I f  eo i s  the reference temperature i n  w the reference configuration, wi thout stress, we must 
eo w r i t e  A ( O ) . =  - K(8)  , ~ ( 8 ) ( 8 - 0 , )  where x . ( 8 )  

i s  the thermal d i l a t a t i o n  tensor. e,, = - X( 8 ) ( 8 - go) 
K E i s  the thermal d i l a t a t i o n  and thus S = K( €r ) (E t eo). 

Fig.1 
Examp'l e 2- (Maxwell body) 

We have the  re la t i ons  

1 S = K(e ) [E + eo -5) 
E (1.14) s .= v ( e ) i  

5 
from which i t  fo l lows 

(x)  As has been pointed out  by G. CAPRIZ and L.M. SAHA 111 ](see a lso  F. 
SIDOROFF 1 33 1) the Clausius-Duhem inequa l i ty  impl ies t h a t  eg ther  i depends 

on the other f i e l d s  o r  $ i s  independent o f  4 . 



One can a l so  consider N Maxwell elements i n  para l le l .  This model is very 

in teres t ing  f o r  concrete (see Z.P. BATANT 1 3 1 ,  where i t  is  a lso  studied 

a possible dependence from the temperature and the  humidity). 

Example 3- (Standard Sol id)  

s 

Fig. 3 

Example 4- (Jeffrey's  element) 

Fig. 4 

W i t h  respect t o  the choice of a good model and the  influence of  the 

thermodynamics we wish only quote S. NEPAT-NASSER ( 1  29 1 p. 110) : 
"In general, the selection of the hidden coordinates represents a s igni -  

f i can t  problem. An experimentalist can only monitor ce r t a in  *inputs" and 

measure certain "outputs". The material then represents a black box, whose 

internal  s t ructure  i s  manifested through such input-output re la t ions .  

The optimal selection of suitable internal  variables,  minimum i n  number, 

which provides maximum information for  a given input-output setup, is an 

in teres t ing  nontrivial problem outside the realm of therr,odynamics. 



Thennodynamics can only provides-ageneral framework within rvhich one must 
operate. The detailed selection of the parameters, however, must be guided 
by other considerations". 

1.5- Ife shall now recall here some results essentially obtained by 
B.D. COLEMAN and M.E. GURTIN 1 12 1 and by R.M. BOWEN 1 10 1 on the thermodyna- 
mics with hidden variables. 

I t  is clear that  i n  order t o  specify a process for  the body a l l  we need 

do is t o  give the motion p(X,t), the temperature f ie ld 0 (X,t) and the value 

Fo(X) of the hidden variables a t  some instant . tocz G , for  then a l l  the 
other quantities can be computed. Moreover from the conservation laws one 
can choose the f ie lds  f (X,t) and r(X,t) t o  maintain the motion and the 
temperature. 

Theorem 1 (1 12 / ,I 10 1 ). 

i )  The Clausius-Duhem inequality (1.8) is verified for a l l  X C Q 

and t 6 and a l l  admissible thermodynamic process A ( i  .e. a ther- 

modynamic process which i s  consistent with (1.9) t o  (1.13))if and 

only i f  the constitutive .equations (1.9), . .. ,(1.13) satisfy : 

(1.18) $ and ;i are  independent frbm and g 

CI 

i i )  If we assume a priori that h ,  S and are independent from E, 

the Clausius-Duhem inequality (1.8) i s  verified i f  and only i f  
h 

(1.18 bis) and $ are independent from and g 
a$ 

(1.19bis) r l = - -  a$ and S = po - 
ae 

AX 
a E 

a$ j * A 9  < 0 (1.20 bis) tr  po - 0 
ac e 



1.6- The results obtaSned in theorem 1 imply some simplifications in the 

energy equation (1.4)  ; indeed in the case i )  such equation can be written 

A 

(1.4 bis) pee + t r  pO E = t r ( s  -%*I; - o i v 6 + p 0 r  
a 6 aE 

and in the case i i )  such equation can be written 

A 
(1.4 te r )  po8 + t r  po i = - ~ l v  g + por 

35 

where 0 = - . 
ae 

1.7- As simple choice of the constitutive equations (1.9)-(1.13). suggested 

by the examples 12, 3,4 and compatible w i t h  the Clausius-Duhem inequality 

(see th.1) we shall assume from now on the following : 

where : BO, k and B1 are positive semi-definite tensors i n  order to  ensure 

the validity of (1.20) ; moreover Bo, A2,  A3 and A4 are tensorial quantities 

symmetric in the f i r s t  2 indices i n  order to  ensure the validity of (1.3).  

and B1 i s  symmetric according to the Onsager principle. 

Let us also ranark that the expression of the entropy follows from (1.21) 

and (1.19). 



2- A l inear izat ion resu l t .  

2.1- We shal l  now study what kind o f  s impl i f icat ion can be achieved i n  the 

equations obtained i n  3 1 i n  the hypothesis o f  the in f in i tes imal  s t ra ins ; 

hokever we shal l  made no assumptions on the var ia t ion o f  the temperature 0 

(see M. J. CROCHET-P.M. NAGHDI 113 1 f o r  analogous considerations i n  the case 

o f  thermorheological l y  ,simple sol.ids). 

More precisely, l e t  us wr i te  the equations o f  5 I i n  a non-dimefisional 

set-up and l e t  us define 

a2ui . sup 1-11 
i.x,t ax a t  

In the sequel we assume that  6 i s  small w i th  respect t o  the unity. 

We shal l  wr i te  that  a function $I i s  0( 6") f o r  n 3  0 i f  there ex is ts  

a constant C > 0 such that  141 4 C 6" uniformly i n  a1 1 the domain o f  de f i -  

n i t i o n  o f  4 . 
To construct the l inearized system we shal l  on ly  take the terms contai- 

ning the lowest powers o f  6 . 
2.2- From (2.1) we obtain 

(2.2) F = II + Grad u . P f U  

E = f [ Grad u + (Grad u)" ]  + 0( 2) 

(2-3) 
E = $ [ Grad ; + (Grad ;lx 1 + 0( 6 ' )  

Therefore i f  we define 

. 
N 

(2.4) E = ( Grad u + (Grad u)' .5 = $ [grad ; + (Grad 



d 
. 
4 

then E = O ( 6 )  a E = o ( 6 )  and 

rJ rc. 
(2.3 b is)  E = E + 0(62) E = E+0 (62 )  

1 Moreover remarking tha t  - = 1 - Div u + 0(62) we f i nd  that  the mass 
det 'F  

'density a t  time t i s  given by 

(2-5) p = po( l  - Div u + 0 ( ~ 3 ~ ) )  = po + 0(6 ) 

and so we can consider, i n  a f i r s t  approximation, t ha t  the mass density i s  
time-i ndependevt, because po = O(1). 

2.3- I n  order t o  1 inearize the equation o f  motion (1.2) we need some informa- 

t ions on the order of magnitude of the d i f fe ren t  terms that  appear i n  (1.22). 
These informations are deduced from the following res t r i c t ions  on the cons- 

ti t u t i  ve equations tha t  wi 11 be bet ter  d i  scusszd on two examples . 
Let us consider f i r s t  the fol lowing i n i t i a l  value problem 

where B1, A5 are defined i n  (1.24) and where we assume B1 = 0(1), A5 = O(1) 

and 4 = 0( 6" ) .  n 0. We have existence and uniqueness o f  the solut ion 

f o r  a1 1 t € C and we can wr i te  

so that  we deduce 

and by Gronwall Lemma 

i ~ ( t ) l ' 6 C , 6 ~ "  Vtte provided f bebounded. 
C1,C2,C3 are pos i t ive absolute constants. We ran prove now eas i l y  the 

fol iowing Lemma. 



Lemma 1- 

Let h be given by (1.24) and l e t  us consider the fol lowing i n i t i a l  

value problem 

(2.6) i = h(X. E. 2 . 8 .  9.5 ) ; E (to) = C . to" 

Let  %? be bounded and 

then we have 

4 
~ ( t )  = ?(t) + O(6') E(t) - Eo = O(6 ) 

(2.7) 

.J 
where ~ ( t )  i s  the unique solution of 

N d 2 u 4 

5 = h(X. E. E, e . 9.5) rlt,) = 5, 

Proof - 
rrl 4 

Take y = 5 - E0 and 41 = - Blr~l + A4 E + A5gQl = O(6 ) , then 
4 d 

we have y = 0( 6 ) . Putting now 5 - 6 = y and g = -BlA4(E-E) = O(6') 

we have y = O(6') . Q.E.D. 

Recalling (1.22) ,(2.3 bis) and (2.7) we can now wr i te  

Let us denote respectively by e0 and So the temperature f i e l d  and the 

second Pio l  a-Kirchof f stress tensor i n  the reference configuration (where . 
E = E = 0), we have 



(2-8) So(X) = Po C A2(X.eo) A40(.90) S,(X)I 

from which we define B2(X, 8 . go) by 

We shall also made the following assumptions 

Having done the good hypothesis we f ind  that  

and so we can define 

and we obtain 

We can then take as l inearized equation of motion the following 

f l  .. 
(2.12) ~ i v [ S + s , ] +  p o f  = p o u  

with from (2.91, (2.10) 



2.4- In order to linearize the energy equation (1.4 bis) we remark first of 
all that (H3) implies 

and the hypothesis (HZ) implies 

a$ Mreover we find from (1.21) and rl = -- - , 
ae 

Let us made the following final assumptions 

r J u  

then, recalling also (1.12),(1.23), we obtain the.fo1loninglinearization (inE,S ) 
of the energy equation (1.4 bis) : 



2.5- Suming up the previous considerations we have done a linearization, 

only ivith respect to the infinitesimal strain ,the hidden variables and the 

displacement u under the assumptions (Hl) ,(HZ), (H3). (H4), (H5). 
In this way we have obtained the system of equations 

rJ 

(2.12) Div t s + S o ]  + pof = p o Z  

1 f. (2.4) E = [Grad u + (Grad u)* 1 F = [Grad 6 + (Grad b ) * l  

to be completed with suitable initial and boundary conditions. 



3- Some examples. 

3.1- As a f i r s t  example we shall take the case o f  thermoelasticity 

(example 1, 5 1) wi th  So = 0. From (2.10) we have 

wi th  po A3(X, 0) = K(X, 0 ) (the s t i f fness)  and 

x i s  the thermal d i la ta t ion  tensor. The only assumption t o  discuss i s  (H4). 
I f  the var iat ions o f  6 are small near the reference eo, 

i .e. 18 - e0l = O(&) , 1 1  = O ( & ) ,  141 -048) ,161=.0(&) t h e n ( H 4 ) i s s a t i r  

f ied. Moreover , 

A Tinearization o f  the energy equation (2.15) 

gives then the classical  equations o f  the l i near  thermoelasticity. These 
t 

equations are coupled by a term o f  the type e0 K(eo) ~(8,) E i n  the 

energy equation ; fortunately f o r  most applications the  coupling can be 

neglected (see the example of BOLEY-WIENER1 5 1 ) . Note tha t  the heat equation 

i s  l i near  i n  0 . 
I n  thecaseof great temperature variations, (H4) may also be ver i f i ed  ; 

i t  suff ices that  the product K(X,e) x(X.8) (8 -go) be small as i t 

appears j n  some metals (see M. RAOUS 1321 ). Furthermore i n  t h i s  case the 
aLAl c, 

term. E, which i s  o f  O(i3). i s  negl igible wi th  respect t o  the term 

a2r0 aA2 k 

z which i s  o f  O(1) and, i n  .the same way, the term p 8 - E i s  o ae 
negl igible with respect t o  the term p 0 

a2n, ; 
O , , 2  



The heat equation, which i s  nonlinear i n  0 is indeed uncoupled from the 
motion equation. 

3.2- As second example we shall consider the Maxwell model of example 2, 5 1. 
In this  case from (1.14), (1.15), (1.22) and (1.24) we deduce that 

B1(X. 0.g) = P,, v-'(x,e) 

- poAq(X,O) = poA5(X,0) r; p,A3(X81 K(X,e) 

POA2(X,e) = - p 0 A 1 (X.0) = K(X,O)eo with eo = -X(X,~ ) (B  - go) 

where we have So = $, .; 0 i n  the reference configuration. We see that 
the only hypotheses t o  be discussed ale  (H4) and (HZ), which i n  th i s  case 
are equivalent. Indeed the discussion can be done like i n  the example o f  
thermoslasticity investigated in 3.1. In particular it appears that  in the 
case o f  great temperature variations the nonlinear heat equation can be 
u~icoupl ed from the motion equation. 

This fact  has also been pointed out by CROCHET and NAGHDI 1 13 1 . 



4- Some results on the nonlinear heat equation. 

4.1- Taking into account the examples of the previous section we ssnall a t  
first study a nonlinear heat equation of the type 

(4.1) pO c (9) - ~ i v [  k(X.6) Grad 9 1 = pOrI(X.,B~ + por2(X.t) 

subjected t o  the boundary conditions 

9(X,t) = go(X,t) on ro (given temperature) 

(4.2) nX. k(X,9) Grad 9 = gl(X,t) on T1 imposed flux) 

nX. k(X.9) Grad 9 + a( 9- g2(X,t)) = 0 on T2 (radiation condition) 

and the i n i t i a l  condition 

Or, i n  the case where r2, go, gl, g2 are T-periodic fT > 0) i n  time, 
the periodicity condition 

(4.3 bis) e(x, t )  = e(X, t+T) d(t.  X I  ; 

rO,rl, r2 are open subsets of the boundary an such #at an = T u F l  tJF2. 

4.2- The problems (4.1), (4.2), (4.3) and f4.1), (4,2), f4.3 bis] can be 
solved from the point of view of the nonlinear operator theory. Indeed we can 

apply theorems of 5 5 o f  BARDOS-BREZIS [ 2 1 .  I f  g(X,t) = ,O("), under very 
mild conditions of the type 

(4.4) the elements k 1X.n ) are  bounded in rl and measurable in  X fE R 
3 % ~  

(x) According t o  the trace theorems it is always possible t o  make the change 

of variable = 9 - Bo where 8, = g on and then aI = 0 on To. 
0 



Z- kiSj(X,n) ti t j  & a  L c2 with a >  0 
i ,J i i 

(4.6) rl(Xa rj) is bounded i n  Q and measurable i n  X o r  e l s e  

rl(X, rj) = rg(X)n + r4(X) with r3(X) 9 0 and 

(4-7) a(X) i n  (4.2)3 is measurable and non-negative, 
it is not d i f f i c u l t  t o  prove t h a t  t he  operator  

- Div( k!X, 9 ) Grad0 ) - pprl(X. e ) , with (4.2) is an "operator of t he  

calculus of  var ia t ionsn  i n  t he  sense of LIONS [ 24 ; chap.2,§23 and so  of 
type M (see e.g. Lions loc. c i t . ) .  For a proof of  t h i s  type of r e s u l t s  see  

AMIEL-GEYMONAT I 1 1 and KENMOCHI 121 1 . 
In t he  case of Cauchy problem addit ional  deep r e s u l t s  a r e  obtained by 

LADYZENSKAJA-SOLONNIKOV-URALCEVA 1 22 1 .  



5- Dual i ty and v i r t ua l  work. 

5.1- Let n be a bounded connected open set i n  R ( i n  pract ice one takes 

n = 2 o r  n = 3) wi th  boundary an su f f i c ien t l y  smooth. Let aln be a 

closed subset o f  an with (n-1)-measure, 0. Let v = (vl,. -. ,vn) be the u n i t  

normal t o  aa exter ior t o  n . )n i s  the set o f  f i e l ds  o f  isplacements 
1 1 

u = (ul, .. . ,un) with ui E H ( ) , i = 1,. . . , n ; H ( n ) i s  the usual Sobolev 

space : fo r  t he i r  properties see 1 25 1.  
If u 4 H1(n )n then the p a c e  you on an i s  well-defined and 

112 112 

you 6 H (an!" ; then uN = I: yo ui vi € H (an ) i s  the normal component 

o f  the trace o f  the displacemeklon an . 
Let W = v € ~ ' ( n ) ~  ; yo v = 0 on af and vN = 0 on a p }  

where a2Q i s  a closed subset o f  aSl with (n-1)-measure >, 0 (if meas 

(a2a ) = 0 then the condit ion v,, = 0 must be dropped i n  the de f i n i t i on  
o f  y), and l e t  V be equiped wi th  the h i lbe r t ian  structure induced by 

H I (  s-2 )n. 

Let E be the space of inf in i tesimal tensor s t ra in  f ie lds, i .e. o f  

symmetric matrices e = (eij)i ,j=l,. . wi th  e.. E L 2 ( n )  and l e t  % be 
1J 

the space o f  tensor stresses fields, i.e. o f  symmetric matrices 

s = ('i j)i ,j=l,. .,n 
wi th  s €. L2 (n ). The spaces E and S form a 

i ,j 
dual system wi th  the separating b i l i near  form 

which represents, from a mechanical point  ~f view, the opposite o f  the work 

of the stress s i n  the deformation e . From a mathematical po in t  o f  view 

E may be iden t i f i ed  t o  S , and then (5.1) represents t he  scalar product ; 

we shal l  denote by 11. 11 the corresponding norm i n  E o r  S . 
The load space L and the space V are i n  dua l i t y  wi th  respect t o  the 

separating b i l i near  form a v  , 4% which represents the work o f  the strenath 

4 under the displacement v ; i f  I$ = (f,h), where f i s  a regular volume 

force distr ibuted i n  R and h a ~ e g u l a r  surface force' on 3n \ alQ having only 

a tangential component on a+l ( t h i s  means that  L: hi(x) vi(x) = 0 f o r  

a.e. x E a 2  n),  then i 



I t  is easy t o  see tha t  t h i s  formula is t r u e  when f .  6 L 2 ( n )  and 
1 

hi E L 2 (  aa\als2) but i t s  va l id i ty  can be extended t o  a much more general 

s i tua t ion,  a t  l e a s t  when both boundaries of alR and a a re  regular i n  a n .  2 
D will  denote the synunetrfc gradient operator 

1 I t  is a l inea r  continuous operator from H (n  )" in to  E . 
Thanks t o  Korn's inequality and t o  the  f a c t  t h a t  meas ( a  n ) > 0 . D is a 

1 
one-to-one bicontinuous mapping from v onto DW and D l f  is closed i n  IE (see 
e.g. DUVAUT-LIONS 114 Ichap. 3). 

Let t~ denote the transpose of D , defined by 

(5.4) < D v ,  s >  = t v  r t ~ s >  d j €  v . ds 6 3; 

I t  i s  easy t o  see t h a t  t~ is  l inear .  continour and onto ; formally 
t ~ s  = + means (we use the  followi:~g c lass ica l  notations : 

n IN IfJ  Sijvivj* 
siT 3 z si jvj  - sN vi and sT = (siT)) 

S=l 

and the  methods of LIONS-MAGENES 125 1 render t h i s  in terpre ta t ion  rigorous. 
For a more detailed analysis of the  dual i ty  and the v i r tual  work prin- 

c ip le ,  see MOREAU 1 26 1 , NAYROLES 1 28 1 . 



6- A viscoelastic constitutive equation w i t h  periodic coefficients. 

Let T be a positive number. Let us assume that  e(X,t) i s  the 
unique T-periodic solution of the T-periodic boundary value problem associa- 
ted with the non5inear heat equation (4.1) and l e t  us consider the constitu- 
t ive equation of Maxwell type as i n  example 2 o f  91.4, i.e. 

where eo = - x(X,8)( 8- 8,) is the thermal dilatation f ie ld which corres- 

ponds t o  a non-stressed s tate  in the reference configuration R(S, = 0). 

For simplicity we put 

rl 

(6-3) s = S (The total  s t ress)  

d 

(6-4) e = E + eo (The total  strain) 

and then 

We assume : 

A I -  K(X,t) and V(X,t) are s.metrica1 fourth order tensor, measurable and 

bounded on R X  R and such that  for almost a l l  (X , t )  

and there exis t  0 < k 4 , 0 < r s 7 such tha t  far  a11 symmetrical 
matrices (V . . ) 

1J 



k z v?. ( 2 Kijllmo(.t) vijvllm ( k  Z v?.  
-i,j 'J i jm i j  1J 

W2- The d i f fe ren t ia l  system 

(6.9) at- dy + v-'(x,t) K(X,t) y = 0 

i s  uniformely ( i n  X € Q )  exponential ly stable @ 

Let  A(X,~,T ) be the fondamental resolvant o f  (6.9) such t ha t  
A(X, . T ) = j = Ident i ty  . From A2 we have f o r  almost a1 1 X 

where cl ,  c2 are some posi t ive constants Furthermore from (6.5). 

(6.10) we can obtain and integral  correspondance between s and e 

o f  the form 

(6.11) F(X,t. r ) [: e(X.t) - e(X. t ) 1 d~ 

aG 
where F(X,~,T ) = ( X S ~ S T  ) , G(X,t.r ) = K(X,t) A(X,t,r ) 
provided the i n i t i a l  E,(X) resu l ts  from a *pastu s t r a i n  h is tory  3, such 

that  : $(x) = A 0 ~  ( ) r . Ue remark tha t  

Obvious!y, we can also j f o m a l l ~ )  wr i te  the inverse form : 

( x )  In fact, if V-'K i s  s p e t r i c ,  then A 1  .+. 1 2  with c. . 1 and c2 . ; . 
I 

(xx) w i t h  aging . 


