
 COMPANION eBOOK

Shelve in
Mobile Computing

User level:
Intermediate–Advancedwww.apress.com

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Pro iOS Persistence explains how to build apps in Objective-C and Swift that per-
sist and use data most effectively including the popular Core Data framework.

This book starts by giving you a solid grounding in Core Data, providing a founda-
tion for the rest of the book. You’ll see how to work with SQLite and how to create
an efficient data model to represent your data. Once you’ve established your data
model, you’ll learn how to work with data objects and refine result sets to get the
most out of the stored data.

The advanced portions of the book begin by showing you how to tune your apps’
performance and memory usage, to give you a truly professional edge. You’ll see
how to version and migrate your data as well, to ensure your data stays organized
and efficient.

With this book you will learn:

• How to organize data appropriately
• How to persist data efficiently
• How to use Core Data in advanced settings
• How to version and migrate data as your applications evolve
• How to tune and optimize persistence

Pro
iOS Persistence

Using Core Data

Michael Privat | Robert Warner

Companion
eBook
Available

Privat
W

arner
Pro

iOS Persistence
SOURCE CODE ONLINE

9 781430 260288

54999
ISBN 978-1-4302-6028-8

Includes

iOS 8 SDK

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Authors ��xiii

About the Technical Reviewers �� xv

Acknowledgments �� xvii

Introduction ��� xix

Chapter 1: Touring Core Data ■ ���1

Chapter 2: Building Data Models ■ ���27

Chapter 3: Advanced Querying ■ ��59

Chapter 4: Attending to Data Quality ■ ���101

Chapter 5: Integrating with the User Interface ■ ��135

Chapter 6: Versioning and Migrating Data ■ ��191

Chapter 7: Transforming and Encrypting Data ■ ��221

Chapter 8: Talking to Services: iCloud and Dropbox ■ ��259

Chapter 9: Tuning Performance, Memory Usage, and Multithreading ■ ���������������������������287

Index ���359

xix

Introduction

The world has gone mobile, and it seems that iOS apps lead the charge. People use their iPhone,
iPads, and soon their Apple Watches to consume, produce, and store a diversity of information.
As you develop applications to run on these Apple devices, you’ll appreciate the polish that Apple
has spread on its persistence framework: Core Data. No other mobile platform offers a persistence
layer that approaches Core Data’s power, ease of use, or flexibility. With each release of the iOS
Software Development Kit (SDK), Apple grows and improves the Core Data framework.

We’ve written and rewritten this book several times as Core Data has continued to grow. Last
summer, as we neared completion of this book, Apple surprised us all with the announcement of its
new Swift programming language. After discussion between ourselves and with the folks at Apress,
we concluded that the proper response to Swift’s advent was to rewrite anew and incorporate every
example in this book in both Objective-C and Swift. We have some bruises and scars from that
experience, of course, as all the Swift early adopters can attest. With each new release of Xcode, we
had to revisit chapters we thought done because some bits of code no longer compiled under the
new Xcode. We believe we’ve caught all the errant ?s and !s, but apologize in advance if any slipped
through.

What You’ll Need
To follow along with this book, you’ll need a Mac running OS X Mavericks or OS X Yosemite,
and you’ll need Xcode 6. You’ll be happiest if you’re running the latest point version of Xcode 6,
particularly if you use the Swift code samples. Language support for Swift continues to improve with
each release of Xcode. You can download the latest version of Xcode 6 from the Mac App Store.

This text doesn’t cover beginning iOS development, whether in Objective-C or Swift, so you should
have at least a basic understanding of either Objective-C or Swift, and also of Cocoa Touch and iOS
development.

xx Introduction

What You’ll Find
This book approaches iOS persistence and Core Data from both theoretical and practical
perspectives, so you’ll learn generally how Core Data works and how its pieces fit together, and
also you’ll be guided step-by-step how to incorporate this powerful persistence framework into your
applications. You’ll see how to implement every topic we treat both in Objective-C and in Swift. We
cover a range of topics, including how to build your Core Data data models, how to query your data,
how to migrate data across model versions, how to encrypt data, how to use Core Data on different
threads, how to store data in the cloud, and how to tune performance.

You can read the book cover to cover, but for the best results we recommend you read it in front
of your computer, typing in the code samples to understand how they work and what they do. We
also recommend that you keep this book as a reference for your ongoing Core Data needs and
challenges.

How This Book Is Organized
We’ve organized this book to build from basic principles to advanced topics, so you’ll probably gain
the most if you work through the book from front to back. Chapter titles clearly mark the subject
matter they contain, however, so if you’re looking for information on a specific topic, feel free to jump
directly to that chapter.

Source Code and Errata
You can download the source code for this book from the Apress web site at www.apress.com. We’ve
released all the code under the MIT license (http://opensource.org/licenses/MIT), so feel free to
use it in your own projects, whether personal or commercial. Check the errata section of the Apress
web site for any corrections to code or text.

How to Contact Us
We’d love to hear from you! You can find us here:

Michael Privat

Email: mprivat@mac.com

Twitter: @michaelprivat

Blog: http://michaelprivat.com

Rob Warner

Email: rwarner@grailbox.com

Twitter: @hoop33

App.net: @hoop33

Blog: http://grailbox.com

www.apress.com
http://opensource.org/licenses/MIT
http://mprivat@mac.com
http://@michaelprivat
http://michaelprivat.com
http://rwarner@grailbox.com
http://@hoop33
http://@hoop33
http://grailbox.com

1

Chapter 1
Touring Core Data

That computer in your purse or pocket—the one that purportedly places phone calls—stores
gigabytes’ worth of data: pictures, e-mails, texts, tweets, restaurant reviews, high scores, books,
what your friends ate for breakfast, and countless other combinations of zeros and ones that inform
and entertain you every day. As Apple’s offering to manage data, Core Data manages much of that
information, and the percentage of Core Data–managed information on iOS devices continues to
grow. In this chapter, we’ll discover why.

This chapter explains what Core Data is and what components Core Data comprises. It outlines and
explains the basic classes that Core Data uses and how they work together. It shows how to set up
Core Data in your applications, whether you take advantage of Xcode’s Core Data code generation
or add Core Data functionality by hand. It also shows the basics of creating an object model for your
objects, storing objects, and retrieving them.

In this chapter, you build two applications: one that tells Xcode to set up Core Data for you and one
to which you add Core Data by hand. Neither application has an interface beyond a blank screen,
but, rather, they both focus on Core Data interaction. Applications in later chapters will have actual
user interfaces, but be patient and focus on learning the basics of Core Data. The information you
learn in this chapter will provide a solid foundation for you throughout the rest of this book and with
your own Core Data projects.

What Is Core Data?
Imagine computers couldn’t store data. Imagine each time you powered on your iPhone or iPad,
you started fresh with each application you worked with. All your documents were gone: your school
papers, your budget projection spreadsheets, your crafted pitch presentations for another round of
venture capitalist funding, all vanished. You’re back to Level 1 on Angry Birds. You have no more
grumpy cat pictures. Your texts from last night have disappeared (which, for some of you, might be
a good thing). In short, your device is the classic tabula rasa, day after day, blank and empty of any
data, and not very useful.

2 CHAPTER 1: Touring Core Data

What those imaginary computers lack is persistence: the ability to store and retrieve data over time.
We want to persist information, like our pictures and our high scores and our documents. Core Data,
Apple’s solution for persistence, allows applications to persist data of any form and retrieve it.

Core Data isn’t technically a database, although it usually stores its data in one (an SQLite database,
to be precise). It’s not an object-relational mapper (ORM), though it can feel like one. It’s truly an
object graph, allowing you to create, store, and retrieve objects that have attributes and relationships
to other objects. Its simplicity and power allow you to persist data of any form, from basic data
models to complex.

Core Data Components
Newcomers to Core Data often express dismay at the complexity of the framework, but as we’ll
see, that initial response is unfounded. Cocoa’s predilection for long names probably contributes to
the mistaken sense of the complexity; after all, NSPersistentStoreCoordinator is a mouthful. Once
you get past the long names, however, and understand the purpose of each of the classes, you’ll
recognize both the elegance and the simplicity of the Core Data framework.

We can divide the Core Data classes into two groups: the ones we generally set up once, when
our programs launch, and the ones we work with throughout the running time of our programs. In
addition, Cocoa provides a set of classes that Core Data uses that aren’t limited in scope to Core
Data. Core Data leverages classes like NSPredicate and NSSortDescriptor, which are also used in
other contexts in Cocoa applications, to augment its capabilities. We’ll touch on those other classes
throughout this book.

Let’s first discuss the classes we set up once, when our programs launch. These classes are

	NSPersistentStore

	NSPersistentStoreCoordinator

	NSManagedObjectModel

The NSPersistentStore class represents a persistent store: a place on your device’s file system that
actually stores data. This is usually an SQLite database, though Core Data also offers other types of
persistent stores:

XML (OS X only)	

Atomic	

In-memory	

XML stores, which are available only on OS X, store data (as you’d guess) in XML files. Atomic
stores, so named because they read and write the entire data store when accessed, can be useful
if you want to create your own file format for storing files. Core Data provides one atomic store
implementation called the binary store type, and you can create custom stores based on atomic
stores. Understand, though, that atomic stores tend to be slower, especially as your data set grows
large, because they write and read the data files atomically. In-memory stores are useful if you don’t
require your data to persist beyond the current launch of the application but still want to use the
power of Core Data to interact with the data. Most, if not all, of your persistent stores will be SQLite

3CHAPTER 1: Touring Core Data

stores, though. They’re fast, since they can read and write partial data, and they persist data beyond
just the current launch of your applications. Each of your applications will often have one persistent
store, though they can have more than one.

The NSPersistentStoreCoordinator class represents a persistent store coordinator, which
coordinates among persistent stores, object models, and object contexts. The persistent store
coordinator uses an object model, which we’ll see next, and ties it to one or more persistent stores.
It also coordinates the storage and retrieval of objects between one or more managed object
contexts and one or more persistent stores. It’s in a sense the hub of Core Data, tying together all
the Core Data classes. Luckily for you, though, it’s easy to create and configure, and then it performs
all its complicated magic for you while your application runs.

The NSManagedObjectModel class represents a managed object model or, more simply, an object
model, which looks so much like a data model that you’re forgiven for thinking of it in that way. Just
as an entity-relationship (ER) diagram defines tables, columns, and relationships, an object model
defines entities, attributes, and relationships. You can create an object model in code, but Xcode
provides an object model editor that lets you visually create object models that your application
loads and uses.

You use the next two classes throughout the runtime of your applications. They are

	NSManagedObjectContext

	NSManagedObject

The NSManagedObjectContext class represents a managed object context, or just an object context.
Your applications can use one or more of these, though often they’ll use only one. Object contexts
provide places for objects to live, and the Apple documentation calls it a “scratch pad.” You create
objects in the object context, retrieve objects from the object context, and tell the object context
to save itself. The object context takes care of talking to the persistent store coordinator to actually
store and retrieve objects. You’ll talk to the object contexts a lot in your Core Data applications.

The NSManagedObject class represents a managed object, or an object that Core Data manages.
You can think of these as rows in a database. Managed objects have attributes and relationships,
as defined by an object model, and use key-value coding (KVC) so you can easily set and get their
data. You can also create a subclass of NSManagedObject to create properties that match your object
model and convenience methods to work with your managed objects.

Figure 1-1 shows the Core Data classes and how they work together.

4 CHAPTER 1: Touring Core Data

Creating a New Core Data Project
Theory and diagrams work well for gaining an understanding of how something works, but actual
working code cements the concepts into true comprehension. We’ve talked about theory and seen
a diagram; now, let’s see Core Data in practice. In this section, we create an Xcode project that uses
Core Data from its outset. Later in this chapter, we show how to add Core Data to an existing project.

Figure 1-1. The Core Data classes

5CHAPTER 1: Touring Core Data

This first application, not so imaginatively named CoreDataApp, stores Person objects with a
single attribute, name. It has a blank screen for an interface, so you can’t interact with it. You run it,
it creates data in an SQLite database, and then we use the sqlite3 command-line application to
browse the database.

Creating the Project
Launch Xcode and create a new single view application project. Call it CoreDataApp and set the
organization identifier to book.persistence. Make sure the Use Core Data check box is checked,
as shown in Figure 1-2, and create and save the project. Throughout this book, we use Objective-C
as the primary language, but we include Swift versions of the listings as well.

Figure 1-2. Creating the CoreDataApp project

Touring the Core Data Components
By checking the Use Core Data check box, you’ve instructed Xcode to add the Core Data framework
to your project. If you selected Objective-C as the project language, Xcode has added the Core Data
header file, CoreData/CoreData.h, to the project’s AppDelegate.h file. If you selected Swift as the
language, you’ll find the line import CoreData in the project’s AppDelegate.swift file.

You’ve also told Xcode to create a model that will be loaded into an NSManagedObjectModel instance
in your application. To see this, expand the CoreDataApp folder in Xcode’s Project Navigator. You
should see an entry called CoreDataApp.xcdatamodeld, which is a directory that contains the various
artifacts that make up the project’s data model. When we build the application, Xcode will compile
this to a directory called CoreDataApp.momd inside the application bundle. This directory will contain
the artifacts that CoreDataApp loads to create the NSManagedObjectModel instance.

6 CHAPTER 1: Touring Core Data

Finally, you’ve told Xcode to create properties in your application delegate class, AppDelegate, to
materialize the Core Data stack. Open the header file, AppDelegate.h, which should match Listing 1-1.

Listing 1-1. AppDelegate.h

#import <UIKit/UIKit.h>
#import <CoreData/CoreData.h>

@interface AppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;

@property (readonly, strong, nonatomic) NSManagedObjectContext *managedObjectContext;
@property (readonly, strong, nonatomic) NSManagedObjectModel *managedObjectModel;
@property (readonly, strong, nonatomic) NSPersistentStoreCoordinator *persistentStoreCoordinator;

- (void)saveContext;
- (NSURL *)applicationDocumentsDirectory;

@end

You should recognize the three Core Data properties: managedObjectContext, managedObjectModel,
and persistentStoreCoordinator. Xcode puts them all in the application delegate class, which
works fine, but application delegate classes tend to grow to unwieldy sizes. When we add Core Data
to an existing project later in this chapter, we use a different approach that partitions the Core Data
stack to a different class.

You should also notice two methods that Xcode has created to help us with Core Data interaction.

- (void)saveContext;- (NSURL *)applicationDocumentsDirectory;

The saveContext method gives us a central location for saving the managed object context. We can
save the managed object context from anywhere in the code, of course, but having one place to do
the save allows us to do things like localize error handling. Chapter 4 goes more in depth into error
handling. Xcode has generated some default error handling in the generated saveContext method
that works well enough for now. Ultimately, the saveContext method checks whether we have any
changes floating in the managed object context by calling its hasChanges method, and then calls save.

The applicationDocumentsDirectory method returns, as you would imagine, this application’s
documents directory. The persistent store coordinator calls this method to determine where on the
file system to create the persistent store.

The Swift version of the generated project doesn’t have a header file, of course, but it has the
same properties, as well as corresponding calls for the method declarations we just examined
(saveContext and applicationDocumentsDirectory:). The source doesn’t group the properties for
the Core Data stack together, but if you read through AppDelegate.swift, you’ll find them, initialized
using closures (not shown here), as Listing 1-2 shows.

Listing 1-2. Core Data properties in AppDelegate.swift

lazy var managedObjectModel: NSManagedObjectModel
lazy var persistentStoreCoordinator: NSPersistentStoreCoordinator?
lazy var managedObjectContext: NSManagedObjectContext?

7CHAPTER 1: Touring Core Data

Initializing the Core Data Components
Xcode’s generated code for Core Data initializes the Core Data stack lazily, when its components
are first accessed. You can certainly use this approach for all your Core Data applications, and for
CoreDataApp we’ll leave the default Xcode implementation. You also, however, can set up your Core
Data stack when your application launches. We also use that approach in this book.

The Core Data stack for CoreDataApp initializes when you first access the managed object
context, materialized by the managedObjectContext property. Listing 1-3 contains the code for
managedObjectContext’s Objective-C accessor, and Listing 1-4 shows the same accessor in Swift.

Listing 1-3. The Accessor for managedObjectContext in Objective-C

// Returns the managed object context for the application.
// If the context doesn't already exist, it is created and bound to the persistent store coordinator
for the application.
- (NSManagedObjectContext *)managedObjectContext
{
 if (_managedObjectContext != nil) {
 return _managedObjectContext;
 }

 NSPersistentStoreCoordinator *coordinator = [self persistentStoreCoordinator];
 if (coordinator != nil) {
 _managedObjectContext = [[NSManagedObjectContext alloc] init];
 [_managedObjectContext setPersistentStoreCoordinator:coordinator];
 }
 return _managedObjectContext;
}

Listing 1-4. The Accessor for managedObjectContext in Swift

lazy var managedObjectContext: NSManagedObjectContext? = {
 // Returns the managed object context for the application (which is already bound to the
persistent store coordinator for the application.) This property is optional since there are
legitimate error conditions that could cause the creation of the context to fail.

 let coordinator = self.persistentStoreCoordinator
 if coordinator == nil {
 return nil
 }
 var managedObjectContext = NSManagedObjectContext()
 managedObjectContext.persistentStoreCoordinator = coordinator
 return managedObjectContext
}()

As the comment generated by Xcode attests, the accessor checks to see whether the
managedObjectContext property (synthesized as _managedObjectContext) has been created. If so,
the accessor returns it. If not, it retrieves the persistentStoreCoordinator property, allocates and
initializes the managed object context, and sets its persistent store coordinator to the retrieved
persistentStoreCoordinator.

8 CHAPTER 1: Touring Core Data

The accessor for persistentStoreCoordinator, shown in Listing 1-5 (Objective-C) and Listing 1-6
(Swift), does its own lazy initialization. Note that we’ve removed the long comment about
error handling, which Chapter 4 covers. As you can see, this code checks whether the
persistentStoreCoordinator property (synthesized as _persistentStoreCoordinator) has been
created. If not, it determines the URL (uniform resource locator) for the persistent store by tacking
the file name, CoreDataApp.sqlite (or CoreDataAppSwift.sqlite), onto the directory returned
by the applicationDocumentsDirectory helper discussed earlier in this chapter, and stores it in
storeURL. It then allocates the persistentStoreCoordinator property, initializes it with the managed
object model returned by the managedObjectModel accessor, and adds a persistent store that points
to the URL created in storeURL.

Listing 1-5. The Objective-C Accessor for persistentStoreCoordinator

// Returns the persistent store coordinator for the application.
// If the coordinator doesn't already exist, it is created and the application's store added to it.
- (NSPersistentStoreCoordinator *)persistentStoreCoordinator
{
 if (_persistentStoreCoordinator != nil) {
 return _persistentStoreCoordinator;
 }
 NSURL *storeURL = [[self applicationDocumentsDirectory] URLByAppendingPathComponent:

@"CoreDataApp.sqlite"];

 NSError *error = nil;
 _persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc] initWithManagedObjectModel:
[self managedObjectModel]];

 if (![_persistentStoreCoordinator addPersistentStoreWithType:NSSQLiteStoreType configuration:
nil URL:storeURL options:nil error:&error]) {

 /* Comment deleted */
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 abort();
 }

 return _persistentStoreCoordinator;
}

Listing 1-6. The Swift Accessor for persistentStoreCoordinator

lazy var persistentStoreCoordinator: NSPersistentStoreCoordinator? = {
 // The persistent store coordinator for the application. This implementation creates and return

a coordinator, having added the store for the application to it. This property is optional since
there are legitimate error conditions that could cause the creation of the store to fail.

 // Create the coordinator and store
 var coordinator: NSPersistentStoreCoordinator? = NSPersistentStoreCoordinator(managedObjectMode

l: self.managedObjectModel)
 let url = self.applicationDocumentsDirectory.URLByAppendingPathComponent("CoreDataAppSwift.

sqlite")
 var error: NSError? = nil
 var failureReason = "There was an error creating or loading the application's saved data."

9CHAPTER 1: Touring Core Data

 if coordinator!.addPersistentStoreWithType(NSSQLiteStoreType, configuration: nil, URL: url,
options: nil, error: &error) == nil {

 coordinator = nil
 // Report any error we got.
 let dict = NSMutableDictionary()
 dict[NSLocalizedDescriptionKey] = "Failed to initialize the application's saved data"
 dict[NSLocalizedFailureReasonErrorKey] = failureReason
 dict[NSUnderlyingErrorKey] = error
 error = NSError(domain: "YOUR_ERROR_DOMAIN", code: 9999, userInfo: dict)
 // Replace this with code to handle the error appropriately.
 // abort() causes the application to generate a crash log and terminate. You should not use

this function in a shipping application, although it may be useful during development.
 NSLog("Unresolved error \(error), \(error!.userInfo)")
 abort()
 }

 return coordinator
}()

We have one more piece of lazy initialization to review, found in the accessor for managedObjectModel
and shown in Listing 1-7 (Objective-C) and Listing 1-8 (Swift). This code, like the other accessors,
returns the managedObjectModel property (synthesized as _managedObjectModel) if it has been
initialized. Otherwise, the code initializes it by storing the URL for the compiled managed object
model, CoreDataApp.momd (CoreDataAppSwift.momd), in the modelURL variable, allocating the
managedObjectModel property, and initializing it with the URL to the managed object model.

Listing 1-7. The Objective-C Accessor for managedObjectModel

// Returns the managed object model for the application.
// If the model doesn't already exist, it is created from the application's model.
- (NSManagedObjectModel *)managedObjectModel
{
 if (_managedObjectModel != nil) {
 return _managedObjectModel;
 }
 NSURL *modelURL = [[NSBundle mainBundle] URLForResource:@"CoreDataApp" withExtension:@"momd"];
 _managedObjectModel = [[NSManagedObjectModel alloc] initWithContentsOfURL:modelURL];
 return _managedObjectModel;
}

Listing 1-8. The Swift Accessor for managedObjectModel

lazy var managedObjectModel: NSManagedObjectModel = {
 // The managed object model for the application. This property is not optional. It is a fatal
error for the application not to be able to find and load its model.
 let modelURL = NSBundle.mainBundle().URLForResource("CoreDataAppSwift", withExtension: "momd")!
 return NSManagedObjectModel(contentsOfURL: modelURL)!
}()

10 CHAPTER 1: Touring Core Data

The lazy-initialization approach works just fine and ensures that all pieces of the Core Data stack get
initialized when they’re needed. Feel free to continue to use this approach in your Core Data–based
applications. The second application we build in this chapter, PersistenceApp, takes a different
approach: it contains all the Core Data interactions in a single class, Persistence, that directly
initializes the Core Data stack. Feel free to use either approach in your Core Data applications.

Creating a Managed Object Model
Xcode has created an empty object model for us, CoreDataApp.xcdatamodeld (or CoreDataAppSwift.
xcdatamodeld), which you can see by selecting it in the Xcode Project Navigator (see Figure 1-3).

Figure 1-3. An empty object model

11CHAPTER 1: Touring Core Data

For the CoreDataApp application, we want to create a single entity called Person that has a single
attribute called name. Note the convention of capitalizing the entity name and lowercasing the
attribute name; this naming approach is optional but conforms well to standard coding practices.
We use it throughout the book.

To create this entity, click the Add Entity button at the bottom of the Xcode window. This will create
an entity called Entity. Rename it Person. Then, click the + button under Attributes and create an
attribute called name and change its type from Undefined to String. Your object model should now
match Figure 1-4.

Figure 1-4. The object model with the Person entity

Xcode will compile and load this object model into the managedObjectModel property.

12 CHAPTER 1: Touring Core Data

Adding Some Objects
Before running the CoreDataApp application, open AppDelegate.m, add code to the applicati
on:didFinishLaunchingWithOptions: method to initialize the Core Data stack by accessing the
managedObjectContext property, create some managed objects, and save the managed object
context. Listing 1-9 shows the updated method.

Listing 1-9. The Updated application:didFinishLaunchingWithOptions: Method

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)
launchOptions {
 NSManagedObject *object1 = [NSEntityDescription insertNewObjectForEntityForName:@"Person"
inManagedObjectContext:self.managedObjectContext];

 [object1 setValue:@"Tarzan" forKey:@"name"];

 NSManagedObject *object2 = [NSEntityDescription insertNewObjectForEntityForName:@"Person"
inManagedObjectContext:self.managedObjectContext];

 [object2 setValue:@"Jane" forKey:@"name"];

 [self saveContext];

 return YES;
}

If you’re working with Swift, open AppDelegate.swift instead, and update as shown in Listing 1-10.

Listing 1-10. The updated application:didFinishLaunchingWithOptions: function

func application(application: UIApplication!, didFinishLaunchingWithOptions launchOptions:
NSDictionary!) -> Bool {
 let object1 = NSEntityDescription.insertNewObjectForEntityForName("Person",
inManagedObjectContext: self.managedObjectContext!) as NSManagedObject

 object1.setValue("Tarzan", forKey: "name")

 let object2 = NSEntityDescription.insertNewObjectForEntityForName("Person",
inManagedObjectContext: self.managedObjectContext!) as NSManagedObject

 object2.setValue("Jane", forKey: "name")

 saveContext()

 return true
}

This code creates two new Person managed objects, object1 and object2, and sets their name
attributes to “Tarzan” and “Jane,” respectively. Note that managed objects use Cocoa’s standard
KVC to set values for attributes. You can also create custom classes for your entities with direct
accessors for attributes, so that you can write code as follows:

object1.name = @"Tarzan";

13CHAPTER 1: Touring Core Data

Chapter 2 discusses custom classes.

We create the managed objects by inserting them into a managed object context: our
managedObjectContext property. By accessing that property, we start the chain that initializes our
entire Core Data stack.

After creating the two managed objects, this code saves the managed object context using the
saveContext helper, before throwing a blank window onto the screen. Build and run the application
to create the managed objects in the persistent store and see the blank window. Then stop the
application.

Viewing the Data
The CoreDataApp application doesn’t have any code to display the contents of its persistent store.
How, then, can we verify that the application actually created and stored data? For that, we examine
the SQLite database file, CoreDataApp.sqlite or CoreDataAppSwift.sqlite, directly. When you run
the application in the iOS Simulator, the application writes this file to a directory below your home
directory. The easiest way to find this file is to open a terminal and type

find ~ -name 'CoreDataApp.sqlite'

Once you locate the file, change to that directory and open the file using the sqlite3 application.

sqlite3 CoreDataApp.sqlite

Alternatively, you can open the file directly using the find command:

find ~ -name 'CoreDataApp.sqlite' -exec sqlite3 {} \;

Let’s first examine the database schema by typing the .schema command at the sqlite> prompt.

sqlite> .schema
CREATE TABLE ZPERSON (Z_PK INTEGER PRIMARY KEY, Z_ENT INTEGER, Z_OPT INTEGER, ZNAME VARCHAR);
CREATE TABLE Z_METADATA (Z_VERSION INTEGER PRIMARY KEY, Z_UUID VARCHAR(255), Z_PLIST BLOB);
CREATE TABLE Z_PRIMARYKEY (Z_ENT INTEGER PRIMARY KEY, Z_NAME VARCHAR, Z_SUPER INTEGER, Z_MAX INTEGER);

You see three tables, two of which (Z_METADATA and Z_PRIMARYKEY) Core Data uses for database
management tasks. The third, ZPERSON, stores Person entities. You can see it has a column called
ZNAME, of type VARCHAR, for storing the name attribute. Note that this schema, including tables, table
names, and column names, among others, are undocumented implementation details subject to
change. You can’t rely on these patterns and should never access SQLite databases directly in any
of your Core Data–based applications. For testing purposes, however, like what we’re doing here,
you’re safe to mess around.

Let’s verify that the CoreDataApp application created and stored the two Person managed objects:

sqlite> select * from zperson;
1|1|1|Tarzan
2|1|1|Jane
sqlite> .quit

14 CHAPTER 1: Touring Core Data

You can confirm that, indeed, the CoreDataApp application has successfully used the Core Data
framework to create and store data.

Adding Core Data to an Existing Project
Now that you understand how Core Data works, you can see how easy it is to add to an existing
project. Just follow the same steps that Xcode does when you check the Use Core Data check box.

Import the Core Data header file (	 CoreData/CoreData.h) or add @import CoreData
for Objective-C, or add import CoreData for Swift.

Add a managed object model to your application.	

Add code to your application to initialize the Core Data stack and grant access 	
to the managed object context.

You can mimic Xcode’s generated code for initializing the Core Data stack or follow a different
pattern. We use both approaches throughout this book. However you approach the problem, the
basic steps are the same.

Creating a Core Data-less Application
To add Core Data to an existing application, we must first have a Core Data-less application to add
to. Create a new Xcode project using the single view application template and call it PersistenceApp.
Be sure to uncheck the Use Core Data check box (see Figure 1-5).

Figure 1-5. Creating the PersistenceApp project

15CHAPTER 1: Touring Core Data

Adding the Core Data Framework
Your application must link against the Core Data framework, aptly named CoreData.framework,
in order to use Core Data classes. While adding the Core Data framework to your project used
to require a dozen mouse clicks, Xcode’s recent updates have introduced the notion of module
imports. To link the Core Data framework to your project, simply add an @import CoreData; directive
when you need access to Core Data classes in your Objective-C project, or import CoreData in your
Swift project. Xcode will do the rest of the linking work.

Adding a Managed Object Model
A Core Data–based application requires a managed object model, so add a new file to the
PersistenceApp group using the Core Data  Data Model template. Yes, even Xcode calls it a data
model, not a managed object model. You can call the model whatever you’d like; you just have to
match the name when creating your persistence store. For the sake of convention, though, call it
PersistenceApp.xcdatamodeld. When you’re done, you should have an empty Core Data model
called PersistenceApp.xcdatamodeld, as shown in Figure 1-6.

Figure 1-6. The empty PersistenceApp.xcdatamodeld managed object model

16 CHAPTER 1: Touring Core Data

We’ll add entities and attributes to the model later. For now, we’ll continue to focus on adding
everything necessary for Core Data to the application.

Adding and Initializing the Core Data Stack
For the PersistenceApp application, we’re going to put all the Core Data stuff into a separate class
called Persistence, and add an instance of that class as a property in our AppDelegate class. This
will allow us to keep our AppDelegate class’s code cleaner and provide a clean interface for Core
Data access.

Create a new file in the PersistenceApp group using the Source  Cocoa Touch Class template, call
it Persistence, and make it a subclass of NSObject. Now, if you’re doing this in Objective-C, add the
Core Data properties and helper method declarations to Persistence.h, as shown in Listing 1-11.

Listing 1-11. Persistence.h

#import <Foundation/Foundation.h>
@import CoreData;

@interface Persistence : NSObject

@property (readonly, strong, nonatomic) NSManagedObjectContext *managedObjectContext;
@property (readonly, strong, nonatomic) NSManagedObjectModel *managedObjectModel;
@property (readonly, strong, nonatomic) NSPersistentStoreCoordinator *persistentStoreCoordinator;

- (void)saveContext;
- (NSURL *)applicationDocumentsDirectory;

@end

In the implementation file, Persistence.m, add implementations for the two helper methods, which
don’t deviate much from the Xcode-generated versions, as shown in Listing 1-12.

Listing 1-12. Helper Method Implementations in Persistence.m

- (void)saveContext {
 NSError *error;
 if ([self.managedObjectContext hasChanges] && ![self.managedObjectContext save:&error]) {
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 abort();
 }
}

- (NSURL *)applicationDocumentsDirectory {
 return [[[NSFileManager defaultManager] URLsForDirectory:NSDocumentDirectory
inDomains:NSUserDomainMask] lastObject];

}

17CHAPTER 1: Touring Core Data

Notice that we don’t check whether the managedObjectContext property is nil before saving,
because we’re going to create it when the Persistence instance is initialized so we know it won’t be
nil. We retain the naive error handling, though, for now.

To initialize the Core Data stack, add an implementation for init that creates the managed object
model, the persistent store coordinator, and the managed object context, as shown in Listing 1-13.

Listing 1-13. Initializing the Core Data Stack in Persistence.m

- (id)init {
 self = [super init];
 if (self != nil) {
 // Initialize the managed object model
 NSURL *modelURL = [[NSBundle mainBundle] URLForResource:@"PersistenceApp"

withExtension:@"momd"];
 _managedObjectModel = [[NSManagedObjectModel alloc] initWithContentsOfURL:modelURL];

 // Initialize the persistent store coordinator
 NSURL *storeURL = [[self applicationDocumentsDirectory] URLByAppendingPathComponent:

@"PersistenceApp.sqlite"];

 NSError *error = nil;
 _persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc]

initWithManagedObjectModel:self.managedObjectModel];
 if (![_persistentStoreCoordinator addPersistentStoreWithType:NSSQLiteStoreType
 configuration:nil
 URL:storeURL
 options:nil
 error:&error]) {
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 abort();
 }

 // Initialize the managed object context
 _managedObjectContext = [[NSManagedObjectContext alloc] init];
 [_managedObjectContext setPersistentStoreCoordinator:self.persistentStoreCoordinator];
 }
 return self;
}

In Chapter 9, we modify this approach to use threads for better performance, but for now we
perform all the initialization on the main thread.

To finish initializing the Core Data stack, we add a Persistence property to the application delegate
and create it when the application loads. Open AppDelegate.h, add a forward declaration for
Persistence, and add the property, so that the file matches Listing 1-14.

18 CHAPTER 1: Touring Core Data

Listing 1-14. AppDelegate.h

#import <UIKit/UIKit.h>

@class Persistence;

@interface AppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;
@property (strong, nonatomic) Persistence *persistence;

@end

Next, open AppDelegate.m and add an import for Persistence.h:

#import "Persistence.h"

As the last step of initializing the Core Data stack, allocate and initialize the persistence property
in the application:didFinishLaunchingWithOptions method. This method should now match
Listing 1-15.

Listing 1-15. Allocating and Initializing the persistence Property

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)
launchOptions {
 self.persistence = [[Persistence alloc] init];
 return YES;
}

If you’re building this project in Swift, your work follows the same sort of pattern, albeit without the
header files. In your Persistence class, add a variable for your managed object context. We’ll do
all the initialization in the closure for this managed object context variable. You also add helpers for
saving the context and getting the application document directory. Listing 1-16 shows the updated
Persistence.swift file, and Listing 1-17 shows the additions to AppDelegate.swift to create a
Persistence instance. Note that the Core Data stack will initialize when we create the Persistence
instance; if we wanted, instead, to initialize Core Data when the managed object context is first
accessed, we’d simply add the @lazy annotation to the managed object context variable.

Listing 1-16. Persistence.swift Updated for Core Data

import Foundation
import CoreData

class Persistence: NSObject {

 var managedObjectContext: NSManagedObjectContext? = {
 // Initialize the managed object model
 let modelURL = NSBundle.mainBundle().URLForResource("PersistenceAppSwift", withExtension:

"momd")!
 let managedObjectModel = NSManagedObjectModel(contentsOfURL: modelURL)

19CHAPTER 1: Touring Core Data

 // Initialize the persistent store coordinator
 let storeURL = Persistence.applicationDocumentsDirectory.URLByAppendingPathComponent("Persisten

ceAppSwift.sqlite")
 var error: NSError? = nil
 let persistentStoreCoordinator = NSPersistentStoreCoordinator(managedObjectModel:

managedObjectModel!)
 if persistentStoreCoordinator.addPersistentStoreWithType(NSSQLiteStoreType, configuration: nil,

URL: storeURL, options: nil, error: &error) == nil {
 abort()
 }

 // Initialize the managed object context
 var managedObjectContext = NSManagedObjectContext()
 managedObjectContext.persistentStoreCoordinator = persistentStoreCoordinator

 return managedObjectContext
 }()

 func saveContext() {
 var error: NSError? = nil

 if {
 if managedObjectContext.hasChanges && !managedObjectContext.save(&error) {
 abort()
 }
 }
 }

 class var applicationDocumentsDirectory: NSURL {
 let urls = NSFileManager.defaultManager().URLsForDirectory(.DocumentDirectory, inDomains:

.UserDomainMask)
 return urls[urls.endIndex-1] as NSURL
 }
}

Listing 1-17. The Updated AppDelegate.swift

import UIKit
import CoreData

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

 var window: UIWindow?
 var persistence: Persistence?

 func application(application: UIApplication!, didFinishLaunchingWithOptions launchOptions:
NSDictionary!) -> Bool {

 persistence = Persistence()
 return true
 }
 /* Code snipped */
}

20 CHAPTER 1: Touring Core Data

The Core Data stack now properly initializes when the application runs, but without an object model
or any objects in it, we can’t really see evidence of that. The next step is to create an object model.

Creating the Object Model
At this point, we’ve added all the Core Data pieces to the application that Xcode would have done
for us had we checked the Use Core Data check box. For an application that you manually add Core
Data to, you create the object model in the same way that you did for an application for which you
checked Xcode’s Use Core Data check box.

For PersistenceApp, we store gadgets that have a name and a price. Open the object model,
PersistenceApp.xcdatamodeld, in Xcode’s Project Navigator, and add a Gadget entity with a String
attribute called name and a Float attribute called price. Your data model should match Figure 1-7.

Figure 1-7. The Gadget entity in the PersistenceApp.xcdatamodeld managed object model

Now that we have an object model, we can create some objects in it.

Adding Objects to PersistenceApp
Once again, we use the application:didFinishLaunchingWithOptions method to add objects to the
object model. This time, however, we’ll do that work in another method that we call from application:
didFinishLaunchingWithOptions. Also, instead of relying on the sqlite3 command-line tool to view

21CHAPTER 1: Touring Core Data

the stored data, we fetch the objects from the persistent store and log them to the console—again,
from a separate method. To begin, add calls to the two methods that we will create in
application:didFinishLaunchingWithOptions, so that the code matches Listing 1-18 (Objective-C)
or Listing 1-19 (Swift).

Listing 1-18. Adding Calls to Create and Fetch Objects (Objective-C)

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)
launchOptions {
 self.persistence = [[PAPersistence alloc] init];
 [self createObjects];
 [self fetchObjects];

 return YES;
}

Listing 1-19. Adding Calls to Create and Fetch Objects (Swift)

func application(application: UIApplication!, didFinishLaunchingWithOptions launchOptions:
NSDictionary!) -> Bool {
 persistence = Persistence()

 createObjects()
 fetchObjects()

 return true
}

Then, create implementations for the new methods. The createObjects method should look familiar;
as before, you create the objects in the managed object context, then save the context. This code
creates four Gadget instances: an iPad, an iPad Mini, an iPhone, and an iPod touch. The prices for
them are in US dollars, and may or may not be accurate! Listing 1-20 shows the Objective-C code,
and Listing 1-21 shows the Swift code. One thing to notice: since KVC requires object values, not
primitives, the prices we set on the objects are NSNumber instances, not primitive floats.

Listing 1-20. The Objective-C createObjects Method

- (void)createObjects {
 NSManagedObject *iPad = [NSEntityDescription insertNewObjectForEntityForName:@"Gadget"
inManagedObjectContext:self.persistence.managedObjectContext];

 [iPad setValue:@"iPad" forKey:@"name"];
 [iPad setValue:@499.0f forKey:@"price"];

 NSManagedObject *iPadMini = [NSEntityDescription insertNewObjectForEntityForName:@"Gadget"
inManagedObjectContext:self.persistence.managedObjectContext];

 [iPadMini setValue:@"iPad Mini" forKey:@"name"];
 [iPadMini setValue:@329.0f forKey:@"price"];

 NSManagedObject *iPhone = [NSEntityDescription insertNewObjectForEntityForName:@"Gadget"
inManagedObjectContext:self.persistence.managedObjectContext];

 [iPhone setValue:@"iPhone" forKey:@"name"];
 [iPhone setValue:@199.0f forKey:@"price"];

22 CHAPTER 1: Touring Core Data

 NSManagedObject *iPodTouch = [NSEntityDescription insertNewObjectForEntityForName:@"Gadget"
inManagedObjectContext:self.persistence.managedObjectContext];
 [iPodTouch setValue:@"iPod touch" forKey:@"name"];
 [iPodTouch setValue:@299.0f forKey:@"price"];

 [self.persistence saveContext];
}

Listing 1-21. The Swift createObjects function

 func createObjects() {
 if let persistence = persistence {
 let iPad = NSEntityDescription.insertNewObjectForEntityForName("Gadget",

inManagedObjectContext: persistence.managedObjectContext!) as NSManagedObject
 iPad.setValue("iPad", forKey: "name")
 iPad.setValue(499, forKey: "price")

 let iPadMini = NSEntityDescription.insertNewObjectForEntityForName("Gadget",

inManagedObjectContext: persistence.managedObjectContext!) as NSManagedObject
 iPadMini.setValue("iPad Mini", forKey: "name")
 iPadMini.setValue(329, forKey: "price")

 let iPhone = NSEntityDescription.insertNewObjectForEntityForName("Gadget",

inManagedObjectContext: persistence.managedObjectContext!) as NSManagedObject
 iPhone.setValue("iPhone", forKey: "name")
 iPhone.setValue(199, forKey: "price")

 let iPodTouch = NSEntityDescription.insertNewObjectForEntityForName("Gadget",

inManagedObjectContext: persistence.managedObjectContext!) as NSManagedObject
 iPodTouch.setValue("iPod Touch", forKey: "name")
 iPodTouch.setValue(299, forKey: "price")

 persistence.saveContext()
 }
 else {
 println("Error, persistence layer not initialized")
 }
 }

The fetchObjects method fetches the objects from the persistent store and uses NSLog (or println)
to log them to the console. To fetch objects, we use the NSFetchRequest class, which represents
a fetch request. A fetch request is tied to a particular entity and contains all the criteria describing
what you want to fetch from that entity. With a fetch request, you can do things like set limits, specify
criteria that objects must match, sort the results, and use advanced aggregators to massage the
results the fetch request returns. Chapter 2 explains more about how to use NSFetchRequest, and
then Chapter 3 goes deeper into the powers of fetching data. At this point, however, we stay simple
in our usage of NSFetchRequest and just fetch all of the objects from our Gadget entity.

Before iOS 5.0, you typically created and used an NSFetchRequest instance by allocating
and initializing one, creating an NSEntityDescription instance, and setting the entity for the
NSFetchRequest instance to the NSEntityDescription instance, as shown in Listing 1-22.

23CHAPTER 1: Touring Core Data

Listing 1-22. Pre-iOS 5.0 NSFetchRequest Creation

NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];
[fetchRequest setEntity:[NSEntityDescription entityForName:@"Gadget"
 inManagedObjectContext:self.persistence.managedObjectContext]];

In iOS 5.0, Apple added a couple of convenience methods for NSFetchRequest so you don’t have
to create an NSEntityDescription instance or take two lines of code to tie your NSFetchRequest
instance to an entity. One is an initializer that takes an entity name, and the other is a class method
that takes an entity name. Listing 1-23 shows two ways to create an NSFetchRequest instance in iOS
5.0 or later.

Listing 1-23. Creating NSFetchRequest Instances in iOS 5.0 and Later

NSFetchRequest *fetchRequest1 = [[NSFetchRequest alloc] initWithEntityName:@"Gadget"];
NSFetchRequest *fetchRequest2 = [NSFetchRequest fetchRequestWithEntityName:@"Gadget"];

You can use any of the approaches. You might notice, however, that the pre-iOS 5.0 approach specified
the managed object context for the entity, while the iOS 5.0-and-later approach does not. How, then,
does the NSFetchRequest instance know which managed object context to use to find the entity?

The answer to that is that actually executing a fetch request is a method on the managed object
context. For the later approaches, the managed object context uses the fetch request’s entity name
to look up the actual NSEntityDescription when it executes the fetch request. Listing 1-24 shows
how to execute a fetch request.

Listing 1-24. Executing a Fetch Request

NSError *error;
NSManagedObjectContext *managedObjectContext = ...; // Get from somewhere
NSArray *objects = [managedObjectContext executeFetchRequest:fetchRequest error:&error];

You can pass nil for error if you don’t care about any error results, but you’ll usually want error
information so you can handle the errors. Again, Chapter 4 covers error handling.

With this nascent knowledge of fetch requests, we can implement the fetchObjects method, as
shown in Listing 1-25 (Objective-C) or Listing 1-26 (Swift). This method creates a fetch request,
executes it against the managed object context, and displays the results in the console.

Listing 1-25. The Objective-C fetchObjects Method

- (void)fetchObjects {
 // Fetch the objects
 NSFetchRequest *fetchRequest = [NSFetchRequest fetchRequestWithEntityName:@"Gadget"];
 NSArray *objects = [self.persistence.managedObjectContext executeFetchRequest:fetchRequest
error:nil];

 // Log the objects
 for (NSManagedObject *object in objects) {
 NSLog(@"%@", object);
 }
}

24 CHAPTER 1: Touring Core Data

Listing 1-26. The Swift fetchObjects function

func fetchObjects() {
 if let persistence = persistence {
 let fetchRequest = NSFetchRequest(entityName: "Gadget")
 var error : NSError?
 let objects = persistence.managedObjectContext!.executeFetchRequest(fetchRequest, error: &error)
as [NSManagedObject]
 if let error = error {
 println("Something went wrong: \(error.localizedDescription)")
 }

 for object in objects {
 println(object)
 }
 }
 else {
 println("Error, persistence layer not initialized")
 }
}

Build and run the application. You should see a blank screen in the iOS Simulator, and in the Xcode
Console you should see output that looks something like the following:

2014-07-07 21:49:40.537 PersistenceApp[8878:83583] <NSManagedObject: 0x7faa21e380b0> (entity:
Gadget; id: 0xd000000000040000 <x-coredata://D2570307-5795-4E9A-96C9-7B477D27AB5D/Gadget/p1> ;
data: {
 name = "iPad Mini";
 price = 329;
})
2014-07-07 21:49:40.538 PersistenceApp[8878:83583] <NSManagedObject: 0x7faa21e386a0> (entity:
Gadget; id: 0xd000000000080000 <x-coredata://D2570307-5795-4E9A-96C9-7B477D27AB5D/Gadget/p2> ;
data: {
 name = "iPod touch";
 price = 299;
})
2014-07-07 21:49:40.538 PersistenceApp[8878:83583] <NSManagedObject: 0x7faa21e38580> (entity:
Gadget; id: 0xd0000000000c0000 <x-coredata://D2570307-5795-4E9A-96C9-7B477D27AB5D/Gadget/p3> ;
data: {
 name = iPhone;
 price = 199;
})
2014-07-07 21:49:40.538 PersistenceApp[8878:83583] <NSManagedObject: 0x7faa21e37340> (entity:
Gadget; id: 0xd000000000100000 <x-coredata://D2570307-5795-4E9A-96C9-7B477D27AB5D/Gadget/p4> ;
data: {
 name = iPad;
 price = 499;
})

25CHAPTER 1: Touring Core Data

If you’re running the Swift version of the app, the output is a little more compact, as the following
shows:

<NSManagedObject: 0x7be633a0> (entity: Gadget; id: 0x7be68180 <x-coredata://9796AAF7-58AA-4B3A-86B8-
A1897330E17F/Gadget/p1> ; data: {
 name = iPad;
 price = 499;
})
<NSManagedObject: 0x7be66d60> (entity: Gadget; id: 0x7be681e0 <x-coredata://9796AAF7-58AA-4B3A-86B8-
A1897330E17F/Gadget/p2> ; data: {
 name = iPhone;
 price = 199;
})
<NSManagedObject: 0x7be666b0> (entity: Gadget; id: 0x7be681d0 <x-coredata://9796AAF7-58AA-4B3A-86B8-
A1897330E17F/Gadget/p3> ; data: {
 name = "iPad Mini";
 price = 329;
})
<NSManagedObject: 0x7be66e20> (entity: Gadget; id: 0x7be68250 <x-coredata://9796AAF7-58AA-4B3A-86B8-
A1897330E17F/Gadget/p4> ; data: {
 name = "iPod Touch";
 price = 299;
})

As before, you can also explore the SQLite database using sqlite3, but the log messages evidence
that the objects were stored and retrieved.

Wrapping Up
In this chapter, you learned what Core Data is and what it’s used for. You learned about the
importance of persistence for data. You learned about the components of Core Data and how they
work together. You built two Core Data–based applications: one that makes Xcode set up for you,
and one in which you set up Core Data for yourself. You stored data in your Core Data persistent
stores and retrieved them.

The applications you built in this chapter used anemic object models. In the next chapter, we build
on the knowledge from this chapter to create more complex object models. You’ll also learn about
concepts like sorting and using predicates, and you’ll understand the power of the Core Data object
model.

