
Ottinger
Guruzu

Mak

Shelve in
Programming Languages/Java

User level:
Intermediate

www.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Hibernate Recipes
Hibernate Recipes, Second Edition contains a collection of code recipes and
templates for learning and building Hibernate solutions for you and your clients,
including how to work with the Spring Framework and the JPA. This book is your
pragmatic day-to-day reference and guide for doing all things involving Hibernate.
There are many books focused on learning Hibernate, but this book takes you
further and shows how you can apply it practically in your daily work. Hibernate
Recipes, Second Edition is a must-have book for your library.

In this book you’ll learn:

• How to use object-relational mapping in Hibernate
• How to do one-to-one mapping, many-to-one mapping, collection

mapping, component mapping, and inheritance mapping
• How to use Hibernate Query Language (HQL)
• How to perform batch processing and use native SQL, criteria queries,

caching objects, and more
• How to use Hibernate for heavy-duty enterprise transaction-based

systems
• How to integrate Hibernate persistence with Spring Framework

solutions
• How to enable Hibernate in web applications with e-commerce

RELATED

9 781484 201282

53999
ISBN 978-1-4842-0128-2

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

v

Contents at a Glance

About the Authors ���xix

About the Technical Reviewer ��xxi

Acknowledgments ��xxiii

Chapter 1: Starting with Hibernate ■ �� 1

Chapter 2: Basic Mapping and Object Identity ■ �� 29

Chapter 3: Component Mapping ■ �� 51

Chapter 4: Inheritance and Custom Mapping ■ �� 67

Chapter 5: Many-to-One and One-to-One Mapping ■ ��� 91

Chapter 6: Collection Mapping ■ �� 105

Chapter 7: Many-Valued Associations ■ ��� 131

Chapter 8: HQL and JPA Query Language ■ �� 145

Chapter 9: Querying with Criteria and Example ■ �� 159

Chapter 10: Working with Objects ■ ��� 173

Chapter 11: Batch Processing and Native SQL ■ �� 187

Chapter 12: Caching in Hibernate ■ �� 197

Chapter 13: Transactions and Concurrency ■ ��� 215

Chapter 14: Web Applications ■ ��� 231

Index ��� 251

1

Chapter 1

Starting with Hibernate

An object model uses the principles of abstraction, encapsulation, modularity, hierarchy, typing,
concurrency, polymorphism, and persistence. The object model enables you to create well-structured
and complex systems. In an object model system, objects are the components of the system. Objects are
instances of classes, and classes are related to other classes via inheritance relationships. An object has an
identity, a state, and a behavior. An object model helps you create reusable application frameworks and
systems that can evolve over time. In addition, object-oriented systems are usually smaller than non-object-
oriented implementations.

A relational model defines the structure of data, data manipulation, and data integrity. Data is organized
in the form of tables, and different tables are associated by means of referential integrity (a foreign key).
Integrity constraints such as a primary key, unique check constraints, and not null are used to maintain an
entity’s integrity in the relational model.

A relational data model isn’t focused on supporting entity-type inheritance: entity-based polymorphic
association from an object model can’t be translated into similar entities in a relational model. In an object
model, you use the state of the model to define equality between objects. But in a relational model, you use
an entity’s primary key to define equality of entities. Object references are used to associate different objects
in an object model, whereas a foreign key is used to establish associations in a relational model. Object
references in the object model facilitate easier navigation through the object graph.

Because these two models are distinctly different, you need a way to persist object entities (Java objects)
into a relational database. Figure 1-1 provides a simple representation of the object model and Figure 1-2
shows the relational model.

Figure 1-1. The object model

Chapter 1 ■ Starting with hibernate

2

Object/relational mapping (ORM) frameworks help you take advantage of the features present in an
object model (such as Java) and a relational model (such as database management systems [DBMSs]).
With the help of ORM frameworks, you can persist objects in Java to relational tables using metadata that
describes the mapping between the objects and the database. The metadata shields the complexity of
dealing directly with SQL and helps you develop solutions in terms of business objects.

An ORM solution can be implemented at various levels:

•	 Pure relational: An application is designed around the relational model.

•	 Light object mapping: Entities are represented as classes and are mapped manually
to relational tables.

•	 Medium object mapping: An application is designed using an object model, and SQL
is generated during build time using code-generation utilities.

•	 Full object mapping: Supports sophisticated object modeling including composition,
inheritance, polymorphism, and persistence by reachability.

The following are the benefits of using an ORM framework:

•	 Productivity: Because you use metadata to persist and query data, development time
decreases and productivity increases.

•	 Prototyping: Using an ORM framework is extremely useful for quick prototyping.

•	 Maintainability: Because much of the work is done through configuration, your code
has fewer lines and requires less maintenance.

•	 Vendor independence: An ORM abstracts an application from the underlying SQL
database and SQL dialect, which gives you the portability to support multiple
databases. Java Specification Request 317 (JSR317) defines the Java Persistence API
(JPA) specification. Using JPA means you can transparently switch between ORM
frameworks such as Hibernate and TopLink.

ORM frameworks also have some disadvantages:

•	 Learning curve: You may experience a steep learning curve as you learn when and
how to map and manage objects. You also have to learn a new query language.

•	 Overhead: For simple applications that use a single database and data without many
business requirements for complex querying, an ORM framework can be extra
overhead.

•	 Slower performance: For large batch updates, performance is slower.

Figure 1-2. The relational model

Chapter 1 ■ Starting with hibernate

3

Hibernate is one of the most widely used ORM frameworks in the industry. It provides all the benefits of
an ORM solution and implements the JPA defined in the JPA 2.0 specification.

Its main components are as follows:

•	 Hibernate Core: The Core generates SQL and relieves you from manually handling
Java Database Connectivity (JDBC) result sets and object conversions. Metadata
is defined in simple XML files. The Core offers various options for writing queries:
plain SQL; Hibernate Query Language (HQL), which is specific to Hibernate;
programmatic criteria, and Query by Example (QBE). It can optimize object loading
with various fetching and caching options.

•	 Hibernate Annotations: Hibernate provides the option of defining metadata using
annotations. This feature reduces configuration using XML files and makes it easy to
define the required metadata directly in the Java source code.

•	 Hibernate EntityManager: The JPA specification defines programming interfaces,
life-cycle rules for persistent objects, and query features. The Hibernate
implementation for this part of the JPA is available as Hibernate EntityManager.

Hibernate also has Hibernate Search, Hibernate Validator, and Hibernate OGM1 (No SQL), which are
not addressed in this book. This book provides solutions using Hibernate ORM Core and Annotations in a
problem-solution approach. The Hibernate version used is 4.3.5.Final.

1-1. Setting Up a Project
Problem
How do you set up a project structure for Hibernate code so that all required libraries are available in the
classpath? And how can you build the project and execute unit tests?

Solution
Following are the available build tools that help you build the project and manage the libraries:

Maven•	

Gradle•	

SBT•	

Note ■ although we provide all details to create a project structure, manage libraries, build, and execute
tests using Maven, the sample code, downloadable from Apress.com includes gradle and Sbt.

Maven is a software project-management and comprehension tool. Based on the concept of a Project
Object Model (POM), Maven can manage a project’s build, reporting, and documentation from a central
piece of information. In Maven, the POM.XML file is the central place in which all the information is stored.

1OGM stands for “Object Graph Model.” Hibernate OGM provides an object abstraction for NoSQL databases.

http://Apress.com

Chapter 1 ■ Starting with hibernate

4

How It Works
The version used here is Java 7, which you can download from http://www.oracle.com/technetwork/java/
javase/downloads/jdk7-downloads-1880260.html.

Once you download Java, set the PATH variable to the bin folder in the Java Runtime Environment (JRE).
Set the JAVA_HOME variable to the folder in which you installed Java.

Note ■ You should be able to execute all code in Java 8 as well.

Installing Eclipse
Eclipse is an integrated development environment (IDE) for developing Java applications. The latest version
is Kepler (4.3.2). You can download the latest version from https://www.eclipse.org/downloads/.

The Kepler version specifically for 64bin Win can be downloaded from https://www.eclipse.org/
downloads/download.php?file=/technology/epp/downloads/release/kepler/SR2/eclipse-standard-
kepler-SR2-win32-x86_64.zip.

Once you extract and start Eclipse, make sure that it is using Java 7. You can see what version of Java is
being used by going to Windows ➤ Preferences ➤ Java ➤ JRE in Eclipse. If you have multiple JRE versions,
make sure that jre7 is checked.

Installing Maven
Maven can be run both from a command prompt and from Eclipse:

To run from a command prompt, download the Maven libraries from •	
http://maven.apache.org/download.cgi. Once you unzip into a folder, add the
bin folder to the PATH variable. You can then run and build from the command
prompt using commands such as mvn package, mvn install, and so on.

To run Maven from Eclipse, use the M2 plug-in in Eclipse to integrate Eclipse and •	
Maven. This plug-in gives you tremendous flexibility to work with Maven POM files
while developing in Eclipse. You can install the M2 plug-in from Eclipse: go to
Help ➤ Install New Software and enter http://download.eclipse.org/
technology/m2e/releases. Follow the instructions. Once this plug-in is installed,
you can create a new Maven project from File ➤ New Project.

Setting Up a Maven Project
This book follows the parent-module project structure instead of a flat project structure. All the common
dependencies, library versions, and configurations such as properties and so on can be declared in the
parent. Any common code between modules can be placed in a separate module and can be used as a
library in the rest of the modules, which enables a cleaner code structure.

The parent project contains only the parent POM and represents the complete book. Each chapter
is an individual module under the parent. The dependencies that are common across all chapters
are specified in the parent POM, and those that are specific to each chapter are mentioned in the
corresponding chapter’s POM.

http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/kepler/SR2/eclipse-standard-kepler-SR2-win32-x86_64.zip
https://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/kepler/SR2/eclipse-standard-kepler-SR2-win32-x86_64.zip
https://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/kepler/SR2/eclipse-standard-kepler-SR2-win32-x86_64.zip
http://maven.apache.org/download.cgi
http://download.eclipse.org/technology/m2e/releases
http://download.eclipse.org/technology/m2e/releases

Chapter 1 ■ Starting with hibernate

5

Note ■ For more information on how to create multiple module projects in Maven by using Maven
commands, see http://maven.apache.org/plugins/maven-eclipse-plugin/reactor.html.

You can also use Eclipse to create a similar structure. Here are the steps you can use:

 1. Create the parent project: go to File ➤ New ➤ Other and select a Maven project.
You should see the New Maven Project window shown in Figure 1-3.

Figure 1-3. New Maven Project window

 2. Select ‘Create A Simple Project’. If you are using the default workspace location,
click Next.

 3. In the configuration window that displays, specify the Group ID and Artifact ID.
The version has a default value. For packaging, choose 'pom'. This book uses the
following values (see Figure 1-4):

Group ID: •	 com.apress.hibernaterecipes

Artifact ID: •	 ver2

Version: •	 1.0.0

Packaging: •	 pom

http://maven.apache.org/plugins/maven-eclipse-plugin/reactor.html

Chapter 1 ■ Starting with hibernate

6

 4. Click Finish.

A parent project called ‘ver2’ is created because ver2 was specified as the Artifact ID. When you expand
the ‘ver2’ project in Eclipse, you see only the src folder and a POM file.

Creating a Maven Project Using an Archetype
You can use archetypes to create Maven projects. There are many archetypes available for various kinds of
projects such as Java-Spring, Java-Struts, and so on.

Here is how to create a simple Java project using the quickstart archetype:

 1. Make sure that the Maven path is set and you can run the mvn command from the
command line.

 2. Execute the following command:

 mvn archetype:generate –DgroupId="groupId of your project"
 -DartifactId="artifact id of your application" –Dverion="version of your project"
 -DarchetypeArtifactId=maven-archetype-quickstart

This will create a simple Java project with folders for Java source code and tests. This will not create a
folder for resources. You can manually create this folder if it is needed.

Figure 1-4. Configuring Maven project values

Chapter 1 ■ Starting with hibernate

7

Running Unit Tests
All unit tests are written in TestNG, and Eclipse has a plug-in for TestNG that can be installed. Go to
Help ➤ Install New Software and enter http://beust.com/eclipse. Follow the instructions. Once this
plug-in is installed, you should be able to create and execute unit testing with the TestNG application
programming interface (API).

You can also execute unit tests for each chapter by accessing the chapter’s home folder and running the
Maven command mvn test.

Creating Modules
Now it’s time to create modules for a cleaner code structure and to run individual chapters.

 1. Right-click the parent project in Eclipse (ver2, in this case),’’ and choose
New ➤ Other ➤ Maven Module (see Figure 1-5).

Figure 1-5. Creating a Maven module

http://beust.com/eclipse

Chapter 1 ■ Starting with hibernate

8

 2. Click Next.

 3. In the next window, choose ‘Create Simple Project’ and a name for your module
(we chose chapter1). Your parent project should be selected in the Parent
Project field.

 4. Click ‘Next;’ the Group ID, Artifact ID, Version, and Packaging fields
should already be populated. In this case, the Group ID is com.apress.
hibernaterecipes, which is the same as the Group ID of the parent project.
The Artifact ID is the module name. Version is 0.0.1-SNAPSHOT by default, and
Packaging should be jar.

Now you have a parent project as well your first module. If you look into the POM of your parent project,
you see that a <module> tag is added with the same name that you specified for your module.

The POM in your module has the <parent> tag with the <groupId>, <artifactId>, and <version> tags
of the parent project:

<modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>com.apress.hibernaterecipes</groupId>
 <artifactId>ver2</artifactId>
 <version>1.0.0</version>
 </parent>
 <artifactId>chapter1</artifactId>
</project>

Now that the parent project and module are set up, add the Hibernate JAR files to the project. Because
Hibernate JARs are used by all modules, these dependencies are added to the parent POM.

Add the following to the parent POM:

<dependencies>
 <dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-core</artifactId>
 <version>4.3.5.Final</version>
 </dependency>
</dependencies>

Once you save and refresh, ‘Maven Dependencies’ is added to your module folder structure. The
Hibernate JARs and their dependencies are populated under Maven Dependencies.

If you see the screen shown in Figure 1-6, the dependency is added in the parent POM, and the
dependent JARs are added under Maven Dependencies in the module.

Chapter 1 ■ Starting with hibernate

9

Note ■ also included in the code repository is the configuration for a project set up using gradle and Sbt
(you can download it from the code repository).

1-2. Setting Up a Database
Problem
How do you set up a database to work with Hibernate?

Solution
The H2 database in embedded mode is used for all testing in this book. In addition to instructions on how to
set up H2, we provide documentation on how to set up Derby in server mode.

Figure 1-6. Maven Dependencies

Chapter 1 ■ Starting with hibernate

10

How It Works: Setting Up H2
The following dependency should be added to pom.xml:

<dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <version>1.4.178</version>
</dependency>

This dependency provides the required JARs to connect to an H2 database.

Configuring Hibernate
Add the required database properties either to persistence.xml or hibernate.cgf.xml depending on what
you are using. Because we test with hibernate.cfg.xml and persistence.xml, these properties are added to
both the files:

<property name="connection.driver_class">org.h2.Driver</property>
<property name="connection.url">jdbc:h2:file:./chapter1</property>
<property name="connection.username">sa</property>
<property name="connection.password"></property>

The first property sets the driver class to be used to connect to the database. The •	
connection.url property sets the URL to connect to the database. Because it is an
embedded mode, we use the file URL.

•	 jdbc:h2:file:./chapter1 creates the database file in the chapter1 folder. For each
chapter the URL to create the database file is the appropriate chapter home folder.
The URL for chapter2 is jdbc:h2:file:./chapter2, for example.

The next two properties are for username and password. By default, H2 uses ‘•	 sa’ as
the username with no password.

After this configuration is done, you should be able to run the tests that are bundled •	
in the code. Each chapter has its own set of tests in the test folder. If you already
installed the TestNG plug-in, go to the test folder, go to a specific test (for example,
Recipe1JPATest.java in chapter1), right-click the test file, and click Run As ➤

TestNG Test. When you run the tests in the test folder, two database files are created in
the chapter’s home folder. For example, if you execute tests for chapter1, the
chapter1.mv.db and chapter1.trace.db files are created in the chapter1 folder.

The •	 .mv.db file is the actual database file that contains all scripts that were executed.
Although it is not readable, if you want to view the schema and data, you can view it
via the H2 console.

Setting Up the H2 Console to View Data
 1. You can download the H2 console from http://www.h2database.com/html/

main.html. There are installers for different environments.

 2. After you install the console, you see ‘H2 Console, which’ is a web-based user
interface (UI) that opens the connections page in the web browser. By default,
the database selected is 'Generic H2(Embedded),' and the driver selected is
org.h2.driver.

http://www.h2database.com/html/main.html
http://www.h2database.com/html/main.html

Chapter 1 ■ Starting with hibernate

11

 3. The JDBC URL should be specified to the .mv file in the chapter folder (for example,
if your Hibernate recipes code is in C:\HR). You find the chapter1.mv database
file inC:\HR\chapter1, so the JDBC URL should be jdbc:h2:file:C:\HR\
chapter1\chapter1.

 4. Leave the default values for username and password.

 5. Click Connect. You should see the schema on the left pane. When you click a
table name, it adds the SELECT SQL statement in the code window. If you execute
the statement, you should be able to view the data.

How It Works: Setting Up Derby
The following JAR files are required for the Derby setup:

•	 Derby.jar.

•	 Derbyclient.jar.

•	 Derbynet.jar.

•	 Derbytools.

Installing Derby
Derby is an open-source SQL relational database engine written in Java. You can go to http://db.apache.
org/derby/derby_downloads.html and download the latest version. Derby also provides plug-ins for
Eclipse, which provide the required JAR files for development and a command prompt (ij) in Eclipse to
execute Data Definition Language (DDL) and Data Manipulation Language (DML) statements.

Creating a Derby Database Instance
To create a new Derby database called BookShopDB at the ij prompt, use the following command:

connect 'jdbc:derby://localhost:1527/BookShopDB;create=true;
user=book;password=book';

After the database is created, execute the SQL scripts in the next section to create the tables.

Creating the Tables (Relational Model)
These solutions use the example of a bookshop. Books are published by a publisher, and the contents of
a book are defined by the chapters. The entities Book and Publisher are stored in the database; you can
perform various operations such as reading, updating, and deleting.

Because an ORM is a mapping between an object model and a relational model, you first create the
relational model by executing the DDL statements to create the tables/entities in the database. You later see
the object model in Java, and finally you see the mapping between the relational and the object models.

http://db.apache.org/derby/derby_downloads.html
http://db.apache.org/derby/derby_downloads.html

Chapter 1 ■ Starting with hibernate

12

Create the tables for the online bookshop using the following SQL statements (Figure 1-7 gives details of
the object model and Figure 1-8 shows the relational model):

CREATE TABLE publisher (
 code VARCHAR(6) PRIMARY KEY,
 name VARCHAR(64) NOT NULL,
 address VARCHAR(128) NOT NULL,
 UNIQUE (name)
);

CREATE TABLE book (
 isbn VARCHAR(13) PRIMARY KEY,
 name VARCHAR(64) NOT NULL,
 publishDate DATE,
 price DECIMAL(8, 2),
 publisher VARCHAR(6),
 FOREIGN KEY (publisher) REFERENCES publisher (code),
 UNIQUE (name)
);

Figure 1-7. The object model for the bookshop

Figure 1-8. The relational model for the bookshop

Next, input some data for these tables using the following SQL statements:

insert into PUBLISHER(code, name, address)
values ('001', 'Apress', 'New York ,New York');
insert into PUBLISHER(code, name, address)
values ('002', 'Manning', 'San Francisco, CA');

Chapter 1 ■ Starting with hibernate

13

insert into book(isbn, name, publisher, publishDate, price)
values ('PBN123', 'Spring Recipes', '001', DATE('2008-02-02'), 30);
insert into book(isbn, name, publisher, publishDate, price)
values ('PBN456', 'Hibernate Recipes', '002', DATE('2008-11-02'), 40);

1-3. Configuring Hibernate
Problem
How do you configure a Java project that uses an object/relational framework such as Hibernate as a
persistence framework? How do you configure Hibernate programmatically?

Solution
Import the required JAR files into your project’s classpath and create mapping files that map the state of a Java
entity to the columns of its corresponding table. From the Java application, execute Create, Read, Update,
Delete (CRUD) operations on the object entities. Hibernate takes care of translating the object state from the
object model to the relational model.

How It Works
To configure a Java project to use the Hibernate framework, start by downloading the required JARs and
configuring them in the build path.

If you add the following dependency to the Maven pom.xml file, all dependent libraries are downloaded
under Maven Dependencies:

<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-core</artifactId>
 <version>4.3.5.Final</version>
</dependency>

Although we use both annotations and XML configurations for the Hibernate setup wherever possible,
the preference is to use annotations instead of XML.

Configuration
Before Hibernate can retrieve and persist objects for you, you have to tell it your application’s settings.
For example, which kind of objects are persistent objects? What kind of database are you using? How do
you connect to the database? You can configure Hibernate in three ways:

•	 Programmatic configuration: Use the API to load the hbm file, load the database
driver, and specify the database connection details.

•	 XML configuration: Specify the database connection details in an XML file that’s
loaded along with the hbm file. The default file name is hibernate.cfg.xml. You can
use another name by specifying the name explicitly.

•	 Properties file configuration: Similar to the XML configuration, but uses a
.properties file. The default name is hibernate.properties.

Chapter 1 ■ Starting with hibernate

14

This solution introduces only the first two approaches (programmatic and XML configuration).
The properties file configuration is much like XML configuration.

Programmatic Configuration
The following code loads the configuration programmatically. If you have a very specific use case to
configure programmatically, you can use this method; otherwise, the preferred way is to use annotations.

The Configuration class provides the API to load the hbm files, to specify the driver to be used for the
database connection, and to provide other connection details:

Configuration configuration = new Configuration()
.addResource("com/metaarchit/bookshop/Book.hbm.xml")
.setProperty("hibernate.dialect", "org.hibernate.dialect.DerbyTenSevenDialect")
.setProperty("hibernate.connection.driver_class", "org.apache.derby.jdbc.EmbeddedDriver")
.setProperty("hibernate.connection.url", "jdbc:derby://localhost:1527/BookShopDB")
.setProperty("hibernate.connection.username", "book")
.setProperty("hibernate.connection.password", "book");

ServiceRegistry serviceRegistry = new StandardServiceRegistryBuilder().applySettings
(configuration.getProperties()).build();
sessionFactory = configuration.buildSessionFactory(serviceRegistry);

Instead of using addResource() to add the mapping files, you can also use addClass() to add a
persistent class and let Hibernate load the mapping definition for this class:

Configuration configuration = new Configuration()
.addClass(com.metaarchit.bookshop.Book.class)
.setProperty("hibernate.dialect", "org.hibernate.dialect.DerbyDialect")
.setProperty("hibernate.connection.driver_class", "org.apache.derby.jdbc.EmbeddedDriver")
.setProperty("hibernate.connection.url", "jdbc:derby://localhost:1527/BookShopDB")
.setProperty("hibernate.connection.username", "book")
.setProperty("hibernate.connection.password", "book");

ServiceRegistry serviceRegistry = new StandardServiceRegistryBuilder().applySettings
(configuration.getProperties()).build();
sessionFactory = configuration.buildSessionFactory(serviceRegistry);

If your application has hundreds of mapping definitions, you can pack it in a JAR file and add it to the
Hibernate configuration. This JAR file must be found in your application’s classpath:

Configuration configuration = new Configuration()
.addJar(new File("mapping.jar"))
.setProperty("hibernate.dialect", "org.hibernate.dialect.DerbyDialect")
.setProperty("hibernate.connection.driver_class", "org.apache.derby.jdbc.EmbeddedDriver")
.setProperty("hibernate.connection.url", "jdbc:derby://localhost:1527/BookShopDB")
.setProperty("hibernate.connection.username", "book")
.setProperty("hibernate.connection.password", "book");
ServiceRegistry serviceRegistry = new StandardServiceRegistryBuilder().applySettings
(configuration.getProperties()).build();
sessionFactory = configuration.buildSessionFactory(serviceRegistry);

Chapter 1 ■ Starting with hibernate

15

SeSSionFaCtory

the following statement creates a hibernate SessionFactory to use in the preceding code:

SessionFactory factory = configuration.buildSessionFactory(serviceRegistry);

a session factory is a global object for maintaining org.hibernate.Session objects. it i’s
instantiated once and i’s thread-safe. You can look up the SessionFactory from a Java naming and
Directory interface (JnDi) context in an ApplicationServer or any other location.

XML Configuration
Another way to configure Hibernate is to use an XML file. You create the file hibernate.cfg.xml in the
source directory, so Eclipse copies it to the root of your classpath:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 "http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd">
<hibernate-configuration>

 <session-factory>
 <!-- H2 Configuration -->

 <property name="connection.driver_class">org.h2.Driver</property>
 <property name="connection.url">jdbc:h2:file:./chapter1</property>
 <property name="connection.username">sa</property>
 <property name="connection.password"></property>

 <property name="hibernate.dialect">org.hibernate.dialect.H2Dialect</property>
 <property name="hibernate.show_sql">true</property>
 <property name="hibernate.hbm2ddl.auto">create</property>
 <mapping resource="com/apress/hibernaterecipes/chapter1/model/Book.hbm.xml"/>
 <mapping resource="com/apress/hibernaterecipes/chapter1/model/Publisher.hbm.xml"/>
 </session-factory>
</hibernate-configuration>

Now the code fragment to build up a session factory can be simplified. The configuration loads the
hibernate.cfg.xml file from the root of the classpath:

Configuration configuration = new Configuration().configure();

This method loads the default hibernate.cfg.xml file from the root classpath. The new Configuration()
loads the hibernate.properties file, and the configure() method loads the hibernate.cfg.xml file if
hibernate.properties isn’t found. If you need to load another configuration file located elsewhere (not in the
root classpath), you can use the following code:

new Configuration().configure("/config/recipes.cfg.xml")

This code looks for recipes.cfg.xml in the config subdirectory of the classpath.

Chapter 1 ■ Starting with hibernate

16

Opening and Closing Sessions
A Hibernate Session object represents a unit of work and is bound to the current thread. It also represents a
transaction in a database. A session begins when getCurrentSession() is first called on the current thread.
The Session object is then bound to the current thread. When the transaction ends with a commit or
rollback, Hibernate unbinds the session from the thread and closes it.

Just as with JDBC, you need to do some initial cleanup for Hibernate. First, ask the session factory to
open a new session for you. After you finish your work, you must remember to close the session2:

Session session = factory.openSession();
try {
 // Using the session to retrieve objects
}catch(Exception e)
{
 e.printStackTrace();
} finally {
 session.close();
}

Creating Mapping Definitions
First ask Hibernate to retrieve and persist the book objects for you. For simplicity, ’ignore the publisher right
now. Create a Book.hbm.xml XML file in the same package as the Book class. This file is called the mapping
definition for the Book class. The Book objects are called persistent objects or entities because they can be
persisted in a database and represent the real-world entities:

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD 3.0//EN"
 "http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd">
<hibernate-mapping>

 <class name="com.apress.hibernaterecipes.chapter1.model.Book" table="BOOK" lazy="false">
 <id name="isbn">
 <column name="ISBN" sql-type="varchar(13)" not-null="true"/>
 </id>
 <property name="name">
 <column name="NAME" sql-type="varchar(64)" not-null="true" unique="true"/>
 </property>
 <property name="publishdate">
 <column name="PUBLISHDATE" sql-type="date"/>
 </property>
 <property name="price">
 <column name="PRICE" sql-type="decimal" precision="8" scale="2"/>
 </property>
 <many-to-one name="publisher" column="PUBLISHERCODE" cascade="all"/>
 </class>
</hibernate-mapping>

2The sample code rarely includes the exception handling for Hibernate, because we want to focus on how Hibernate is
used, rather than on Java’s exception mechanism.

Chapter 1 ■ Starting with hibernate

17

Each persistent object must have an identifier, which’ is used by Hibernate to uniquely identify that
object. Here, you use the ISBN as the identifier for a Book object.

Retrieving and Persisting Objects
Given the ID of a book (an ISBN in this case), you can retrieve the unique Book object from the database. There
are multiple ways to do it - session.load() and session.get() are merely two common ones you’ll see:

Book book = (Book) session.load(Book.class, isbn);

and

Book book = (Book) session.get(Book.class, isbn);

What’s the difference between a load() method and a get() method? First, when the given ID can’t be
found, the load() method throws an org.hibernate.ObjectNotFoundException exception, whereas the
get() method returns a null object. Second, the load() method just returns a proxy by default; the database
isn’t hit until the proxy is first invoked. The get() method hits the database immediately. The load()
method is useful when you need only a proxy, not’ a database call. You need only a proxy in a given session
when you have to associate an entity before persisting.

Just as you can use SQL to query a database, you can use Hibernate to query objects using HQL. For
example, note the following code queries for all the Book objects:

Query query = session.createQuery("from Book");
List books = query.list();

If you’re sure that only one object matches, you can use the uniqueResult() method to retrieve the
unique result object:

Query query = session.createQuery("from Book where isbn = ?");
query.setString(0, isbn);
Book book = (Book) query.uniqueResult();

The create() method inserts a new row into the BOOK table. It also loads the object from the database to
validate that it exists and is the correct object.

@Test
 public void testCreate() {
 Session session = SessionManager.getSessionFactory().openSession();
 Transaction tx = session.beginTransaction();
 Publisher publisher = new Publisher();
 publisher.setCode("apress");
 publisher.setName("Apress");
 publisher.setAddress("233 Spring Street, New York, NY 10013");
 session.persist(publisher);
 tx.commit();
 session.close();

 session = SessionManager.getSessionFactory().openSession();
 tx = session.beginTransaction();
 Publisher publisher1 = (Publisher) session.load(Publisher.class, "apress");
 assertEquals(publisher.getName(), publisher1.getName());
 tx.commit();
 session.close();
 }

Chapter 1 ■ Starting with hibernate

18

The Hibernate output is as follows:

Hibernate: insert into PUBLISHER (NAME, ADDRESS, CODE) values (?, ?, ?)
Hibernate: select publisher0_.CODE as CODE1_1_0_, publisher0_.NAME as NAME2_1_0_,
publisher0_.ADDRESS as ADDRESS3_1_0_ from PUBLISHER publisher0_ where publisher0_.CODE=?

1-4. Using the JPA EntityManager
Problem
Is there a generalized mechanism to configure ORM with less dependency on individual providers such as
Hibernate, TopLink, and so on?

Solution
A persistence context is defined by the JPA specification as a set of managed entity instances in which the
entity instances and their life cycles are managed by an entity manager. Each ORM vendor provides its own
entity manager, which is a wrapper around the core API and thus supports the JPA programming interfaces,
JPA entity instance life cycles, and query language, providing a generalized mechanism for object/relational
development and configuration.

How It Works
You obtain the Hibernate EntityManager from an entity manager factory. When container-managed entity
managers are used, the application doesn’t interact directly with the entity manager factory. Such entity
managers are obtained mostly through JNDI lookup. In the case of application-managed entity managers,
the application must use the entity manager factory to manage the entity manager and the persistence
context life cycle. This example uses the application-managed entity manager.

Add the following dependency to the pom.xml file:

<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-entitymanager</artifactId>
 <version>4.3.5.Final</version>
</dependency>

EntityManagerFactory has the same role as SessionFactory in Hibernate. It acts a factory class that
provides the EntityManager class to the application. It can be configured either programmatically or by
using XML. When you use XML to configure it, the file must be named persistence.xml and must be
located in the classpath.

The persistence.xml files should provide a unique name for each persistence unit; this name is the
way applications reference the configuration while obtaining a javax.persistence.EntityManagerFactory
reference.

Chapter 1 ■ Starting with hibernate

19

Here’s the persistence.xml file for the Book and Publisher examples:

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.com/

xml/ns/persistence/persistence_2_0.xsd"
 version="2.0">
 <persistence-unit name="chapter1" transaction-type="RESOURCE_LOCAL">
 <mapping-file>com/apress/hibernaterecipes/chapter1/model/Publisher.hbm.xml</mapping-file>
 <mapping-file>com/apress/hibernaterecipes/chapter1/model/Book.hbm.xml</mapping-file>

 <class>com.apress.hibernaterecipes.chapter1.model.Publisher</class>
 <class>com.apress.hibernaterecipes.chapter1.model.Book</class>

 <properties>
 <property name="javax.persistence.jdbc.driver" value="org.h2.Driver"/>
 <property name="javax.persistence.jdbc.user" value="sa"/>
 <property name="javax.persistence.jdbc.password" value=""/>
 <property name="javax.persistence.jdbc.url" value="jdbc:h2:file:~/chapter1jpa"/>

 <property name="hibernate.dialect" value="org.hibernate.dialect.HSQLDialect"/>
 <property name="hibernate.hbm2ddl.auto" value="create"/>
 <property name="hibernate.show_sql" value="true"/>
 </properties>
 </persistence-unit>
</persistence>

The RESOURCE_LOCAL transaction type is used here. Two transaction types define transactional behavior:
JTA and RESOURCE_LOCAL. JTA is used in J2EE-managed applications in which the container is responsible for
transaction propagation. For application-managed transactions, you can use RESOURCE_LOCAL.

The <provider> tag specifies the third-party ORM implementation you use. In this case, it i’s configured
to use the Hibernate persistence provider.

The entity instances are configured with the <class> tag.
The rest of the properties are similar to the configuration in the hibernate.cfg.xml file, including the

driver class of the database you’re connecting to, the connection URL, a username, a password, and the dialect.
Here’s the code to create the EntityManagerFactory (EMF) from the configuration and to obtain the

EntityManager from the EMF:

package com.hibernaterecipes.annotations.dao;

import javax.persistence.EntityManager;
import javax.persistence.EntityManagerFactory;
import javax.persistence.Persistence;

public class SessionManager {

 public static EntityManager getEntityManager() {
 EntityManagerFactory managerFactory =
Persistence.createEntityManagerFactory("chapter1");
 EntityManager manager = managerFactory.createEntityManager();

 return manager;
 }
}

Chapter 1 ■ Starting with hibernate

20

The Persistence.createEntityManagerFactory() method creates the EMF. The parameter that
it takes is the name of the persistence unit (in this case, "chapter1"). It should be the same as the name
specified in the persistence.xml file’s <persistence-unit> tag:

<persistence-unit name="chapter1" transaction-type="RESOURCE_LOCAL">

The Book entity instance remains the same as defined in the XML config file:

public class Book {
 private String isbn;
 private String name;
 private Date publishdate;
 private BigDecimal price;
 private Publisher publisher;

 //Getters and Setters

 @Override
 public boolean equals(Object o) {
 if (this == o) return true;
 if (o == null || getClass() != o.getClass()) return false;

 Book book = (Book) o;

 if (isbn != null ? !isbn.equals(book.isbn) : book.isbn != null) return false;
 if (name != null ? !name.equals(book.name) : book.name != null) return false;
 if (price != null ? !price.equals(book.price) : book.price != null) return false;
 if (publishdate != null ? !publishdate.equals(book.publishdate) : book.publishdate

!= null) return false;

 return true;
 }

 @Override
 public int hashCode() {
 int result = isbn != null ? isbn.hashCode() : 0;
 result = 31 * result + (name != null ? name.hashCode() : 0);
 result = 31 * result + (publishdate != null ? publishdate.hashCode() : 0);
 result = 31 * result + (price != null ? price.hashCode() : 0);
 return result;
 }
}

Here’s the Publisher class:

public class Publisher {
 private String code;
 private String name;
 private String address;

Chapter 1 ■ Starting with hibernate

21

 //Getters and setters

 @Override
 public boolean equals(Object o) {
 if (this == o) return true;
 if (o == null || getClass() != o.getClass()) return false;

 Publisher publisher = (Publisher) o;

 if (address != null ? !address.equals(publisher.address) : publisher.address != null)
 return false;
 if (code != null ? !code.equals(publisher.code) : publisher.code != null)

return false;
 if (name != null ? !name.equals(publisher.name) : publisher.name != null)

return false;

 return true;
 }

 @Override
 public int hashCode() {
 int result = code != null ? code.hashCode() : 0;
 result = 31 * result + (name != null ? name.hashCode() : 0);
 result = 31 * result + (address != null ? address.hashCode() : 0);
 return result;
 }
}

Here’s the test code to create and retrieve the object graph of a Publisher and a Book:

@Test
 public void testCreateObjectGraph() {
 EntityManager em = emf.createEntityManager();
 em.getTransaction().begin();
 Publisher publisher = new Publisher();
 publisher.setCode("apress");
 publisher.setName("Apress");
 publisher.setAddress("233 Spring Street, New York, NY 10013");

 Book book = new Book();
 book.setIsbn("9781484201282");
 book.setName("Hibernate Recipes");
 book.setPrice(new BigDecimal("44.00"));
 book.setPublishdate(Date.valueOf("2014-10-10"));
 book.setPublisher(publisher);

 em.persist(book);

 em.getTransaction().commit();
 em.close();

Chapter 1 ■ Starting with hibernate

22

 em = emf.createEntityManager();
 em.getTransaction().begin();
 Book book1 = em.find(Book.class, "9781484201282");
 assertEquals(book.getName(), book1.getName());
 assertNotNull(book.getPublisher());
 assertEquals(book.getPublisher().getName(), publisher.getName());
 em.getTransaction().commit();
 em.close();

 em = emf.createEntityManager();
 em.getTransaction().begin();

 // this changes the publisher back to managed state by
 // returning the managed version of publisher
 publisher = em.merge(publisher);

 book = new Book();
 book.setIsbn("9781430265177");
 book.setName("Beginning Hibernate");
 book.setPrice(new BigDecimal("44.00"));
 book.setPublishdate(Date.valueOf("2014-04-04"));
 book.setPublisher(publisher);

 em.persist(book);
 em.getTransaction().commit();
 em.close();

 em = emf.createEntityManager();
 em.getTransaction().begin();
 book1 = em.find(Book.class, "9781430265177");
 assertEquals(book.getName(), book1.getName());
 assertNotNull(book.getPublisher());
 assertEquals(book.getPublisher().getName(), publisher.getName());
 em.getTransaction().commit();
 em.close();
 }

Create the publisher object and, when creating the book object with the title ‘Hibernate Recipes, set the
publisher on the book to the created publisher object. em.persist(book) persists the complete object graph of
the publisher and the book. To retrieve the book details from the database, use em.find(Book.class, isbn).

We persist another book with the title ‘Beginning Hibernate’. Because the same publisher object is used
for this book as the first book, now only the new book is inserted. The SQL statements in the Hibernate
ouput are shown here.

Chapter 1 ■ Starting with hibernate

23

For book1, Hibernate Recipes:

Hibernate: insert into PUBLISHER (NAME, ADDRESS, CODE) values (?, ?, ?)

Hibernate: insert into BOOK (NAME, PUBLISHDATE, PRICE, PUBLISHERCODE, ISBN)
values (?, ?, ?, ?, ?)

Hibernate: select book0_.ISBN as ISBN1_0_0_, book0_.NAME as NAME2_0_0_, book0_.
PUBLISHDATE as PUBLISHD3_0_0_, book0_.PRICE as PRICE4_0_0_, book0_.PUBLISHERCODE as
PUBLISHE5_0_0_, publisher1_.CODE as CODE1_1_1_, publisher1_.NAME as NAME2_1_1_, publisher1_.
ADDRESS as ADDRESS3_1_1_ from BOOK book0_ left outer join PUBLISHER publisher1_ on book0_.
PUBLISHERCODE=publisher1_.CODE where book0_.ISBN=?

Hibernate: select publisher0_.CODE as CODE1_1_0_, publisher0_.NAME as NAME2_1_0_,
publisher0_.ADDRESS as ADDRESS3_1_0_ from PUBLISHER publisher0_ where publisher0_.CODE=?

You see that there is an insert into the publisher as well.
For book2, Beginning Hibernate:

Hibernate: insert into BOOK (NAME, PUBLISHDATE, PRICE, PUBLISHERCODE, ISBN)
values (?, ?, ?, ?, ?)

Hibernate: select book0_.ISBN as ISBN1_0_0_, book0_.NAME as NAME2_0_0_, book0_.PUBLISHDATE
as PUBLISHD3_0_0_, book0_.PRICE as PRICE4_0_0_, book0_.PUBLISHERCODE as PUBLISHE5_0_0_,
publisher1_.CODE as CODE1_1_1_, publisher1_.NAME as NAME2_1_1_, publisher1_.ADDRESS
as ADDRESS3_1_1_ from BOOK book0_ left outer join PUBLISHER publisher1_ on book0_.
PUBLISHERCODE=publisher1_.CODE where book0_.ISBN=?

1-5. Enabling Logging in Hibernate
Problem
How do you determine what SQL query is being executed by Hibernate? How can you see the Hibernate’
internal workings? How do you enable logging to troubleshoot complex issues related to Hibernate?

Solution
You have to enable Hibernate logging in the Hibernate configuration. Hibernate uses Simple Logging Facade
for Java (SLF4J) to log various system events. SLF4J, which is distributed as a free software license, abstracts
the actual logging framework that an application uses. SLF4J can direct your logging output to several
logging frameworks:

•	 NOP: Null logger implementation

•	 Simple: A logging antiframework that is very simple to use and attempts to solve
every logging problem in one package

•	 Log4j version 1.2: A widely used open–source logging framework

•	 JDK 1.4 logging: A logging API provided by Java

Chapter 1 ■ Starting with hibernate

24

•	 JCL: An open-source Commons logging framework that provides an interface with
thin wrapper implementations for other logging tools

•	 Logback: A serializable logger that logs after its deserialization, depending on the
chosen binding

To set up logging, you need the slf4j-api.jar file in your classpath, together with the JAR file for your
preferred binding: slf4j-log4j12.jar in the case of log4j. You can also enable a property called showsql
to see the exact query being executed. You can configure a logging layer such as Apache log4j to enable
Hibernate class- or package-level logging. And you can use the Statistics interface provided by Hibernate
to obtain detailed information.

How It Works
You have to configure the Hibernate show_sql property to enable logging.

Inspecting the SQL Statements Issued by Hibernate
Hibernate generates SQL statements that enable you to access the database behind the scene. You can set
the show_sql property to true in the hibernate.cfg.xml XML configuration file to print the SQL statements
to stdout:

<property name="show_sql">true</property>

Enabling Live Statistics
You can enable live statistics by setting the hibernate.generate_statistics property in the
configuration file:

<property name="hibernate.generate_statistics">true</property>

You can also access statistics programmatically by using the Statistics interfaces. Hibernate provides
SessionStatistics and Statistics interfaces in the org.hibernate.stat package. The following code
shows the use of some utility methods:

SessionFactory sessionFactory = SessionManager.getSessionFactory();
 session = sessionFactory.openSession();
 SessionStatistics sessionStats = session.getStatistics();
 Statistics stats = sessionFactory.getStatistics();
 tx = session.beginTransaction();
 Publisher publisher = new Publisher();
 publisher.setCode("apress");
 publisher.setName("Apress");
 publisher.setAddress("233 Spring Street, New York, NY 10013");
 session.persist(publisher);
 tx.commit();
 logger.info("getEntityCount- "+sessionStats.getEntityCount());
 logger.info("openCount- "+stats.getSessionOpenCount());
 logger.info("getEntityInsertCount- "+stats.getEntityInsertCount());
 stats.logSummary();
 session.close();

Chapter 1 ■ Starting with hibernate

25

The output of this code sample is shown here (the complete log is given for clarity):

HCANN000001: Hibernate Commons Annotations {4.0.4.Final}
HHH000412: Hibernate Core {4.3.5.Final}
HHH000206: hibernate.properties not found
HHH000021: Bytecode provider name : javassist
HHH000043: Configuring from resource: /hibernate.cfg.xml
HHH000040: Configuration resource: /hibernate.cfg.xml
HHH000221: Reading mappings from resource: com/apress/hibernaterecipes/chapter1/model/Book.
hbm.xml
HHH000221: Reading mappings from resource: com/apress/hibernaterecipes/chapter1/model/
Publisher.hbm.xml
HHH000041: Configured SessionFactory: null
HHH000402: Using Hibernate built-in connection pool (not for production use!)
HHH000401: using driver [org.hsqldb.jdbcDriver] at URL [jdbc:hsqldb:file:./chapter1;write_
delay=false]
HHH000046: Connection properties: {}
HHH000006: Autocommit mode: false
HHH000115: Hibernate connection pool size: 20 (min=1)
HHH000400: Using dialect: org.hibernate.dialect.HSQLDialect
HHH000399: Using default transaction strategy (direct JDBC transactions)
HHH000397: Using ASTQueryTranslatorFactory
HHH000227: Running hbm2ddl schema export
HHH000230: Schema export complete
Session Metrics {
 14000 nanoseconds spent acquiring 1 JDBC connections;
 0 nanoseconds spent releasing 0 JDBC connections;
 2445000 nanoseconds spent preparing 2 JDBC statements;
 1636000 nanoseconds spent executing 2 JDBC statements;
 0 nanoseconds spent executing 0 JDBC batches;
 0 nanoseconds spent performing 0 L2C puts;
 0 nanoseconds spent performing 0 L2C hits;
 0 nanoseconds spent performing 0 L2C misses;
 0 nanoseconds spent executing 0 flushes (flushing a total of 0 entities and 0
collections);
 59000 nanoseconds spent executing 2 partial-flushes (flushing a total of 0 entities
and 0 collections)
}
getEntityCount- 1
openCount- 2
getEntityInsertCount- 1
HHH000161: Logging statistics....
HHH000251: Start time: 1408349026472
HHH000242: Sessions opened: 2
HHH000241: Sessions closed: 1
HHH000266: Transactions: 2
HHH000258: Successful transactions: 2
HHH000187: Optimistic lock failures: 0
HHH000105: Flushes: 1
HHH000048: Connections obtained: 2
HHH000253: Statements prepared: 3

