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DELAY DIFFERENTIAL EQUATIONS·

Kenneth L. Cooke
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1. Introduction

The purpose of these lectures is to survey parts of the theory of delay-

di f f e rent i a l equations and functional differential equations that have been

used or may be used in the modeling of biological phenomena. In the course

of doing so, reference will be made from time to time to specific applica-

tions in biology, but primarily to illustrate the mathematical techniques.

No attempt will be made to survey comprehensively any particular field in

biology, since other lecturers here are doing so. We shall try to begin

with elementary concepts of the theory, and yet to present some of the most

recent results.

In the first lecture, I shall first indicate a few biological problems

that give rise to delay differential equations, and give a large number of

references. Then, since some of the audience may have only a slight

acquai nt ance with such equations, I shall sketch their fundamental theory.
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Standard notations ,will be introduced and classifications of the equations

into types (retarded, neutral, finite or infinite delay, etc.) will be des­

cribed . Basic existence, uniqueness, continuation, and continuity theorems

will be briefly described.

Because of limitations of time and space, it is impossible to mention all

aspects of the subject, for which the extant literature now i ncl udes thous­

ands of papers. We shall attempt to select aspects of the greatest useful­

ness from the viewpoint of the applications in biology . Nor , of course, is

there room to supply proofs for more than a handful of theorems . It is hoped

that interested readers can make up for these shortcomings by consulting the

substantial list of references supplied, and exploring other literature.

Chapter II of these lectures (Sections 7-9) will develop the theory of

linear autonomous retarded functional differential equations, emphasizing

the semigroup and spectral theory. This will be done for equations with

finite delay, with brief mention of analogous theories for infinite delays.

Also in this chapter is a sketch of the use of the Laplace transform, and

a theorem on stability by linearization.

In Chapter III, I shall discuss the exponential polynomials that arise

from the characteristic equations associated with functional differential

equations . The problem to be discussed is that of determining stability

or instability. Our brief treatment includes recent criteria of Datko.

Chapter IV (Sections 11 and 12) is devoted to Liapunov stability theory,

including the invariance principle. Also, we shall present some of the

recent work of Infante, Walker, and Carvalho on the existence and form of

best Liapunov functionals.

Chapter V is on the existence of periodic solutions. I shall discuss the

method of ejective fixed point theory, illustrating the theory with recent

work of Banks, Mahaffy, and others, on biochemical oscillators and popula­

tion models.
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Sections are numbered consecutively through these lectures, and equations

and theorems are numbered consecutively within each section. For example,

Equation (7.2) is the second numbered equation in Section 7. References are

collected at the end in alphabetical order.

The author wishes to thank the organizers of this C.I.M.E. meeting for the

opportunity to present these lectures. Also, he thanks Stavros Busenberg

for reading these notes and making several helpful suggestions, and he wants

to express his appreciation to the Applied Mathematics Division of Brown

University for its hospitality during a sabbatical leave in 1978-79.

CHAPTER I. BASIC CONCEPTS

2. Sources of delay differential equations in biology

Ordinary differential equations or systems can usually be taken in the

form (:it denotes dx/dt)

x(t) f(t,x)

and the basic problem is to determine or describe the solutions, meaning

functions x(t) that satisfy

:it(t) = f(t,x(t»

The simplest delay differential equations are of the form

(2.1) x(t) ~ f(t,x(t),x(t:r»

where r is a positive constant, or a given function of t. The basic

problem is to determine or describe functions x(t) with the property that
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when in f(t.x.y) we replace x by the function x(t) and y by the

shifted function x(t-r). we obtain dx(t)/dt. More generally and somewhat

vaguely. we might consider equations of the form

i = f(t.x(t).x(·»

where by x( .) we mean the values of x over some t-interval. for example

[t-r.t] or (-m.t). That is. f is a functional on x. Such equations

were called hereditary differential eq~tions by V. Volterra.

Equations of these kinds have been used by many authors in the description

of physical and biological processes. For example. in the theory of popula­

tion dynamics of a single species. the basic equation for the size of the

population at time t. N(t). is N(t) = births minus deaths (per unit time).

In the simplest linear model. one assumes that births and deaths are a fixed

proportion of N(t). thus N(t) • bN(t) - dN(t). However. assuming a finite

constant gestation time r. we get N(t) = bN(t-r) - dN(t). This is a linear

equation of the form (2.1). More generally, one can postulate nonlinear birth

rates and death rates. obtaining

N(t) • f(N(t-r»N(t-r) - g(N(t»N(t)

where f and g are suitable functions. For discussions of population

growth models under various assumptions. see Perez et al (1978), Cushing

(1976. 1977). Cooke and Yorke (1973). Brauer (1977). and so on. including

the C.l.M.E. lectures here by Professor Cushing.

The famous prey-predator model of Latka and Volterra has been generalized

to include time delays. In fact. Volterra himself formulated such a model

under the assumption that the growth benefit to predators of contact with

prey is not instantaneous, due for example to a gestation period. Volterra's

model is



(z.Z)

N
l

(t) • Nl(t) [bl-alNZ(t)]

NZ(t) ~ NZ(t) [-bZ+aZ f~Nl(S)k(t-S)dS]
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where k(t) is a kernel function that is supposed to describe the way in

which the present gain to the predator depends on the past size of the prey

population N
l•

For discussion of prey-predator and competition models with

delays, the reader may refer to Ladde (1976), Cushing, Leung (1977, 1979),

MacDonald (1976, 1977, 1978), May (1973), and Hastings (1977).

Delay equations also arise in the mathematical theory of epidemics, because

of the incubation periods or maturation periods of the bacteria, viruses, and

parasites that cause illnes~. For some recent work of this kind, see Cooke

and Yorke (1973), Hoppensteadt (1975), Cooke (1979), Busenberg and Cooke

(1978, 1979), Grossman (1978), Hethcote, Stech, and van den Driessche (1979).

Similarly, delay equation models have been devised to describe the product­

ion of blood cells, the delays arising because of the time required for

maturation of cells or transformation of one kind of cell to another. In

these models, one has to simplify by assuming that there is a small finite

number of distinct types of cells, and a well-defined time at which a given

cell changes to a different type. The time delay models are thus in a cer­

tain sense approximate equations replacing a much larger and more complicated

set of equations (not actually known, perhaps) that more accurately embody

the physiology and chemistry of the system. For recent work on blood models,

see Glass and Mackey (1977), Rubinow and Lebowitz (1975), Wheldon (1975),

MacDonald (n.d.), Martelly, Schmitt, and Smith (n.d.).

Mention should also be made of models describing metabolic or biochemical

systems in organisms. Time delays may be incorporated because of the finite

time required to complete such processes as transcription or translation of

genes, and again one should probably think of these models as convenient
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approximations to very complex processes. For the most recent work see Banks

and Mahaffy (1978). Mahaffy (1979). and the references therein . In a later

section we will describe this work in more detail.

Mathematical immunology is a rapidly developing'area, and a number of

models using delay differential equations have been formulated. The delays

may be postulated to arise because of the time required for the immune system

to respond to an antigen. or because a certain threshold of antigen must be

attained before the immune system is activated. See Waltman and Butz (1977).

Grossman (n .d.). Also, delay differential equations have been employed by 5.

Grossberg (1967. 1968a. b) as models in prediction and learning theory.

3. The class of equations considered

From the few examples already given. it is clear that a wide variety of

equations arise from biological models with some kind of hereditary effect.

We want to examine a mathematical theory that is sufficiently general to

include many or most of these. yet is capable of fruitful specialization to

particular cases. At a minimum, we want to include differential-difference

equations such as

(3.l) x(t} - g(t.x(t},x(t-r} •••• ,x(t-rm}}

t.

where r
1,r2

••••• r
m

are positive constants and x E ~n (see Bellman and

Cooke (1963}). and delay-differential equstions, which we think of as having

the same form but possibly with r
1.r2,

••• ,r
m

being given functions of

However. Eq. (3.l) is not always realistic as a model, because it implies

that the delayed effects occur at discrete time delays r1,r2
•••• ,r

m
• In

many cases. it apgears to be more realistic to assume that the delayed effect
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is "smeared out" over a time interval, or in other words that there is a

distributed delay, similar to that in Eq. (2.2). In this way one is led to

consider integro-differentia1-de1ay equations.

A class of equations permitting quite general delayed effects, for which

extensive theoretical development now exists, is the class of functional

differential equations, as defined by Hale (1971, 1977). Suppose that r ~ °
is a given real number, B = (_m,m), n is a positive integer, and

nC = C([-r,O],B) is the Banach space of continuous functions defined on

the interval [-r,O] with values in B n , with the usual supremum norm.

Let a E B, A > 0, and let x E C([a-r,a+A],B n) . For any t E [a,a+A],

let denote the element of C defined by

x (9) = x(t+9) ,
t

9 E [-r,O].

That is, x denotes the "sec t i on of x" that lies over the interval
t

[t-r,t], regarded as an element in the function space C. Now let f:D + B n

be a given function with domain D lying in B x C. The equation

(3.2)

(where the dot denotes the right-hand derivative) is called a retarded

functional differential equation with finite delay. Sometimes we shall

denote this equation by RFDE or RFDE(f). The idea of this equation is that

if x(- ) is known on the interval [t-r, t }, then x( t) is known, and so

we should be able to cont inue x as a solution of the equation to the right

of t. In fact, we can define a function x to be a solution of RFDE(f) on

[a-r,a+A] provided:

(i) x E C([a-r,a+A],B n)

(ii) (t~Xt) E D, for t E [a,a+A)

(iii) x(t) satisfies (3.2) for t E [a,a+A).
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Eq. (3.1) is a special case of Eq. (3.2) obtained when the function f(t,~).

for ijl E C([-r,O),R n), has the form

since x (-r ) = x(t-r )
t j j , j = O,l, .•• ,m. Eq. (3.2) also includ~s various

integro-differential equations. For example, if we take f of the form

,0
f(t,~) = g(t,~(O» + J-

r
k(t,s,~(s»ds

then Eq. (3.2) reduces to

(3.3) x(t) g(t,x(t» + f:
r

k(t,s,x(t+S»ds.

Thus, Eq. (3.2) is very general and includes many cases of interest in the

applications. Moreover, an adequate theory of stability and oscillation,

even for simpler equations such as Eq. (3.1), is best carried out in the

context of the theory of infinite-dimensional spaces, and in this context

Eq. (3.2) can in many respects be handled conveniently . Therefore, we shall

take RFDE(f) as the basic object f or discussion in these lectures.

Certain extensions of Eq. (3.2) will also be considered from time to time.

In the first place, there is a question as to the correct space in which to

take the elements and certain alternatives to C[-r,O) will be mentioned

subsequently. Also, one may object to the restriction to a finite delay,

especially because Eq. (3.2) does not naturally include Volterra-type

equations such as

x(t) g(t,x(t» + I: K(t,s,x(s»ds

or

x(t) = g(t,x(t» + I~K(t,s'X(S»dS'

In order to include such equations in the form (3 .2), ony may re-define the

symbol x
t

by



x (8) = x(t+e)
t

8 E (...m,0]

15

Anequation of the form (3.2) may then be called an RFDE with infinite or un-

bounded delay. In this case, it is not as easy to choose an appropriate

function space in which to imagine that the elements x
t

lie. We shall

comment on this and give a number of references in Section 6, but for the

most part our lectures will concentrate on equations with finite or bounded

delay.

Another class of some interest is the class of neutral equations. Neutral

differential-differenc~equations have the form

x(t) g(t,x(t-rl), • • • ,x(t-r ),x(t), ••• ,x(t-r ».m m

The implicit way in which x(t) ent~rs here can cause difficulties, and

more special forms such as

(3.4)
m

ddt' [x(t) - L c.x(t-r
j

) ] = g(t,x(t),x(t-rl),·· ·,x(t-r »
j=l J m

may be preferred. A general class of neutral functional differential equa-

tions of the form

(3.5)

is treated in Hale (1977), under suitable conditions on the function D.

Since the theory of these equations is a little more complicated, and they

have so far found few applications in biology, we shall not set forth this

theory here. Also, it should be noted that if we take g = 0 in Eq. (3.4)

and i nt egr a t e , we obtain a pure ~ifference equation (in which the delays

rl, •• • ,r
m

are not necessarily commensurable) . Thus, neutral FDE's in a

certain sense encompass difference equations, which of course are widely

used in biology.

Finally, we wish to mention more general FDE's of the form (3.2) in which
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x Ct) has values lying, not in :Rn , but in more general Banach or Hilbert

spaces. The advantage of this generalIty is that it permits the considera-

tion of certain partial differential equations with delays, which can arise

for example in diffusion problems. This is an area of recent development,

and will not be discussed here. See, for example, Travis and Webb (1974,

1976, 1978).

4. The initial value problem

It is easy to formulate a well-posed initial value problem for the

differential-difference equation (3.1). Assume that 0 < r
l

< r
2

<•.. <r
m

and for convenience let r = r
m

and r
o

= O. Let to be an initial point

and let ~ be an initial function given on the initial interval [to-r,to]'

Assume that ~ is continuous and that g(t,x,x1, ••• ,x
m)

is a given

continuous function of all its variables. Then the initial value problem

IVP is to solve Eq. (3.1) on t :::: t
o

subject to the condition

(4.1) x(t) = Ht), t E [t -r, t ].
o 0

Now for t - to ~ r l, Eqs. (3.1) and (4.1) imply

x(t)=Ht) .
o 0

Thus, the problem is reduced to an IVP for an ordinary differential equation

on All the usual theorems on existence, uniqueness, and

continuous dependence on t , <Ht ),
o 0

and g can be applied. Further, if

we assume that a solution x(t) exists for t E [to,to+r
l],

then Eq. (3.1)
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Requiring x ( t ) to be con tinuous a t t = to +r
l,

we again have an IVP for

an ordinary differential equation (since x(t-r
l)

is known), and aga in the

usual theo rems can be appl i ed . By this s tep- by-s tep process, a sol ut i on of

Eq. (3. 1) can be produced co rres ponding to any gi ven cont i nuous initial

funct ion ~. For a more general discuss ion of this method of steps, see

El'sgol'ts and Norkin (1973). One of the main things to note from this

discussion is that the so lution composed of ~ and i ts ex t ens i on x is

continuous wherever i t exi sts, and cl
for but in general not

differentiable at t
o

if g is smooth, then

(al th ough the right-hand derivative exists). Moreover,

x E C
2

for t > t +.r. Thus , a solution tends to
o m

become s moother as t incr eas es.

The method of steps is not appl icable t o the general RFDE, and exi s t ence

r esults are genera l l y ob t a i ned by applying fixed point t heo r ems . For equa-

tions with f inite delay and con t i nuou s initial data, t he basic IVP cons i sts

of Eq. ( 3 .2) coupled with the ini tial datum

x ( t +8)
o

~ (8 ) , 8 E [-r,O]

where ~ is a given function in C = C([-r,O],:R n). The initial condition

can be simply expressed in the form

notation, we shall of t en us e a

x
t o

instead of

~ .

t
o

In or de r to have a shorter

as the initial point, so

the IVP is

(4.2)

The f ollowi ng theorems have been proved (Hale (1977)).



18

Existence Theorem. Suppose n is an open subset in R x C and

fO E C(n ,R n) . If (a ,CP) E n, then there is a solution of Eq. (4.2) with

f = fO. More generally, let W be a compact subset of n and fO E C(n, JRn) .

Then there is a neighborhood V <; n of W such that fO is continuous

and bounded on V, and there is a neighborhood U of fO in the space of

bounded continuous functions on V into R n , and an (l > 0, such that

for any (a,cp) E Wand any fEU there is a solution x E x(a,cp,f) of

RFDE(f) with initial condition (a,cp) which exists on [a-r,a+aj.

Uniqueness Theorem. Suppose n is an open subset in R x C, f E C(n,R
n

)

and f satisfies a Lipschitz condition in cP in each compact set in n.

That is, for any compact set K in n, there is a constant (l =a(K) such

that

for (t,CP) E K, (t,W) E K. Then for any (a,cp) E n, there is a unique

solution of Eq. (4.2).

A solution of Eq. (4.2) will sometimes be called a solution of x = f(t,x t)

through (a,cp) , and denoted by x(a,cp) or x(a,cp,f). We point out that

in the Lipschitz condition, we are using the vertical bars 1'1 to denote

the norm in R n
on the left and the norm in C on the right.

Also available is a theorem showing the continuous dependence over a finite

time interval of the solution x(o ,cP, f) on (a ,cP, f) in the sense that if

k {cpk} , {fk} k 4>k .... fk ....{a }, are sequences and a .... a, 4>, f in the

appropriate then k k k (o-rr ,a+Aj.norms, x(a ,4> ,f ) .... x(a,4>,f) on Moreover,

theorems on the maximal interval of existence, and on differentiability

properties of solutions, are known.

One important way in which the theory of the RFDE differs from the theory

of ordinary differential equations is that, in general, backward continuation

of a solution is not possible. For an ordinary DE, x(t) = f(t,x(t», if
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(t ,x) is an initial point and f is continuous in a neighborhood of
o 0

(to'xo) ' then a solution x(t) will exist on an interval (to-o,to+o),

o > O. On the other hand, for the RFDE with initial data (cr,$) there may

be a solution x satisfying Eq. (3.2) for cr ~ t < cr+A, but it may not

be possible to extend x to the left of cr-r in such a way that Eq. (3.2)

is satisfied for cr - ~~ t < cr+A, no matter how small ~ is. Indeed, it

is clearly necessary that $ be diffierentiable on (-~,O] for this to be

so . Thus, the RFDE has the important property of imposing a preferred

direction to the variable t. For further discussion of the backward

continuation problem, see Hastings (1969), or Hale (1977) .

5. Operator of translation along trajectories

Many important results in the theory of FDE's a r e based on the concept of

the orbit or trajectory of an equation. Consider the initial value problem

and assume that there is a unique solution x(t) c x(cr,$,f)(t). For each

t ~ cr, we may consider t he element x
t

lying in the space C. Define the

operator

T(t,cr): C + C

That is, for a given equation, a given cr and given t ~ cr, T(t,cr) is the

operator which associates to each $ the solution segment x
t

emanating

from the initial condition $ at t ime cr. This is analogous to the idea,
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for ordinary differential equations, of regarding the equation as generating

a flow on the phase space B n• In our case, the phase space is the infinite­

dimensional space C. The operator T(t,a) is called the solution ~ or

the operator of translation along trajectories. MOreover, in analogy to the

situation for ordinary DE's, we call the set

the positive semi-orbit through (a,~), assuming that x
t

exists over

[a, co) •

Throughout the rest of this section we assume that T(t,a) exists for

t ~ a. The operator T(t,a) has many interesting properties. One that is

particularly important arises from the observation that if f is continuous,

then since x(t) will be continuous in t, the function x(t) will be

continuous for t ~ a, hence x(t+9) will be continuously differentiable

with respect to 9 for t ~ a+r, 9 E [-r,O]. This makes it possible to

derive a compactness result for T(t,a); one way to state this is as follows:

Define an operator S(t):C + C by

__ {oHt+9)
(S(tH)(9)

- HO), t+9 < °

t+9 ~ °
where -r :::9:::0, t~O. Thus, S(OH is ~ minus the constant HO),

and S(t)~ is obtained by extending ~-~(O) as the zero function to the

right of zero. S(t) is a bounded linear operator on C for each t ~ °
and satisfies

S(t+T) = S(t)S(T),

S(t) = 0, t ~ r

Theorem 5.1. If f eR x C + B n is a bounded continuous map and if



21

T(t,a):C ~ C is a map bounded uniformly for t in each compact subset of

[a, "'), then

T(t,a) S(t-a) + U(t,a), t ::: CJ

where U(t,a) is, for each t::: a, completely continuous. In particular,

T(t,a) is completely continuous for each t::: a+r. (Hale, (1977».

6. Equations with unbounded delay

For functional differential equations of retarded type with finite delay

r, the solution operator T(t,a) for each t ~ a+r is completely conti-

nuous, under weak hypotheses on f. In other words, the operator T has

a smoothing or compactifying property. This makes it possible (see Chapter

II) to obgain complete complete information about the spectral properties

for linear equations and to construct a satisfying general theory.

By an RFDE with unbounded delay or infinite delay, we mean an equation

of the form

(6.1) t ~ a

where now is a symbol for the ent i r e "history" of the function x on

(a,t], or on (-"',t], and f must be defined on some set of these histor-

i es . For example, two equations of this kind are

x(t) t 0x(Z) , t :::
(0

x(t) g(x(t-r» + L", b(6)x(t+a)d6, t ~ 0

where, in th e first case, f(t,.p) H-t/2).
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For these equations, there is some difficulty in choosing or defining a

suitable "phase space" of functions . For equations with finite delay, this

choice is not critical for most purposes, because usually one wants to cori-

forx
t

will be continuous in t

t ::: a+r. Thus, C or C
l

Thent::: a.continuous forx(t)sider

t ::: a+r and x(t) will be continuous for may

be chosen as the phase space. However, for equations with infinite delay,

x
t

always includes all the initial data ~ and consequently is never

smoother than ~ itself. Several different spaces have been suggested as

appropriate phase spaces. Recently, Hale and Kato (1978) and Schumacher

(1978) have set down very general axioms that include many specific possi­

bilities and have deduced a general theory from these axioms . In this way,

they have explored ramifications of different choices. For want of space,

we shall not discuss equations with infinite delay further. Also, in most

biological applications, it is reasonable to assume finite delays. For

additional information and references on unbounded delay, refer to the

survey paper by Corduneanu and Lakshmikantham (1979).
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CHAPTER II . AUTONOMOUS LINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

7. Linear autonomous systems and semigroups

A linear autonomous RFDE is of the form

(7.1) x(t)

where L is a cont i nuous linear map. In this Chapter attention is restric-

ted to the case of finite delay, and primarily to the case in which L maps

C = C([-r,O),R n) into R n. Since L is linear, it has a representation

(7.2) L(~) [dn(S) ]HS) , ~ E C

where n is an n by n matrix-valued function of bounded variation on

[-r,O]. In this section, I shall show that the solution operator T(t) gives

a semigroup of linear transformations on C, and will characterize the

infinitesimal generator of this semigroup and its spectrum. Exponential

bounds on solutions in terms of the spectrum, or roots of the characteristic

equation, are obtained, and these form the basis for linear stability theory .

In addition, general t heorems of functional analysis imply that the space C

can be split into a direct sum of a finite dimensional space corresponding to

the roots of large real parts and another space corresponding to roots with

smaller real parts. Such a splitting is important in the general qualita-

t ive theory of FDE's, but will be employed i n these lectures only in Section

13 on the method of ejective fixed points . Also in this section I state a
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variation of constants formula for nonhomogeneous systems, and refer to exten-

sions valid in other phase spaces.

Section 8 briefly describes an explicit representation formula for solutions,

and the Laplace transform method for deriving it. Section 9 presents a theorem

justifying the method of linearization in analyzing the (local) stability of

an equilibrium point of a nonlinear autonomous equation.

Let ~ E C and let x· x(~) be the unique solution of Eq. (7.1) for

t ~ ° satisfying the initial condition X
o
=~. Define T(t):C + C by

T(t)~ = Xt(~)' T(t) is the solution operator or operator of translation

along trajectories.

Lemma 7.1 . For each t ~ 0, T(t) is a boynded linear operator on C.

The family {T(t)}, t ~ 0. is a semigroup of bounded linear operators, that

is, it satisfies:

(i) T(O) = I

(ii) T(t+T) = T(t)T(T) for all t ~ 0, T ~ °
(iii) T(t) is strongly continuous, that is, for all

t ~ 0, ~ E C,

limIT(t)~ - T(T)~I = 0
T+t

Furthermore, for each t ~ r, T(t) is completely continuous (compact); that

is, T(t) is continuous and maps bounded sets into relatively compact sets.

Proof. The semigroup property follows from uniqueness of solution since

T(t+T)~ and T(t)T(T)~ are both solutions, as a function of t, with the

same initial condition T(T)~. By definition, T(O) = I. From the defini-

tion of L, where v is the totai variation of For any

t ~ ° and -r ~ e ~ 0,

(7.3) T(t)He) ~(t+e) if t+e ~ °
I

t+e
~(O) + 0 L(T(s)~)ds, if t+e > O.
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Hence

From Gronwall's inequality we now get

and therefore T(t) is bounded. To show that T(t) is strongly continuous,

we need only show that lim IT(t)$-$1 = 0 (s ince T has the semigroup
t ...O+

property). This is clear from the equation for T(t)~(e). To show that T(t)

is compact for t ~ r, consider any bounded set S = {$Ec:I$1 5 K}. For

any 1/1 E T(t)S, t ~ r , we have 1jJ = T(t) $ = x
t

where x E x(~) . So

From the equation itself, /x(t)/ 5 vlxt l 5 vKe
vt•

Therefore the set T(t)S

is uniformly bounded and equicontinuous and, by the Asco1i-Arze1a theorem,

contained in a compact set of C.

Recall that if {T(t), t ~ O}, is a strongly continuous semigroup of

linear operators on C, the infinitesimal generator of T(t) is the opera-

tor A:C'" C,

(7.4) 1M = lim -[T(t}$-$l
t ...O+ t

where the domain of A, D(A), is the set of $ where this limit exists.

The following are known properties of strongly continuous linear semigroups.

-(1) D(A) is dense in C.

(2) If $ E D(A) then

(7.5) :t T(t)~ T(t)A$ = AT(t)$.

Since T(t)$ = xt($) in our case, this implies validity of the evolution

equation



26

(7.6)
d
dt xt AX

t
for ~ E D(A).

(3) If U(t) is in the point spectrum Pcr(T(t», and u( t ) ; 0, then

there is a A in the point spectrum Pcr(A) such that u(t) = eAt Conver-

sely, if A E Pcr(A) , then At
e is in Pcr(T(t». Briefly, Pcr(T(t» = etPcr(A)

plus possibly {O}.

(4) Suppose that for some T > 0, the spectral radius p(T(T» ; O. Let

B = (logp)!T. For any E > 0 there!a a constant K(E) ~ 1 such that

(7.7)

Eq. (7.7) and (3) show that the rate of growth of IT(t) I is controlled by

Pcr(A).

We shall show that A can be calculated explicitly i n the present case.

For 8 E [-r,O], it follows from the first of Eq. (7.3) that

lim t-1[T(t)~(8) - ~(8)]
t->{)+

exi s ts only at points where the right-hand derivative ~ ' ( 8+) exists, and

its value is ~ ' (8+) . If 8 = 0, the second equation i n (7.3) yiel ds

lim t-1[T(t)~(O) - ~(O)] = lim t-1 ItL(T(S)~)dS = L(T(O) ~) = L(~).
t->{) + t->{)+ 0

It follows that ~ E D(A) if and only if ~ has a right-hand derivative on

[-r,O), $', which with the value L(~) at 8 = 0 comprise a function in

C. This result is summarized in the next lemma.

Lemma 7.2. The infinitesimal generator A of {T(t),t ~ O} has domain

D(A) = f$E C: ~ has a continuous derivative on [-r,O] and HO) = L(~)}.

For ~ E D(A),

(M) (8) {
~ ' ( 8 ) '
L(~) =

-r ~ 8 < 0

¢ ' (0), 8 0
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D(A) is dense in C and Eq. (7.5) holds for ~ E D(A).

Briefly, we may say that A~ = ~'. We shall now compute the spectrum and

resolvent operator of A. Consider the equation

(7.8) (A-AIH = tjJ

where tjJ E C, ~ E D(A). This is ~'(6) - AH6) = H6), 6 E [-r,O]. This

has solutions

(7 .9)

where b is a constant vector. ~ will be in D(A) if ~'(O)

is,

L(~), that

Ab + tjJ(O)

This simplifies to

(7.10)

(7.11)

6(A)b = -tjJ(O) + fO f6eA(6-U)dn(6)tjJ(U)dU
-r 0

10 A6
6(A) = AI - r e dn(6).

Since the right member of (7.10) can assume any value in ~n , by choice

of tjJ E C, it follows that Eq. (7.8) is solvable for b for every tjJ E C

if and only if det6(A) FO. If det6(A) F0, there is a unique solution

~ E D(A) given by Eq. (7.9). Thus, Eq. (7.9) shows that the inverse

(A-AI)-l exists if det6(A) F0, with domain of all C, and (A-AI)-l

is a bounded linear map since the map tjJ~ b is bounded and so is the map

from (b,tjJ) to ~ given by (7.9). Consequently, if det~(A) F 0, then

A is in the resolvent set of A. On the other hand, if det6(A) = 0, then

there exists b for which 6(A)b '" 0 and if we let H6) = e
A6b then

AH6) = AeA6b, so A4> = M and A is an eigenvalue with eigenfunction 4>.

This result may be summarized as follows.
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Lemma 7.3. The spectrum of A consists entirely of point spectrum. Pcr(A).

that is points in the sp(A) are eigenvalues. and

Pcr(A) {A E ~:det8(A) = a}.

If A is in the resolvent set of A. then (A-AI)-l is defined by

(A_AI)-lljJ = q. where q. is given by Eq. (7.9) and (7.10).

The equation det6(A) ~ 0 is called the characteristic equation and its

roots are called the characteristic roots. The following properties of the

eigenvalues A
j

of A are known (see Hale. (1977). Bellman and Cooke (1963)).

(i) Each is of finite multiplicity.

(ii) All eigenvalues lie in some left half plane

ReA::: constant.

(iii) When n is piecewise constant. as it is for a

differential difference equation. the A.
J

of

large modulus lie in curvilinear strips of type

IRe(s-f1Jlog s)l::: constant.

In Chapter 3 we shall say more about conditions under which all ReA. < O.
J

We now state a number of additional properties. without proof because of

lack of space. Let A be an eigenvalue of A and let ~ denote the

smallest subspace of C containing all the null spaces N(A-AI)P. p=1.2 •••.

Since det8(A) is an entire function of A. it has zeros of finite order.

So the resolvent function (AI-A)-l has only poles of finite order. This

together with the fact that A is a closed operator imply that M
A

is

finite dimensional and for some integer k.

k
~ = N(A-AI)

Also, k is the algebraic multiplicity of A. and moreover the dimension

of MA is k (Levinger (1968)). ~ is called the generalized eigenspace

of A.. The following additional properties are known:
J
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Theorem 7.1

(i) C ~ N(A-AI)k ~ R(A-AI)k

that is, C is the direct sum of the null space and range of (A_AI)k .

(ii) AM
A

C M
A

and T(t)M
A

C M
A•

(iii) Let d be the dimension of M
A

and let 1 d
t/> , ••• ,t/>

be a basis for MA. Let ~A denote the n x d matrix-valued function,

~A: [-r,O] -+- JR "'.

(7.12) e E [-r,O]

Then there is a constant d x d matrix B such that

(7 .13)

Moreover, the spectrum of B is the single point {A}, and

(7.14)

Proof. For most of the proof we refer to Hale (1977), but we make the

following observations. Since ~ is invariant under A and ~A spans

M
A,

each column of A~A is a linear combination of elements of ~A' hence

(7.13) must hold for some matrix B. To get the expression (7.14), note

that each element of ~A is in the domain of A. Hence by (7.13)

Since the semigroup is strongly continuous, this implies that T(t)~A = ~AeBt

Now since each column of T(t)~A is a solution of RFDE, and not just the

evolution equation, there exists a matrix ndW: [-r,m) -+- :R such that

W(t+e), t ~ 0, e E [-r ,0].

This is also (T(t+e)~A)(0) if t + e~ O. Therefore, since T(t)4>A
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we get

Taking t ~ r gives

<1\ (O)eB(t+a) Bt
~).(a)e , t+a~o .

~). (a)

This proves (7.14).

Also note that the relation

Ba
~). (O)e , a E [-r,OJ .

(7.15) (T() ) ( ) '" e, (O)eB(t+a),
t <1>). a '"/\ a ~ [-r,OJ

permits us to define T(t) on M). for all t E (-00,00), not just t ~ 0 .

The significance of this is that on a generalized eigenspace of an eigen-

value ). of A, the RFDE has the same structure as an ordinary differen-

tial equation. The total contribution of all other eigenvalues does not

affect the behavior on the particular generalized eigenspace. The Jordan

block structure of B has been described by Kappel (1976b).

By introducing an adjoint operator A*, we can more explicitly character­

ize R(A-).I)k in the decomposition of C. Let :R n* be the n-dimensional

Euclidean space of row vectors . For ~ E C( [-r, OJ,:R n) and n*
tjlEC([e,r),:R )

define the bilinear functional that takes the pair (~,tjI) into the number

(7.16) tjI(O)~(O) - fO Ia tjI(u-a)dn(a)~(u)du
-r 0

This functional is not necessarily non-degenerate. Also, define an operator

A* by

o < 6 ~ r
(7.17) (A*tjI)(6)

dtjl(6)
-dB

rtjI(-s)dn(s),
-r

6 o
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n*,.here D(A*) = {tjJ E C( [G,r), R ) :tjJ has a continuous derivative on [G,r]

and the derivative at e = 0 is as specified in (7.l7) .}

The operator A* is called the formal adjoint of A relative to the bi-

linear form (7.16), and it is known that it has properties similar to a true

adjoint . In particular

<tjJ ,Aj» <A*tjJ ,cP> for all ep E D(A), tjJ E D(A*).

A number A is in the spectrum of A if and only i f A is in the spectrum

of A*. Let ~A denote the matrix analogous to ~A' that is, let

1 d
~A = col(tjJ , •.. ,tjJ) be a basis for ~ (A*), the generalized eigenspace of

A for A*. Let <~ A '~A> denote the numerical d by d matrix with ijth

element i j<tjJ ,CP >. Then i s nonsingular and the matrices ~A'~A

may be chosen so that <~A'~A> = I. Also we have a version of the Fredholm

alternative:

Lemma 7.4. A necessary and sufficient condition for

k
(A-AI) cP = tjJ (tjJ E C)

to have a solution cP, where k is an integer, is that <a , tjJ> = 0 for

all a in the null space of (A*-AI)k. (Loosely: tjJ is in the range of

(A-A I)k if and only if it is "o r thogonaL" to all

(A*-AI) k.)

a in the null space of

Lemma 7.5. Let A be in the spectrum of A and let

~Ab for some vector b}

Then the decomposition of C i s given explicitly by


