
i

iPhone Design
Award-Winning Projects

■ ■ ■

Chris Dannen

ii

iPhone Design Award-Winning Projects

Copyright © 2009 by Chris Dannen

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-7235-9

ISBN-13 (electronic): 978-1-4302-7234-2

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a
trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with
no intention of infringement of the trademark.

President and Publisher: Paul Manning
Lead Editors: Clay Andres
Developmental Editor: Douglas Pundick
Technical Reviewer: Joachim Bondo
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan Gennick,

Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes, Jeffrey Pepper, Frank Pohlmann,
Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Kelly Moritz
Copy Editor: Tracy Brown Collins
Compositor: MacPS, LLC
Indexer: BIM Indexing and Proofreading Services
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York,
NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or visit
http://www.springeronline.com.

For information on translations, please e-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–
eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has
been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any person or
entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information
contained in this work.

iv

Contents at a Glance

■Contents at a Glance.. iv
■Contents ... v
■About the Author .. vii
■About the Technical Reviewer... viii
■Acknowlegments ... ix
■ Introduction.. x
Part I: Innovating Beyond Apple’s Design Standards, While Maintaining Apple’s Logic

for Consistency, Clarity, and Usability.. 1�

■Chapter 1: Tweetie.. 3�

■Chapter 2: Facebook... 23�

Part II: Using App Connectivity with Core Location to Make Games Social... 33�

■Chapter 3: Topple 2 .. 35�

■Chapter 4: Q&A: Foursquare ... 53�

Part III: Using Compression to Cram More Data into a Local App– Large Images,
Geo Data, and Lots of It... 63�

■Chapter 5: AccuTerra.. 65�

■Chapter 6: Q&A: Exit Strategy NYC ... 81�

Part IV: Creating a Beautiful App Without Falling Victim to Memory Issues—OpenGL,
Skinning, Object Reuse, and Coding Efficiently .. 91�

■Chapter 7: Postage ... 93�

■Chapter 8: Q&A: Delicious Library .. 109�

Part V: Fitting a Big Idea into a Small Space – Keeping the Feature List Focused,
Simple, Refined, and Compelling.. 121�

■Chapter 9: Wooden Labyrinth 3D .. 123�

■Chapter 10: Q&A: Prowl.. 133�

Part VI: Making Better Apps and Enfranchising Your Users – The Right Way to Iterate,
Planning an App Store Strategy, and Some Serious iPhone Development Philosophy 143�

■Chapter 11: User Experience: Ge Wang .. 145�

■Chapter 12: Iterative Design... 155�

■Chapter 13: Upgrading.. 181�

■ Index... 191

v

Contents

■Contents at a Glance .. iv�

■Contents .. v�

■About the Author... vii�
■About the Technical Reviewer ... viii�
■Acknowledgments ... ix�

■Introduction .. x�

Part I: Innovating Beyond Apple’s Design Standards, While Maintaining
 Apple’s Logic for Consistency, Clarity, and Usability...1�

■Chapter 1: Tweetie ..3�

A Billion Bad Twitter Apps ... 4�

The Minimalist Flourish ... 7�

Tearing Down Tweetie... 12�

Organic Marketing ... 13�

Tweetie 2... 17�

Market Share... 20�

■Chapter 2: Facebook ...23�

Part II: Using App Connectivity with Core Location to Make Games Social33�

■Chapter 3: Topple 2...35�

How to Do a Sequel: Conceptually... 36�

How to Do a Sequel: Technically ... 39�

Designing Apps (and Companies) for the Mass Market... 44�

Managing a Universe... 45�

PVRTC-It... 45�

Fun, the Apple Way.. 47�

Bureaucracy and Lightheartedness... 49�

Free vs. Paid .. 50�

■Chapter 4: Q&A: Foursquare ...53�

vi

Part III: Using Compression to Cram More Data into a Local App–
 Large Images, Geo Data, and Lots of It ..63�

■Chapter 5: AccuTerra ..65�

Building a Framework ... 66�

Divide and Conquer ... 68�

Building an In-App Store ... 70�

PVRTC or Broke.. 72�

Lazy Loading.. 73�

Memory Diagnostics: Sample Project.. 74�

Dealing with Low Memory Warnings... 76�

Building Forward ... 78�

■Chapter 6: Q&A: Exit Strategy NYC..81�

Part IV: Creating a Beautiful App Without Falling Victim to Memory
 Issues—OpenGL, Skinning, Object Reuse, and Coding Efficiently91�

■Chapter 7: Postage..93�

There Were Sheep ... 94�

Is This One of Them Internets?.. 95�

Coding for Fun ... 97�

The Circling Shark ... 100�

Homegrown Design ... 102�

Building On Postage .. 107�

■Chapter 8: Q&A: Delicious Library...109�

Part V: Fitting a Big Idea into a Small Space – Keeping the Feature
 List Focused, Simple, Refined, and Compelling ...121�

■Chapter 9: Wooden Labyrinth 3D ..123�

The Dropout ... 125�

The Challenge.. 127�

Building the Labyrinth ... 129�

The “Magic” Piece... 130�

Into the Fray .. 131�

■Chapter 10: Q&A: Prowl ..133�

Part VI: Making Better Apps and Enfranchising Your Users –
 The Right Way to Iterate, Planning an App Store Strategy,
 and Some Serious iPhone Development Philosophy ..143�

■Chapter 11: User Experience: Ge Wang...145�

■Chapter 12: Iterative Design ...155�

The Canadian Way ... 156�

Simply Complex... 158�

Group Single-mindedness ... 162�

Reverse Engineering Cocoa... 165�

The Sidebar Solution ... 171�

Enter the iPhone .. 174�

Project Yellow Canary.. 177�

■Chapter 13: Upgrading ..181�

■Index ...191

vii

About the Authors

Chris Dannen is a writer specializing in technology and innovation. He writes primarily for
FastCompany magazine and Bnet.com, where he covers software, mobile technology, Web,
mapping and all things Apple. He is also co-author of Google Voice For Dummies (Wiley,
2009). Chris received his BA from the University of Virginia and lives in the Williamsburg
section of Brooklyn, NY.

viii

About the Technical Reviewer

Joachim Bondo has developed software for three decades, from programmable calculators in
the late ’70s before computers were commonly available, to now the iPhone.

After releasing Deep Green, his critically acclaimed chess application, on the App Store,
Joachim has contributed his excellent taste and insight on good user interface design to
several Apress titles: iPhone Games Projects, iPhone Advanced Projects, iPhone User Interface
Design Projects, and now iPhone Design Award-Winning Projects.

ix

Acknowledgments

A great deal of gratitude is due to all the developers who sat for interviews in order to contribute to this book. Their
patience, expertise and colorful explanations make this book what it is.

Special thanks to the developers who answered my incessant questions with extra detail, and took the time to
explain ancillary concepts, code and hypotheticals at great length: Jonathan Wegener, Loren Brichter, Brandon
Walkin and AJ of Marketcircle; Dave Witonsky for his enthusiasm and Marco Arment for one giant cup of green tea.

Thanks also to Clay Andres for his perennial guidance, and Kelly Moritz, Douglas Pundick, Tracy Brown Collins,
and Joachim Bondo for their hard work and careful consideration. Many thanks also to Austin Carr, whose quick
transcriptions saved me from the woes of carpal tunnel.

Finally, thanks to my editors at FastCompany, Noah Robischon and Lynne d Johnson particularly, for
accommodating the crazed schedule I adopted while writing this book.

x

Introduction

Readme
This is a book about building apps with good design, parsimonious code and aesthetic appeal on the Apple iPhone
and iPod Touch. At times, this book references code and give sample projects; other times, it delves into interaction
and visual design. It doesn’t take a CS doctorate to appreciate or even understand, but some familiarity with
programming is assumed.

Who is this book for?
Lots of people. Mac developers looking to do a killer iPhone app might want to know the hard-won lessons or
philosophies of others; iPhone hackers looking to step up their game might be trying to figure out how much to
emulate Apple. Anyone who appreciates a success story will hopefully enjoy this book, but it’s also inspirational.

How technical is it?
Parts of this book assumes basic knowledge of C or other object-oriented programming languages. In some cases,
we reference specific Apple frameworks and interface guidelines. It will also help to be familiar with the Apple
environment, from the quirks of the App Store to technologies inside OS X.

How were these interviewees chosen?
The five core chapters of this book are based on a series of interviews with five of the 2009 winners of Apple Design
Awards (ADAs) for the iPhone. MLB.com, the makers of the sixth ADA winner, MLB.com at Bat, did not consent to
be interviewed for this book in order to protect their intellectual property.

The remaining six developers interviewed for this book were chosen by its writer and editors because they
buttressed some of the discussions in the core chapters, or because they provided a contrasting philosophy to
another developer in the book. It was important not only that these six apps use Apple frameworks competently,
but that they also smartly navigated the App Store, its frenetic marketplace, and its fickle economy.

Speaking of money: this book also aims to address the philosophies behind monetizing (or not monetizing) an app.
How do I set an optimal price? Should my app be free? How about the upgrade? What are the risks of in-app
purchasing? It’s not as much fun as talking about code or UI, but sometimes monetization means the difference
between designing the app you want, or compromising to cover your overhead.

xi

Lastly, this book tries to garner thoughts and opinions from developers building a wide variety of software. Several
of the apps highlighted herein are tied into desktop companion apps or websites; others discuss the construction
and revision of sequels. Some of the developers themselves aim to startup iPhone-only shops, while some are
veteran Mac developers or new-to-Apple developers looking to experiment. But they’re all motivated by a single
question: how do I build a better iPhone app in concept and in practice?

Chris Dannen

1

 Part

Innovating Beyond
Apple’s Design Standards,
While Maintaining Apple’s
Logic for Consistency,
Clarity, and Usability
With over 100,000 apps in the App Store, how have Facebook and Tweetie managed to

rise above the rabble? Used by millions of iPhone owners and accessed just as often as

many of Apple’s native apps, both these social network clients wield incredible

influence, not only over their users, but also over the way UI standards come to be

accepted by the iPhone masses in general. These are no normal apps. They are apps

that help make the platform.

Tweetie and Facebook are incredibly deep and beautifully-engineered pieces of

software. The two are made for very different use--Tweetie is borne of singular purpose,

while Facebook is evolving to be a Swiss Army app--but they are alike in one particular

trait: personality. Both developers have crafted their vision of iPhone UI with stubborn

confidence, but also even-handedness. Where they believe Apple has shown ingenuity,

they pay competent homage. But where they believe Apple has lapsed, they gladly pick

up the pace of innovation and carry it forward.

This is no small assumption on an Apple device, which, like other Apple products, has

come to vaunt its remarkable ease of use and its long, careful development as the

reasons for its success. Loren Brichter and Joe Hewitt, the developers featured in this

section, don’t seem worried. It’s a combination of humility and precociousness that

could only be called Jobsian.

I

3

3

 Chapter

Tweetie
Developer name: Loren Brichter
Development Company: Atebits
Tags: Layout; Efficient Code; Workflow
URL: http://atebits.com

“I can’t go into details because I think everything is under NDA for, like, the next 20
years,” says Loren Brichter, the founder and sole developer at Philadelphia-based
Mac shop atebits, and developer of Tweetie (Figure 1–1). He’s talking about the
top-secret program he worked on at Apple: the iPhone.

Figure 1–1. Tweetie’s innovative UI won it a cult following.

1

CHAPTER 1: Tweetie 4

He stayed for a year—the most exciting year of his life, by his own account. But having

grown up on Manhattan’s Upper West Side and gone to Tufts University in Boston,

Brichter was a Right Coast kid and he couldn’t stay away. He moved back East, sat

down, and did the only thing he knew how to do: he wrote a Mac app.

“My first product was a little drawing app called Scribbles,” he says. “It kept me a live, it

made a little bit of money, but it wasn’t hugely successful.” He was good with Cocoa

and OpenGL; the projects that had gotten him hired at Apple were an iTunes visualizer

and a soft-body physics simulator. Once assigned to the iPhone project, he had worked

in the guts of Cocoa, at the UIKit level and below. He was a programmer’s programmer.

So it was no surprise that when he first signed up for Twitter in November 2007, he was

more or less disgusted by the brevity of 140-character tweets. “I signed up, used it for

five minutes, and decided: this is stupid,” he says.

It would be a year before he started using it again, to keep up with the tweets of tech

pundit John Gruber. Why? “Gruber is interesting guy,” Brichter says. He found there

were actually lots of other interesting guys on Twitter. “People joke about Twitter, that

it’s stupid and superficial,” Brichter says. “And if you follow superficial people, it’s

superficial. But if you follow interesting people, it’s interesting.”

A Billion Bad Twitter Apps
It was around the same time that his Verizon Wireless contract expired and he finally got

an iPhone. He started scouring the App Store. “I realized there are no good Twitter

apps,” he recalls. “But there are a billion bad ones.” He figured he could probably write

a better app. “What triggered me to do it? I was playing with Twitterific, which I used,

and everybody used. I thought: I wonder why the scrolling is so slow? I wonder if I can

make it faster.” In an hour, he had built a prototype of a list of fast-scrolling tweets.

Then, after a two-week paroxysm of coding, he had built Tweetie, shown in Figure 1–1,

which is as of this writing the most popular mobile Twitter client on any platform, and the

most popular Twitter app for iPhone.

Brichter attributes Tweetie’s meteoric rise in popularity to a cocktail of luck, quality

programming, and some well-timed publicity. But what really lives at the core of his

success—and Tweetie’s—is an absolute intolerance for mediocrity. “I have a shit-list of

Twitter apps that just drive me insane,” he says. “Apple lays out all these guidelines and

conventions about how to write an iPhone app, and these developers basically looked at

them and did the exact opposite in every single case.”

He’s not looking for perfection, however—just parsimony. If it’s one concept of design

and interaction that gets Brichter excited, it’s economy of energy, be it in actual usage

scenarios or in software development. Ask him what aggravated him about the existing

selection of Twitter apps back in November of 2008, when he wrote Tweetie, and he

doesn’t talk about their ugliness or their complexity. Even the slowness that bugged him

in Twitterific is merely a symptom of flawed thinking. “The problem isn’t with how the

other apps used Twitter’s API, it’s with the way they interacted with the iPhone OS,” he

says. “Either they were doing something completely custom, or completely wrong.” His

antipathy wasn’t even aimed at Twitterific, though it was the immediate catalyst for

CHAPTER 1: Tweetie 5

Tweetie. “To tell you the truth, I didn’t have a lot of beef with Twitterific,” he says. “They

were the ADA winner from the year before, and everyone loved the app. It just didn’t jibe

with the way I used Twitter.”

It’s not that Brichter is a loyal Apple devotee, either; he has beef with plenty of the native

apps. “On the SMS app, the ‘Send’ button is right next to the keyboard,” he quibbles,

“so you hit it accidentally. There’s no reason they couldn’t have put it up in the nav bar.”

Mail too was a cautionary tale for Tweetie. “Everything in Mail is twice as many taps [as

with Tweetie]. You have the account list, then the folder list, and then you get into the

message list,” he says. “I want to be able to go into an inbox with one tap, not two or

three.” (Figure 1–2 shows the first tweet feed prototype; Figure 1–3 shows a second

iteration.)

Figure 1–2. The first Tweetie fast-scrolling prototype.

CHAPTER 1: Tweetie 6

Figure 1–3. Another scrolling iteration, this one more iChat-inspired.

The atebits way of using something, distilled, is the pursuit the path of least resistance.

“I got lucky, because the way I originally wrote Tweetie made sense in terms of how you

should interact with a Twitter app,” he says. His idea of how a user “should” use Twitter

is based the navigation Apple Mail, made better: each tap in a tweet’s menu pushes you

rightward into a deeper folder. That’s how Tweetie manages to pack in Recent Tweets,

Search @, Following, Followers, and Block/Unblock without a mess of buttons or

oddball menus. “It doesn’t seem complicated—that’s how every Twitter app should

work,” he says. “But yet that’s not how Twitter apps work.”

The most popular functions aren’t made available through more buttons, or more

menus—just swipe, as if you’re deleting an email or a text, and you have the ability to

star, @reply, or see the profile of the user whose tweet you’re investigating (though you

can also do this by clicking a tweet, if you’re not aware of the shortcut). “My philosophy

was: don’t fight the framework,” he says. “UI Kit APIs are so insanely beautiful that you

can pick them up super-fast, even if you don’t know how to program. It provides all this

awesome functionality, but all these other apps do things their own custom way. But if

you just embrace the UI Kit philosophy, you can build an app like Tweetie really fast.”

(Figure 1–1 shows the swipe shortcut.)

Easy for the ex-Apple iPhone wonk to say, right? Well, sort of. “At Apple I didn’t do any

app stuff except some performance tuning for other teams—making apps faster, doing

CHAPTER 1: Tweetie 7

some fancy looking transitions. I didn’t really have any app building experience at all, so

when I sat down to start writing Tweetie, I was learning the process from scratch.”

The Minimalist Flourish
While Brichter might have a thing for parsimony, the fine-tuning he did during his year at

Apple is readily apparent in both Tweetie and Scribbles in a handful of beautiful actions.

Make a command—a new document or tweet, or the preferences pane—and the

window slips out from under the menu bar with a flourish, in a kind of reverse-genie

effect inspired by the dock. Things in both apps move uncannily fast; even on a dual-

core Macs where waiting is a rarity, the file browser practically rockets out of a tweet’s

title bar. Atebits apps are compact, purpose-built and deceptively robust, like race-

tuned Mini Coopers of the Cocoa realm. (Figure 1–4 shows a tweet in the making, using

Tweetie for Mac.)

Figure 1–4. Tweetie for Mac, which uses the same codebase as Tweetie 2 for iPhone, contains subtle, rapid
animations.

Economy of design is often accompanied by minimalism, and Brichter’s work style is

fittingly Spartan. He doesn’t use Interface Builder; all of Tweetie versions 1 and 2 were

built programmatically in Xcode. And unlike most of the Mac developers in this book,

uses just one machine and just one screen. “A few months ago I got a 17-inch MacBook

Pro, and my Mac Pro has been in storage ever since,” he says. It took Brichter just five

days of coding to build the Twitter-iPhone core inside Tweetie 1, a few days doing the

user interface, and a few more in the hands of beta testers; the whole app weighed in at

30,000 lines of code.

CHAPTER 1: Tweetie 8

It is perhaps because of Twitter’s straightforwardness that Brichter’s Tweetie project

makes for such an excellent example for developers. Unlike most apps, Tweetie has the

benefit (and the onus) of an extant paradigm: the Web version of Twitter The extent to

which Tweetie (or any Twitter iPhone app) succeeds is based largely on one question:

how much additional cognitive load will it take me to use Twitter using this app instead

of the Web?

To give Tweetie parity with the Web experience, Brichter first built in all the features an

average user would want, but he didn’t stop there; he lets power-users navigate reply

chains, upload pictures to Twitpic.com, view trends, do searches, search nearby users

using the phone’s A-GPS, and even built a bookmarklet that users can deploy in mobile

Safari to send links to Tweetie. In 1.2, the first major feature update of release, he added

Instapaper support, landscape keyboard, image compression control for Twitpic

uploads, those Mail-like swipe shortcuts, stock quote links, and the ability to forward

direct messages to email (for more on Instapaper, see Chapter 13). If you’re a Twitter

Web user, you know that a whole lot of those features don’t even appear anywhere on

Twitter itself.

So features he had in spades—but having tons of features is often anathema to

usability. Since it was Twitterific’s slow scrolling that compelled him to build Tweetie in

the first place, Brichter first set out to invent a new way the iPhone rendered its table

cells. Most apps—in accordance Apple’s own tutorials—force the phone to render a

morass of subviews of labels and images, but Brichter’s code pre-blends everything

together using CoreGraphics. Once it renders that first frame, it hands one opaque static

view over to CoreAnimation without the need to rely on the GPU to do any blending

Brichter was so convinced that his fast-scrolling code was superior to Apple’s that he

posted a tutorial on his web site, where he makes his case: “If you think about what is

happening in terms of overdraw, having one big view per table cell is a big win, because

CoreAnimation will only touch a single given pixel on the screen once rather than

multiple times (potentially, depending on how much overlap your old view hierarchy

had),” he wrote.1

As with Tweetie, Brichter’s sample project relies on just one class of object for

everything: ABTableViewCell.h and ABTableViewCell.m. In Listing 1–1, he creates a

sample list of words with a first- and last-name field in two separate fonts as in the

Contacts app.

List 1–1. Creating a first- and last-name field

//
// FirstLastExampleTableViewCell.m
// FastScrolling
//
// Created by Loren Brichter on 12/9/08.
// Copyright 2008 atebits. All rights reserved.
//

#import "FirstLastExampleTableViewCell.h"

1 http://blog.atebits.com/2008/12/fast-scrolling-in-tweetie-with-uitableview/

CHAPTER 1: Tweetie 9

@implementation FirstLastExampleTableViewCell

@synthesize firstText;
@synthesize lastText;

static UIFont *firstTextFont = nil;
static UIFont *lastTextFont = nil;

+ (void)initialize
{
 if(self == [FirstLastExampleTableViewCell class])
 {
 firstTextFont = [[UIFont systemFontOfSize:20] retain];
 lastTextFont = [[UIFont boldSystemFontOfSize:20] retain];
 // this is a good spot to load any graphics you might be drawing in -
drawContentView:
 // just load them and retain them here (ONLY if they're small enough
that you don't care about them wasting memory)
 // the idea is to do as LITTLE work (e.g. allocations) in -
drawContentView: as possible
 }
}

- (void)dealloc
{
 [firstText release];
 [lastText release];
 [super dealloc];
}

// the reason I don't synthesize setters for 'firstText' and 'lastText' is because I
need to
// call -setNeedsDisplay when they change

- (void)setFirstText:(NSString *)s
{
 [firstText release];
 firstText = [s copy];
 [self setNeedsDisplay];
}

- (void)setLastText:(NSString *)s
{
 [lastText release];
 lastText = [s copy];
 [self setNeedsDisplay];
}

- (void)drawContentView:(CGRect)r
{
 CGContextRef context = UIGraphicsGetCurrentContext();

 UIColor *backgroundColor = [UIColor whiteColor];
 UIColor *textColor = [UIColor blackColor];

 if(self.selected)

CHAPTER 1: Tweetie 10

 {
 backgroundColor = [UIColor clearColor];
 textColor = [UIColor whiteColor];
 }

 [backgroundColor set];
 CGContextFillRect(context, r);

 CGPoint p;
 p.x = 12;
 p.y = 9;

 [textColor set];
 CGSize s = [firstText drawAtPoint:p withFont:firstTextFont];

 p.x += s.width + 6; // space between words
 [lastText drawAtPoint:p withFont:lastTextFont];
}

@end

ABTableViewCell.m reads:

#import "ABTableViewCell.h"

@interface ABTableViewCellView : UIView
@end

@implementation ABTableViewCellView

- (void)drawRect:(CGRect)r
{
 [(ABTableViewCell *)[self superview] drawContentView:r];
}

@end

@implementation ABTableViewCell

ABTableViewCell.h reads:

#import <UIKit/UIKit.h>

// to use: subclass ABTableViewCell and implement -drawContentView:

@interface ABTableViewCell : UITableViewCell
{
 UIView *contentView;
}

- (void)drawContentView:(CGRect)r; // subclasses should implement

@end

CHAPTER 1: Tweetie 11

RootConroller.m reads:

//
// RootViewController.m
// FastScrolling
//
// Created by Loren Brichter on 12/9/08.
// Copyright atebits 2008. All rights reserved.
//

#import "RootViewController.h"
#import "FastScrollingAppDelegate.h"
#import "FirstLastExampleTableViewCell.h"

@implementation RootViewController

- (void)viewDidLoad
{
 self.title = @"Fast Scrolling Example";
 [super viewDidLoad];
}

- (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section
{
 return 100;
}

static NSString *randomWords[] = {
@"Hello",
@"World",
@"Some",
@"Random",
@"Words",
@"Blarg",
@"Poop",
@"Something",
@"Zoom zoom",
@"Beeeep",
};

#define N_RANDOM_WORDS (sizeof(randomWords)/sizeof(NSString *))

- (UITableViewCell *)tableView:(UITableView *)tableView
cellForRowAtIndexPath:(NSIndexPath *)indexPath
{
 static NSString *CellIdentifier = @"Cell";

 FirstLastExampleTableViewCell *cell = (FirstLastExampleTableViewCell
*)[tableView dequeueReusableCellWithIdentifier:CellIdentifier];
 if(cell == nil)
 {
 cell = [[[FirstLastExampleTableViewCell alloc]
initWithStyle:UITableViewCellStyleDefault reuseIdentifier:CellIdentifier] autorelease];
 }

 cell.firstText = randomWords[indexPath.row % N_RANDOM_WORDS];
 cell.lastText = randomWords[(indexPath.row+1) % N_RANDOM_WORDS];

