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Preface

“I am convinced that the future development of the possibilities of your own

people, as well as those of mankind, will depend on some of you young people
striking boldly out along new tracks.”

Legendary explorer, Fridtjof Nansen.

Rectorial address at St. Andrews University, 1926.

Fridtjof Nansen (1861-1930) was perhaps the greatest explorer of all time, a man
who led the way in surmounting obstacles and ignoring regular conventions, as
exemplified by his 1888 expedition to cross the Greenland ice-cap from east to west,
without dogs or sledges.

Like all of Nansen’s expeditions, the Greenland project was simple and bold but
required thorough preparation and planning. At the outset, the body of expert
opinion condemned Nansen’s plan as madness, arguing that without dogs and
sledges it would be impossible to traverse the inland ice. Nevertheless, Nansen
embarked upon his expedition and, after facing delays due to ice and weather, his
expedition came ashore on the east coast of Greenland in August 1888. The journey
across the ice cap was hazardous and exhausting in the extreme. Nansen’s party had
to climb nearly three thousand meters above sea-level, navigate through huge
fissures in the ice and suffer temperatures that regularly plummeted below minus
forty degrees Celsius. Despite the adversities, Nansen’s team completed the descent
to the west coast and through their expedition, made a decisive contribution to the
scientific knowledge of the interior of Greenland, which many experts had
mistakenly believed to be free of ice.

Nansen’s Greenland crossing, however, was completely overshadowed by his next
expedition to the polar region. Once again, following a simple, elegant yet
unorthodox plan, Nansen’s idea was to sail a ship as far east as possible along the
Siberian coast, and then allow the vessel to be frozen in the ice, in the hope it would
be carried across the North Pole or a point close to it. Once again, experts dismissed
Nansen’s plan as folly but, choosing to ignore the opinion of the naysayers, Nansen
set out in the summer of 1893 in the Fram, a ship specifically designed to withstand
the pressure of the polar ice. In September, the Fram was trapped in the ice and
began drifting in a north-westerly direction, once again confirming Nansen’s theory.
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After a year trapped in the ice, Nansen had to accept the Fram would not be carried
as far north as he had hoped. Instead, bold as ever, Nansen decided to leave the ship
with companion, Hjalmar Johansen, and continue northwards across the pack ice,
using skis and sledges drawn by dogs. Taking supplies sufficient for only one
hundred days, Nansen and Johansen set out in March 1895 as Fram continued on
her course. Struggling across frozen seas and almost impassable masses of ice
towards an unknown fate, the intrepid explorers endured a journey of incredible
privation and danger, eventually reaching a point that was the closest a human had
ever been to the North Pole before being forced to turn back due to lack of food.
After 132 days, Nansen and Johansen sought refuge on Franz Josef Land, a bleak
and desolate island, where they spent the winter in a primitive shelter built of rocks
and ice. The following year, the two explorers continued their trek south, eventually
encountering British explorer, Frederick Jackson, who took them back to Norway
on his ship. The Fram returned to Norway at almost the same time, having drifted
for three years, as predicted by Nansen.

The adventures of the Fram and her crew attracted worldwide attention and
established Nansen’s reputation as one of the great pioneers of polar exploration.
The scientific results realized by the expedition were no less impressive than the
courage of the explorers, since the data collected proved of great value in the
disciplines of arctic meteorology, oceanography and zoology.

When Nansen set out on his first great expedition over Greenland, there were still
large blank areas on the maps of the world. By the time he died in 1930, there were
hardly any left, a fact that saddened the great Norwegian who was driven by
exploring the unknown. More than one hundred years after Nansen’s epic
expeditions, uncharted lands still await discovery, but this time we must venture a
little further than the eminent Norwegian explorer. Traveling to Mars will provide a
challenge on the same scale as Nansen’s expeditions to Greenland and the high
arctic. Such an expedition will be one fraught with danger and risk, but pioneering
such a venture will be no less noble a challenge than the expeditions embarked upon
by Nansen and his fellow explorers more than a century ago.

Civilizations thrive on challenge and decay without it and the time is long past for
humans to once again face outward and embrace the bold endeavor of travelling to
Mars. In so doing, we will make a profound statement testifying to the enduring
human spirit. We must not shrink back from this task but attack it with the same
enthusiasm and intelligence that Nansen brought to the challenges of his time.

The heroes of one generation are too easily forgotten by the next and the world is
in dire need of rediscovering the bold example of Fridtjof Nansen. A manned
mission to Mars is the key to reviving the spirit of exploration and once again
expanding the limits of the possible. This book describes how we will embark on
such a bold endeavor.
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PLATE 1 A whole disk image of the planet Mars taken by the Mars Global
Surveyor spacecraft in June 2001. It is winter in the southern hemisphere and
there is dust storm activity in the Tharsis volcanic region. (Malin Space Science
Systems/NASA.)




PLATE 2 Orion is NASA’s replacement for the Space Shuttle and is due to enter service
in 2015. It will also be the vehicle carrying Mars crews to low Earth orbit. (NASA.)

PLATE 3 NASA’s Ares V is a two-stage, vertically stacked launch vehicle capable of
carrying 188 metric tonnes to low-Earth orbit. For the initial insertion into Earth orbit,
the Ares V first stage utilizes two five and a half segment reusable solid rocket boosters
derived from the Space Shuttle’s solid rocket boosters. In the Mars Direct architecture,
the Ares V would deploy a forty-tonne cargo payload into a direct trans-Mars
trajectory. (NASA.)




PLATE 4 The Skylon Single-Stage-to-Orbit (SSTO) spaceplane in orbit. (Adrian

Mann, Reaction Engines Limited.)

PLATE 5 Aerocapture is a flight maneuver used to insert a spacecraft into orbit using
the atmosphere as a brake. The atmosphere creates friction, used to slow the vehicle,
transferring the energy generated by the vehicle’s high speed into heat. The maneuver
enables quick orbital capture without the requirement for heavy loads of propellant.
(NASA))




PLATE 6 US astronaut Franklin Chang-Diaz working on the International Space
Station during Space Shuttle mission STS-111. (NASA.)

PLATE 7 Artist’s rendering of Bimodal Nuclear Thermal Rocket. (John Frassanito
and Associates/NASA.)



PLATE 8 An antimatter spaceship. (NASA.)

PLATE 9 J-2X rocket engine. (NASA.)



PLATE 10 Orion prototype/manufacturing demonstration unit. (NASA.)

PLATE 11 The Airbus A300 performing parabolic flight. (Novespace.)
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PLATE 12 Ares I launch. (NASA.)




PLATE 13 Astronauts drilling for samples. (John Frassanito and Associates/NASA.)

PLATE 14 EXP-Arch Mother Ship Rover/Scorpion. Side view. Design: Trotti Studio.
(Mitchell Joachim.)
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