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THE SYNTHETIC APPROACH TO FINSLER SPACES IN THE LARGE

1. INTRODUCTION. CURVES AND SEGMENTS.

The geodesics of a Riemeann space can be obtained as
curves which are locally shortest connections or as the auto-
parallel curves of the distinguished affine connexion of Levi-
Civita. Parallel displacement along a curve maps the local geo=-
metry at one point of the curve isometrically on that at another.

Direct extension of the second method to Finsler spa-

ces where the line element has the form
1 n 1 n
ds ='F(I.gon-3 X , dx gecey dx ) =F(x' dx)

and F(x} dx) satisfies certain stendard conditions, is impossi-

ble because the local geometry of a Finsler space is Minkowskian
and two n—-dimensional Minkowski spaces are in general not isome-
tric.

Nevertheless; generalizations of parallel displacement
have played a major role in the theory of Finsler spaces in two
different approaches. The space may be considered as a set of
line elements rather than points to which local euclidean geo-
metries are attached. Since this will be the topic of Professor
Davies' lectures I will not dwell on it here.

The second approach is to consider the space as a
point, hence locally Minkowskian space and to face the concomi-

tant analytical difficulties as well as imperfection inherent
3



H.Busemann

to any concept of parallel displacement in ?i??ler spaces. This
is the topic of Professor Wagner's lectures.

Thirdly, one may start from the definition of geodesie
as a locally shortest join and avoid the analytical complications
by not using analysis. Although this seems to contradict the ve-
ry name "differential geometry® synthetic arguments partly topo-
logical and partly similar to those of euclidean geometry have
proved very successful in particular when dealing with problems
in the large. These lectures will give an introduction to the
field. For simplicity we restrict ourselves to the case of symme-
tric distances (F(x, dx) = F(x, -dx)), but much of the material
can and has been extended to the non-symmetric case, see Busemann
[1] and Zaustinsky [1] »

Proofs are expected in these cyecles. Some proofs in the
present theory are long and the technicalities are uninteresting.
In particular at the beginning, proofs become necessary only be-
cause the axioms are chosen as weak as possible, whereas all con~
sequences of the axioms would have to be postulated, if they were
not contained in the axioms. Doubts have been expressed regarding
the power of synthetic methods in differential geometry. The only
way of combatiting the doubts is to exhibit the efficiency of these
methods in many different areas. We therefore will outline the
proofs only in those cases where they elucidate the reason for the
superiority of geometric arguments.

1)
Readers who should see these notes without those of Professors
Davies and Wagner are referred to Cartan [1] and Rund [1] .

4



H.Busemann

We are interested in the intrinsic geometry in the lar-
ge of complete Finsler spaces, and our method is axiomatic. The
distance is for us not the infinitesimal distance given by a line
element, but the finite intrinsic distance of two points in the ma-
nifold. Therefore our first axiom is @

I, The space; R; is metrie,

The distance of twe points x,y is denoted by xy and sa~
tisfies the standard conditions xx = 0, xy = yx > 0 for x # y and
xy+yz220.

A curve x(t), ¥ < t < § is a continuous map of the in-
terval [«,p] in R . Its length is defined in the natural way:

1£D : of=% <% < o<t =@ isa partition of [o(,js]

we put &
I(x, D,) = % x(t,_)-x(¢,)
and 2 :

L(x) = I-E (x) = slﬁp L(x, Dt). Notice L(x) > x(¥ )x(j"} Ye
t
1z |p,] = sup ,ti - ti-1] then the usual theorem

I(x, I}t)'—-‘-‘-L(x) for llnt | — 0 holds, see G , p.19 (G refers he-
re and elsewhere to Busemann [2] ). An important implication of

this fact is the additivity of arclemgth
n ti 8
E I't (x) = L, (x) for any partition D, .
= i-1

Moreover, length is lower semicontinuous (G p.20) : If

xy(‘t), st <p V=0, 1, 2,... are curves and

X, (%) —?*xo(t) for each t, then
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(1.1) I.(xo)é lim inf I.(xv )

The curve x(t) is rectifiable if L(x) is finite. Ve
can then introduce the arclength as parameter : y(s), 0< s< L(x),
is the point x(t) for which s==L:(x). A class of rectifiable cur-
ves x(t) whose representations y(s) in terms of arclength are i-
dentical is a geometric (rectifiable) curve C. The elements of
the class are the parametrizations of C and the properties com~
mon to all parametrizations of C are the properties of C (initisl
point, end point, length are examples).

There are many important theorems for which a freedom
in the choice of the parameter and hence the concept of geometriec
curve rather than parametrized curve is essential. The most im-
portant is this : We call a subset M of a metric space finitely
compact if every bounded infinite set in M has an accumulation
point in M , that is, if M satisfies the Bolzano-Weierstrass Theo-
rem.Then the following selection theorem (G p.24) holds which is
fundeamental for much of the present theory, although we will not
always mention the theorem explicitly.
(1.2) If M is a finitely compact subset of a metric space and
01, C

prees are geometric curves in R with L(Cy )¢:P and whose

initial points form a bounded sequence, then a suitable subsequen-—

ce CV ' Gy geee 0f Cp tends unifo to a geometric curve C
1 2
and

L(C) € lim inf L(C, )
n

The theorem means that parametrizations x (t) of C,
n



H.Busemann

and x(t) of C;, << % 5)% , exist such that xn(t) tends unifor—
mly to x(t).

A curve x(t), < <t <$ , satisfying L(x) = x( )x(j&)
is a shortest curve from x(X ) = a to x(j?:o) =b and is called a
segment T(a, b) from a to b. If we want to specify that the se-
gment is oriented from a towards b we use the notation T+(a, b).
If y(s) represents T(a, b) in terms of arclength, then for
0< 8 < s,<ab =f

ab < y(0)y(s ) + y(s,) + y(s,)5(f ) <

$

g
€3 @)+ 320 + 3 0) = 300) =

hence y(aT)y(s2) =85, - 8,, 80 that every subarc of a segment is
a segment and y(s)—> s maps the segment isometrically on a segment
of the real axis, whence the name. Allowing a shift of the origin

we call representation of a T(a, b) curve z(%) with
<ty =X+ab, zX)=a, z(B)=Db and
(1.3) 2(8,)5(8)) = [4, = 45| » wst,<P.

Let (xyz) indicate that x # y, y # 2z and xy + yz = xz.
Then

(1.4) (wxy) and (wyx) imply (xyz) and (wxz) .
For

WZ =Wy +YyZ=WX+Xy+y2zo>WK+XZHW2



H.Busemann

(Notice that (wxy) and (xyz) do not imply (wyz) or (wxz)).
The following trivial remark is often useful :
(1.5) If (xyz) and 7, = 2(x,y) and T, = %(y,2) exist, then 7,U T,
is a T(x;z).

A segment connecting two given points will in general not
exist. To insure their existence we add two axioms @

II The space is finitely compact.
III Por any two distinet points x,z & point y with (xyz) exists.

It is easily seen that a segment T(x,y) exists for any
two points x,y (6 p.29). Finite compactness is much stronger than

would be necessary for the existence of segments. However, I will
insure in conjunction with the remaining two axioms that the space
has those properties of finite dimensional spaces which are neces-
gsary o obtain differential geometric results, whether the axioms
actually imply finite dimensionality is not known.

2. GEODESICS.

A geodesic is a locally isometric map of the entire real
axis into the space R . This means that it can be represented in
the form x(t), = ©° < t < co and that for each real t, & positi-
ve 5(to) exists such that

x(t,)x(t,) = [4, - t2| for |t - ¢|< €(t) .

This trivially (G p.32) implies that + is arclength
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23
Iat1(x) =%, =%, forany t,<t,

x(t) and y(t) represent the same geodesic if o = + 1 and a real
® exist such that

y(t) =x(St+p) forall t.
Frequently we will consider oriented geodesics. Then it is under-
stood that in & representation x(t) increasing t corresponds to
traversal in the positive sense. A second representation y(t) of
the oriented geodesic has the form y(t) = x(t + £ ).

A geodesic is a gtraight line if it is an isometric ima-
gé in the large of the real axis, i.e. x(t1)x(t2) = ’t1 - tzj
holds for any t1, 'I:z.

A compact convex subset of a euclidean space satisfies
axioms I, II;, III but geodesics do not exist. We must have an axiom
of prolongability. To include the usual objects of differential geo-
metry the axiom must be a local requirement. We denote the open sphe-
re with radius SJ 7> 0 about a point; i.e. the set of points x with
KL p by S(p, p)+ The triangle inequality implies that

(2.1) S(pap)>S(ayp-pa) if ¢>pq .
We can then formulate our axiom as follows @
IV. For each point p there is & positive fp such that for any two

distinet points x,y in S(p, I3 pJ a point z with (xyz) exists.
The function fp may be erratic, however then IV implies

the existence of a well behaved function satisfying the axiom. For
put
p(p) = sup p , where o satisfies IV for fixed p .
P P

9
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Then either f(p) = 00 , which means that z with (xyz) exists for
any distinet x,;y and hence SJ(q) =02 for any q .

(p) ; or 0 <p(p) <0 and
s |5’(p) - f(q)l = .
The latter follows at once from (2.1); G p.33.
The existence of geodesics means in ordinary differential
geometry that every line element lies on a geodesic. This implies
that a segment; or shortest gecdesic join, can be extended to a
geodesic,; and for us this will mean existence of geodesics,
(G pp.34; 35)
(2.3) If Axioms I to IV hold and x(t), o<t<f , ¥< B
represents a segment, then a geodesic y(t) (- Co< t< ©2 ) exists
such that y(t) = x(t) for «<t<p .

If p(p)=oo then y(t) may be chosen as a straight li-

—

According to a recent observation of Szenthe [1] it may
happen that y(t) extending x(%) to a geodesic exists which is not
a straight line even when P(p); o,

Axioms I to IV do not contain any uniqueness properties
for segments or geodesics. The simplest example showing this is the

(x,,x )-plane the metric
1772

+

Xy = Ix “ ¥
1 1

X =~ y I .
2 2
If x, < ¥y, and x,< v, then any curve z(t) = (z1(t), zz(t)) from x

to y for which both z1(t) and z_(t) are non-decreasing will be (but

2

10
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not necessarily represent) a segment and monotone continuation will
provide straight lines. Our final axiom will therefore be a unique-
ness postulate. Observing that, in differential geometry, the shor-
test geodesic join is not necessarily unique, but that its continua-
tion to a geodesie is, we require.
Axiom V. If (xsz), (xyza) and yz, - vz, then z, = z,.

The spaces satisfying all five axioms are called G-spa—-
ces, the G alluding to geodesic. Unfortunately the word G-space has
lately also been used in a different sense, where the G alludes %o

group. In a G-space the extension of a proper segment to a geodesic

is unique. Therefore, if p(p)= oo then all geodesics are straight
lines and the space is called siraight. There are many important
straight spaces besides the euclidean and hyperbolic spaces. In the
terminology of the calculus of variation all simple connected spaces
without conjugate points are straight.

We do not postulate the local uniqueness of T(x,y) because
this important property is contained in the axioms.
(2.4) If (xyz) then T(x,y) and T(y,z) are unique.

For if two segments 21, T, from y to z existed then z;e Ty

with 2, # 2, and yz, = yz, would exist and satisfy (xyzi) by (1.4)
contradieting V. In particular
(2.5) T(x,y) is unique for x,y ¢ S(p, p(p)).

Regarding the e(to) occurring in the definition of a
geodesic it can easily be proved (G p.38) that :
(2.6) If x(t) represents a geodesic then it represents a segment

for |t -t |< p(x(x))

11
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In the absence of differentiability we define a lineal
element at p as a segment with center p and length min( f(p)/2,1).
The multiplicity of a geodesic at & point (on the geodesic) is the
cardinal number of distinet lineal elements at p lying on the geode-
sic. (A lineal element represented twice, hence infinitely often,
for different t-intervals if a representation counts only once).
(2.7) The multiplicity of a geodesic at a point is finite or coun-
iable.

For in a representation x(t) of a geodesic different li-
neal elements at the same point correspond to disjoint intervals of
the t-axis. A similar simple argument shows (G p.44)

(2.8) A geodesic has an at most countable number of multiple points.

Here we use the usual terminology to call a point multi-
ple if the multipliecity is greater. than 1, simple if it is one. The
geodesic is simple if all its points are simple., A standard argu-
ment (G p.45) shows
(2.9) x(t) represents a simple geodesic if and only if x(t1) = x(ta)
implies x('l'.1 + %) = z(t2 + %) for all t.

We eliminated the zero-dimensional G-spaces as trivial and
want to do the same for one-dimensional spaces. A simple but most u-
seful lemma is needed.

(2.10) If x,y € S(p, £) then ™(x,y) ¢ S(p, 2p ).

For let w € T(x;y). Then

min(wx,wy) < x3/2 < (xp + py)/2 < §

and if wx = min(wx,wy) then

12
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PWEDPX +XW<29 .

Strangely enough this crude estimate is the best possible
even on the sphere: If p and w are antipodal points on a sphere of
radius 2; choose x and y on the same great circle through p and w
with ox = py =T+ € , 0< € < , Then T(x,y) passes through w
and pw =T . Whereas spheres are locally convex under the usual as-
sumption for Finsler spaces, they are not necessarily so even in
gtraight G-spaces.

A "great circle of length 53 " in a G-space is a geodesic
isometric to a circle of length p . Its representation is distin-
guished by

x(t,)x(t,) = lvilnilcla,hz ‘1;1 -ty + V§ l .

Straight lines and great circles contain with any two
points x,y a segment T(x,y) and this property is characteristic:
(2.11) If a geodesic G contains with any two points x,y a segment
T(x,y)-then it is a straight line or a great circle.

First we show that G is simple. If G contained two lineal

elements I.1, I:z at the same point p , let a be an endpoint of L.
Since pa, < f(p)/." the segment T(a1,aa) is unique (see (2.5)) and
lies therefore on G , moreover T(av a2) c S(p, f(p)), hence
P(p,x) is unique for x ¢ T(a1.az) and lies on G , so that the mul-
tiplicity of G at p would not be countable.

If x(t) represents G then by (2.9) x(t.l) = x(tz} implies
x(t, + t) = x(t, + %) for all t. If x(t,) # x(t,) for t, < t, then
the arc t, < ¥ < t, is the only arc in G from x(t1) to x(tz) and
« Or

2
therefore by hypothesis a segment or x(t1)x(t2) = | 5y = t,

13
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there are two arcs on G from x(t1) to x(tz) and one of them must
be a segment which leads to a great circle, for details see G p.46.

This proof shows that G-space containing two distinet li-
ne elements L1, L2 at p has at least dimension 2 because ()T(p,x),
s - T(a1,a2) is homeomorphic to a triangle.

(2.12) A one-dimensional G-space is a straight line or & great cir-
cle.

For, a point of the space is center of at most one lineal
element, therefore all geodesies are simple and no two geodesics
intersect. If two different geodesics G1, 62 existed then for
pi &'Gi a segment T(p19p2) would lie on a geodesic intersection G4
and Gye

Thus there is only one geodesic and this contains with a-
ny two points x,y a segment T(x,y) because the space has this proper-
ty. The assertion now follows from (2.11).

Since zero- and one-dimensional G-spaces are trivial we

will often tacitly assume that the gpace has dimension at least two.
It can be proved that a two~dimensional G-space is a topological ma-

nifold (G pp.52-53), i.e, every point has a neighborhood homeomor—
phic to Ez. The corresponding problem for higher dimensions is o=
pen. As mentioned before, it is not known whether a G-space always

has a finite dimension.

14
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3. SPACES IN WHICH THE GEODESIC THROUGH
TWO POINTS IS UNIQUE.

A further corollary of (2.11) is
(3.1) If the geodesic through any two distinet points of a G-space
is unique, then each geodesic is either a straight line or a great

circle.

For if the geodesic G contains x and y (x # y) it must
contain every T(x,y) because a geodesic containing T(x,y) exists
and the geodesic through x and y is unique.

The statement (3.1) can be considerably improved. For
this and other purposes we need the concept of universal covering
space. The mapping o( of the G-space R' on the G-space R is local-

ly isometric if a positive fumction 53 exists such that o maps
S(p', ?P ) isometrically on S(p'«K , F&') Putting p'e¢ = p it
can be proved (G p.171) that o maps S(p', Q (p)/2) isometrically
on S 2) so that in contrast to the topological theory of

covering spaces a @P' exists which is not only independent of the
choice of p' in px | but also of the space R' (and the mapping o ).
A conspquence of this fact is that a locally isometric map of a com-
pact G-space on itself is an isometry in the large or a motion

(6 p.172).

If a locally isometric map o¢ of R' on the R exists
then R' is a covering space of R . The cardinal number of points
in p 1 is independent of p and is usually called the number of
gsheets of R' (over R). This number is at most countable, because a-
ny two distinet points in pc:.("1 is at least 25J(p), (6 pp.171,172).

15
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If x'(t) is a geodesic in R' then x'(t) = x(t) is a geo~

desic in R . Conversely, a geodesic in R can be lifted : given a
-1

geodesic x(t) in R and a point p' E‘x(to)o( there is a unique geo-
desic x'(%t) in R' such that x'(to) =p' and x'(t)KX = x(t). In ge-
neral it is not true that there is only one geodesie G' through p'
with G'ol = G where x(t) represents G . For x(t) may have a multi-
ple point at x(t_ ) and different lineal elements of G at x(to) may
lead to different G'. However, if x(to) is a simple point of G, then
@' _is unique (G p.169).

If x(t), ot gt ¢ represents a segment then the corre-

sponding part of x'(t) is a segment. The converse is obviously not
true. If T(x(c¢ J,x(})) is unique them so is T(x' (o ),x'(j%))
(G p.169).

Among the covering space of R' there is a simply connected
one, which is unique up to isometries and is called the universal

covering space of R (G. Secticn 28).

We now come to the improvement of (3.1). We observe first

(3.2) If two distinct geodesies G,y G, each contain with two

points x,y a segment T(x,y) and have two common points a, a' then

G1 and G2 are great circles of the same length and a, a' are antipo-
dal on both, moreover G1f\ G, = alUa',

For both Gi contain segments T(a,a') and these are distinct,
hence no point ¢ with (abe) can exist, see (2.4) which proves that
Gy G, are great circles of the same length, (2.4) also shows that
they cannot have any other common points.

A G-space is gphere like if the geodesics are great cir—

16
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cles and the geodesics through a given point a all pass through a
second point a' # a, which we call the antipode %o a.

It follows from (3.2) that all geodesics through a given
point a have the same length, moreover that a is the antipodal to a'.
A1l geodesics have the same length, because for any two non-intersec-
ting geodesics a third intersecting both exists.

A G-space is of the elliptic type if the geodesics are
great circles of the same length and the geodesic through to distinet
points is unique.

Identification of antipodal points in a spherelike space
of dimension 2}2 yields a space of the elliptic type. The argument

is quite elementary and may be found in G p.129. We can now prove

(3.3) If dim R 2 2 and R is not simply connected, if, moreover each
odesic in R contains with two points x,y & segment T(x,y),
then R is of the elliptiec type and has a spherelike space as two-

sheeted universal covering ‘'space.
Proof. We know from (2.11) that all geodesics in R are

great circles or straight lines. Since R is not simply connected
its universal covering space R' has at least two sheets.

We show first that a geodesic G' in R' contaips with two
points a', b' at least one segment T(a',b'). If G is the image of
G' under the local isometry ¢f R' on R, assume first that a = a'x
and b = b'« are neither identical nor antipodal in G . If G' did
not contain a T(a';b'), then a geodesic H' containing a T(a',b')
would exist and G and H'ex would be two different geodesics through

a and b which contradicts (3.2) (G is simple, hence only one geode~

17
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sic G' with G' = G through a exists, see above). If a = b or a
and b are antipodes on G ; choose c' close to b' so that a and ¢
are neither identical nor antipodal. Then G' contains a T(a',b')
and by continuity also a T(a';b'). Thus all geodesics in R' are
straight lines or great circles.

Next we prove that there is only one geodesic G' in R'
over a given geodesic in R. Let both G% and Gﬁ lie over G and choo-
se a; € Gi so that a, and a, are neither identical nor antipédal om G.
The imageé H' of a geodesic H' containing ui and té intersects G in a,
and a,. We comclude from (3.2) that G = H and hence ) = H' = G5

It now follows that if G' = G and p & G then pol ' C G'.
For through every peint p'e po(-1 there is a G' with G'o( = G and
there is only one G' mapped on G . Therefore two distinet geodesics
through p' both contain all poinis in pc<_1 and by (3.2) there can-
not be more than two. Thus every geodesic passing through one of the-
se points passes through the other and the space R' is spherelike.

R is then of the elliptiec type.

(3.4) A space in which the geodesic through two points is unique

and which contains a great circle is not simply connected.
This can be proved for general G-spaces (G pp.201, 202),

but is so simple under a minimum of differentiability hypotheses,
that we prove it only for this case.

The geodesics are all straight lines or great circles and
defining the length of a straight line as infinite it is obvious
that the length L(G) of a geodesic G through a fixed point p depends

continuously on the geodesic. Choose p such that at least one geo—-

18
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desic through p is a great circle.

Congider an elliptic space E of the same dimension as R
in which the geodesics have length 1, Choose & point p' in E and
map the tangent space of R at p linearly on the tangent space of E
at p'. To a line element L of R at p now corresponds & line elsment
L' of E at p' and thus to the geodesics Gy, through the geodesic GI’
through L'. We map GI in G, such that

px 2 + L(6)
1+ px L(G)

ro| -

P'x' =

The point x' is not uniquely determined by this relation,
but we can determine it in a neighborhood of p' such that the map
is topological there. Then it becomes topological everywhere, and
is meaningful also for the great circles, because the antipodal
point to p on GL becomes the antipodal point on Gree If GL is a
straight line, then its immge is GL' with the antipodal point to p
omitted.

Thus R is mapped topologically as a subset Epof E. A
projective line cannot be contracted to a point in E , hence still
less in ER. Therefore the great circles in R through p , which are
mepped on projective lines,; cannot be contracted. The improveument
of (3.1) is a corollary of (3.3,4) ¢
(3.5) Theorem. If the geodesic through two distinct points of a G-

space of dimension greater than 1 is unique, then R is either strai-
ght or R is of the elliptic type and has a spherelike space as two

sheeted universal covering space.

19



- iR -
H.Busemann

4. INVERSE PROBLEMS.

A two-dimensional G-space is a topological manifold and
if the geodesic through 2 points is unique it is either homeomor-
phic to 32 and straight or homeomorphic to pa and of the elliptic
type. In view of the fact that in the Riemannian case the geodesics
determine the metric up to trivial transformations except in a few
cases (Iiouville's Theorem), it might seem reasonable to look for
all metrizations of E2 as a straight G-space or of P2 as a space of
the elliptic type. The following considerations will show that their
problems are too general to be interesting, but determining the cur-
ve systems which occur as sets of geodesies proves interesting. One
of the principal consequences of our investigation is an insight in-
to the enormous variety of Finsler metrics.

For a system S of curves in E2 to be the geodesics of a
gtraight space the following is obviously necessary : If e(x,y) is
an auxiliary euclidean metrization of the plane then

a) Each curve in S can be represented in the form p(t)
(= 00 <t < 00), p(t,) A p(t,) for t, # t,, znd e(p(0),p(t)) —>0°

for | — oo -
b) There is exactly one curve of S through two given distinect

points of the plane.
We will show that these trivially necessary conditions

are also sufficient.
(4.1) Theorem. Given a system S of curves ;Q_Ez satisfying the con-
ditions a) and b) then E° can be metrized (in a great variety of
ways) as a G-space with the curves in S as geodesics.
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For a # b let G(a,b) be the curve in S through a and b,
and T(a,b) the subare of G(a,b) with endpoints a,b. If x is an in-
terior point of T(a,b) we write [:a x‘ﬁ] . Put Ma,a) = & . Pirst
one establishes some simple topclogical properties of S ,
(G pp.57,58), in particular the Axiom of Pasch : If ¢ ¢ G(a,b) and
[japﬁ] then an S-curve H through p intersects T(a,c) U T(c,b). If
a,—> a and ‘nn—r b then T(an,bn) —> T(a,b) in the sense of Haus~
dorff's closed limit, and also G(a, ,b, ) —> G(a,b) provided a # b.

Let G be an oriented S-curve and p ¢ G'. If x traverses
¢" in the positive sense then the oriented S-curve G+(p,x) (p pre=-
cedes x in the orientation) tends to an oriented S-curve A" called
the asymptote to G? through p . For any q € A" the asymptote to G~+
through q is also g For example, if g follows p on Af, then the
segment T(q,x) tends to & ray R. If R did not lie on 1+, then G(p,r)
with r ¢ R - q would not intersect G? and Af cannot be the asympto-
te to G+ through p . The case where g precedes p is similar (G pp.59,
60). We will see later that the asymptote relation is in general nei~
ther symmetric nor transitive.

Here we need only the following consequence of this con-

struction : a given S-curve G can be imbedded in a simple family of
S-curves, i.e. one with the property that every point of the plans
lies on exactly one curve in the family (the asymptotes to an orien-
tation of G form a simple family).

To construct our metric consider a simple family F of S-
curves. Fix a point z in the plane, let I.a be the curve in F through
a. Denote one side of Lz by B the other by H-1 and put for any L € F
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e(z,I) if LcH
#(1) = J -e(z,L) if LCH
0 it L=1I,

Then t(L) depends monotonically on L . Put

d(a,b) = It(La) - t(Lb) ,

=0 if L =
d(a,b) = d(b,a) 3 ' & L’D
>0 if I, £ L,
d(a,b) + d(bye)> d(a,c) with equality if La =L, or Lb = I'c or L.b
lies between I.a and I’c'
d(a,z) < e(a,z)

because d(a,z) = It(La)I = e(z,I.a) < e(z,2)

Choose a denumerable number of simple families F1 'F2""
such that UFi is dense among S-curves. For each Fi define the di-
stance di (with the same point z) as d was defined for F and put

ab = Z R 4, (a,p) .
i=1
This number is finite because
di(a.b) < di(a.z) + di(Z.b) & e(ay2) + e(z,yb) -

Clearly ab = ba 2> 0 , and if a # b then a S-curve separating a from
b exists, hence also a curve in UFi y Say a curve in Fk. Then
dk(a,b)> Oand ab> 0 .

Trivially ab + be > ac . We must show that the relations
[axb:] and (axb) are equivalent. Let ]_-a.xb] . For a given i either
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G(a,b) € F, and then di(a,b) = di(a,x) =d,(x,b) = 0, or the cur-

ve in Fi through x in Fi lies between the :urves through a and b,
and then di(a,x) + di(x,b) = di(a,b). Thus the latter relation holds
for all i , which implies (axb).

We show next that ax + xb » ab if a,x,b are distinet and

(axb) does not hold. If x € G(a,b) there is trivially a S-curve
separating x froma and b . If x ¢ G(a,b) then G(a',b') with [@a'iﬂ
and [bb'i] will separate x from a and b . Therefore a curve in so-
me Fk will exist separating x from a and b . Then the curve in Pk
through x is different from those through a and b and does not lie
between them, hence

dk(a,x) - dk(x,b) > dk(a,b)

and ax + xb > ab.

It remains to be shown that the Bolzano Weierstrass Theo-
rem holds. I do not know whether this is always the case. But the
parameter t(L) was largely arbitrary and by modifying it we can
reach finite compactness (G p.62).

If the system S is well behaved we may replace the summa-
tion by an integration. We illustrate this by giving some interesting
metrizations of the (x1.x2)-plane with the ordinary lines
ax, + bx2 + ¢ = 0 as geodesics. Remember that the euclidean metric
is by Beltrami's Theorem the only Riemennian metrie with this pro-
perty.

Let g(t) (¥ 3 0) be continuous, non-negative, increasing

with g(t) > oo for t —s o= . Put

(T.,
£(xyK) = aign(x1coso< + x,_9in of g(x cos of + x, sin b-—-—c‘.o(gs-{'?—-

2
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Observe that lx1cost7( + xzainn(, is the euclidean distance of the

line through the point x = (x1,x2) with normal o from the origin
= (0,0). Thus f(x, « ) corresponds to our t(L) in the general ca-

se and )f(x, ) - 2(yy )' to d(x,y). Integrating instead of

summing we form the distance
2
_Pg(x..,v) =j l 2(xyxX) - £(y )| d,
-2

for which the ordinary lines are the geodesics, This distance is

invariant under the euclidean rotations about z, which are therefo-

re also motions, more specifically rotations, for fg . We consider

some special choices of g.

1) g(t) = log(1 + t). Then the distance becomes relative-
1y small as we move out and a simple estimate shows that for any
two parallel lines L1, L2 the distance x‘II'Q(xT & L1) tends to zero
when X, traverses I|1 in either direction.

2) g(t) = e®. The distance becomes large when moving out
and x11.2 -» co if x1 traverses I"I in either direction.

3) glt) =+, f2 0. (For (3=1 this gives the eu-
clidean metric). Then with $x -(gx“ gx 5) 0)

f(Smo( S? £ixsol )

If k » 0 is given we can determine $> 0 such that

QP = k and we have for any two points x,y

S ($x,8y) = kg (xa7)
Thus x' = Sx is a dllatlon for the metric P with the given dila-
tion factor k . Thus we have a metric with the ordinary lines as

geodesics, all dilations from z and all rotations about z which is
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not euclidean, Whereas the metrics in cases 1) and 2) are or can be

made smooth everywhere, the metric 3}) has in a well defined sense
a2 gingularity at z when } ;4 1  and this singularity cannot be e-
liminated without making the metric euclidean, see (10.3).

The superposition principle used to construct the metrie
in Theorem (4.1) can be used in many other ways. For example : de-
fine the function £(t) by

0 for 1+1<0
£(t) ={Vt for 0<Ltg 1
1 for t»1
2 o7 1/2
then with e(x,y) = [(11 - y1) + (x2 - yz)J

xy = e(x,y) + l f(!.l) - f(Y1)l + ’f(_xz) - 1(3’2)

is a metrization of the (xT,xa)—plam with the ordinary lines as
geodesics. Let z = (0,0), a = (2%,0), b = (%,%), ¢ = (0,2%). Then
(abe) and for 0 < t ¢ 1/2

2t + V2t zb= (3t + 2%
t(@2- 2)01- %)

ze for 0 < t < 1/2, Therefore no circle with radius

za = Ze

zb - za

and zb > za

< 2 about z is convex. This hinges on the singularity of % at O.

e mentioned that in smooth Fingler spaces small spheres are convex
(G p.162).
The result for Pz correspending to (4.1) is :

(4.2) Theorem. In the projective plane P2 let a system S' of curves

be given such that
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a') Each curve in S' homeomorphic to a circle
b') There is exactly one curve of S' through given di-

stinet points.
2
Then P can be metrized as a G-space for which the curves

in S' are the geodesics.

This theorem was first proved by Skornyakov [ﬁ] y 8 gim-
pler proof is found in Busemann [;] « I will outline a proof of
(4.2) and at the same time of
(4.3) 12 P° (n®2) is metrized on a G-space with the projective
lines as geodesics, then this metric can be extended to_§n+1 80
that the projective lines in il are the geodesics.

In both problems we pass from P? to the spherical space

s®, In (4.2) we then obtain a system of curves S on 52 such that each
curve is homeomorphic tc a circle and any curve on S through a point
a also passes through the antipodal péint a' to a on 52. We may assume
that one S—-curve is the equator A of 82 and the ordinary great cir-
cles through the north and south poles belonging to A are S-curves.
We metrize A as a great circle such that antipodal points of 82 a=
re antipodal on A .

In (4.3) on Sn+1 a great s* denoted by A and metrization
of A as a G-space with the ordinary circles as geodesics is given.
In both cases we denote by H and H' the two open hemispheres boun-
ded by A . If p¢ H then its antipode p' e H'. For any point x # p,p'
there is exactly one semi-great circle (S-curve in (4.2)) with end-
points p,p' and containing x . It intersects A in a point xp . If
also y # p,p' we put fp(x,y) =% 3. Notice that fp(x,y) = xy for
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X,y & A + Since x-—bxp maps antipodal points onto antipodal points
on A , each semi-great circle not passing through p is with ;p(x,p}
as metric a segment of the same length f> . (FPigure 1). Put

0= fp(p'.x) = fp(p,x) = £ _(x;p') = fp(x,pJ-

P

Let g(p) be any positive continuous function on H such

that jg(p)dp = 1 and put
H

= [ txmetens -

This integral exists as a Riemann integral, because
fp(x,y) is bounded, continuous when x and y are different from p,p’
and lower semicontinuous when x or y fall in p or p'. For any S-cur-

ve G ,f fp(x,y)g(p)dp = 0, because G intersects each meridian
GnH

in 2 points only. These facts yield very easily that each semi great
eircle is with the metric xy a segment of 1ength‘P and the metric
A is evidently the same as before.

The proof that xy + yz > xz when x,y,z do not lie in this
order on & semi great circle is very similar to the corresponding
proof in (4.1).

The inverse problem has also been solved for the torus wi-
thout conjugate points, i.e. a torus whose universal covering space
(the plane) is straight. This problem differs from the preceding
problems in that there are non-obvious necessary conditions. This

will be discussed after the theory of parallels has been developed.
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