
COMPANION eBOOK

US $39.99

Shelve in
Mobile Computing

User level:
Beginning–Intermediatewww.apress.com

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Waqar Malik

Companion

eBook
Available

M
alik

Learn Sw
ift on the M

ac

SOURCE CODE ONLINE

Learn Swift, Apple’s new language
for native app development

Learn
Swift on the Mac 

For OS X and iOS

T here’s a new language in town. Swift is Apple’s new, native, 
fast, and easy to learn programming language for iOS and 

OS X app development. It’s their “Objective-C without the C”. 
If you are an iOS developer or planning to become one, 
learning Swift is your #1 priority, and Learn Swift on the Mac 
tells you everything you need to get up to speed, well, swiftly. 

You’ll start with the Swift Playground and an introduction to 
object-oriented programming so you can immediately see 
Swift in action. You then learn about all of the key language 
features like functions and closures, classes, methods, 
extensions, and how Swift works just as well as Objective-C 
when it comes to easy memory management with Automatic 
Reference Counting.

Finally you’ll learn how to use Swift alongside Objective-C 
as well as with Core Data, and you’ll learn how to put all of 
the pieces together with a health app using Apple’s new 
HealthKit framework.

RE
LA

TE
D 

TI
TL

ES

9 781484 203774

53999
ISBN 978-1-4842-0377-4



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For your convenience Apress has placed some of the front 
matter material after the index. Please use the Bookmarks 

and Contents at a Glance links to access them. 
 
 

 
 

 



 

v

Contents at a Glance

About the Author ���������������������������������������������������������������������������������������������������xvii

About the Technical Reviewer ��������������������������������������������������������������������������������xix

Acknowledgments ��������������������������������������������������������������������������������������������������xxi

Introduction ����������������������������������������������������������������������������������������������������������xxiii

Chapter 1: Hello Swift ■  �������������������������������������������������������������������������������������������� 1

Chapter 2: The Swift Playground in Xcode 6 ■  ������������������������������������������������������� 15

Chapter 3: Accessing Swift’s Compiler and Interpreter: REPL ■  ���������������������������� 29

Chapter 4: Introduction to Object-Oriented Programming ■  ���������������������������������� 33

Chapter 5: Constants, Variables, and Data Types ■  ������������������������������������������������ 43

Chapter 6: Operators ■  ������������������������������������������������������������������������������������������� 55

Chapter 7: Flow Control ■  ��������������������������������������������������������������������������������������� 67

Chapter 8: Functions and Closures ■  ���������������������������������������������������������������������� 81

Chapter 9: Classes and Structures ■  ���������������������������������������������������������������������� 93

Chapter 10: Methods ■  ����������������������������������������������������������������������������������������� 103

Chapter 11: Access Control ■  ������������������������������������������������������������������������������� 109

Chapter 12: Inheritance ■  ������������������������������������������������������������������������������������� 117



 
vi Contents at a Glance

Chapter 13: Extensions ■  �������������������������������������������������������������������������������������� 123

Chapter 14: Memory Management and ARC ■  ������������������������������������������������������ 129

Chapter 15: Protocols ■  ���������������������������������������������������������������������������������������� 141

Chapter 16: Generics ■  ����������������������������������������������������������������������������������������� 149

Chapter 17: Expressions ■  ������������������������������������������������������������������������������������ 157

Chapter 18: Interoperability with Objective-C ■  ��������������������������������������������������� 165

Chapter 19: Mix and Match ■  ������������������������������������������������������������������������������� 177

Chapter 20: Working with Core Data ■  ����������������������������������������������������������������� 185

Chapter 21: Consuming RESTful Services ■  ��������������������������������������������������������� 203

Chapter 22: Developing a Swift-Based Application ■  ������������������������������������������� 211

Index ��������������������������������������������������������������������������������������������������������������������� 237



 

xxiii

Introduction

Whenever developers come to a new platform, they are faced with the task of getting to 
know unfamiliar development tools, design patterns, the standard frameworks available in 
the new environment, and perhaps even a new programming language.

Most of the time, this is all done while trying to deliver an application as soon as possible. 
In such situations, developers tend to fall back on the patterns and approaches they are 
familiar with from previous environments, which too often results in code that doesn’t fit 
the new environment, or in duplicate code that might already be provided by the built-in 
frameworks. This can cause problems down the road or delays in delivery.

It would be great to have colleagues already familiar with the platform who could offer 
guidance to get you going in the right direction. Well, it’s not always possible to have 
mentors to help you, and that’s where this books steps in—to be your mentor.

The author of this book is a veteran of Apple’s Developer Technical Services organization, 
and has answered countless questions from software engineers who are new to Apple 
technology. That experience results in a book that anticipates the most common 
misunderstandings and takes care to explain not only the how, but also the why of Apple’s 
development platform.

For example, the conceptual basis provided in Chapter 4, “Introduction to Object-Oriented 
Programming,” gives you the means to place the material that follows into a coherent 
picture, instead of just tossing you into a flurry of unfamiliar classes, methods, and 
techniques and hoping you’ll somehow sort it all out with practice.

Learn Swift on the Mac provides a step-by-step guide that will help you acquire the skills 
you need to develop applications for iOS and OS X.



 

1

Chapter 1
Hello Swift

Swift is a new language designed by Apple for developing iOS and OS X applications. It takes 
the best parts of C and Objective-C and adapts them with modern features and patterns. 
Swift-compiled programs will run on iOS7 or newer and OS X 10.9 (Mavericks) or newer.

The two main goals for the language are compatibility with the Cocoa and Cocoa Touch 
frameworks, and safety, as you’ll see in the upcoming chapters. If you’ve been using 
Objecive-C, especially the modern syntax, Swift will feel familiar.

But Swift’s syntax is actually a major departure from Objective-C. It takes lots of cues from 
programming languages like Haskell, C#, Ruby, and Python.

Some of the technologies I’ll cover in this book are:

Automatic reference counting	

Closures (blocks)	

Collection literals	

Modules	

Frameworks	

Objective-C runtime	

Generics	

Operator overloading	

Tuples	

Namespaces	



 
2 CHAPTER 1: Hello Swift

Improvements over Objective-C
Let’s take a quick look atsome of the features that make Swift better than Objective-C.  
I’ll cover these in detail in later chapters.

Type Inference
In Swift, there is usually no need to specify the type of variables (though you can always 
specify them); the types of the variables can be inferred by the value being set.

Type Safety
Conversion between types is done explicitly. The compiler knows more about types in 
method calls and can use table look-up for methods for dispatch instead of the dynamic 
dispatch that Objective-C uses. Static dispatch via table look-up enables more checks at 
compile time, even in the playground. As soon as you enter an expression in the playground, 
the compiler evaluates it and lets you know of any possible issues with the statement; you 
can’t run your program until you fix those issues. Here are some features that enhance safety:

Variables and constants are always initialized	

Array bounds are always checked.	

Raw C pointers are not readly available.	

Assignments do not return values.	

Overflows are trapped as runtime errors.	

Control Flow
The switch statement has undergone a major overhaul. Now it can select based not only 
integers, but also on strings, floats, ranges of items, expressions, enums, and so forth. 
Moreover, there’s no implicit fall-through between case statements.

Optionals
Variables can now have optional values.  What does that mean?  It means a variable will 
either be nil or it will have a valid value.  The nil value is distinct from any valid value.  
Optionals can also be chained together to protect against errors and exceptions.

Strings
Strings in Swift are much easier to work with, with a clear, simple syntax. You can 
concatenate strings using the += operator. The mutability of the strings is defined by the 
language, not the String object. You declare a string as either mutable or nonmutable with 
the same String object, by using either  the let or var keywords.



 
3CHAPTER 1: Hello Swift

Unicode
Unicode is supported at the core: You can define variables names and function names using 
full Unicode. The String and Character types are also fully Unicode-compliant and support 
various encodings, such as UTF-8, UTF-16, and 21-bit Unicode scalers.

Other Improvements
Header files are no longer required.	

Functions are full-fledged objects; they can be passed as arguments 	
and returned from other fuctions.  Functions can be scoped similarly to 
instance variables.

Comments can be nested.	

There are separate operators for assignment (=) and comparison (==), 	
and there’s even an identity operator (===) for checking whether two 
data elements refer to same object.

There is no defined entry point for programs such as main.	

If all this sounds good to you (it does to me), let’s go get the tools to start playing with Swift.

Requirements
Before you can begin playing with Swift, you need to download and install Xcode, the IDE 
that’s used to build applications for iOS and OS X. You’ll need Xcode 6.1 or later.

It’s really easy to download and install Xcode. Here are the basic requirements:

Intel-based Macintosh computer	

OS X 10.10 Yosemite (or later)	

Free disk space	

An Internet connection	

An iOS device running iOS 7 (or later)	

Note As a rule, the later the version of the OS, the better. The examples in the book are developed 
using Xcode 6.1 running on OS X 10.10 Yosemite and for iOS 8 running on iPhone 5S.

Getting Xcode
Launch the App Store application and use the search bar on the top right to search for 
Xcode. . You can then get more information by selecting Xcode, as shown in Figure 1-1, or 
install it by selecting the Install button.



 
4 CHAPTER 1: Hello Swift

When you launch Xcode for first time, it will download and install other required items in 
order to complete the installation. If you have mutltiple versions of Xcode installed, be sure 
to select Xcode version 6.1 or later for the command-line tools. You can do this by selecting 
Xcode ➤ Preferences, then choosing the Locations tab as shown in Figure 1-2.

Figure 1-1. Xcode on App Store

Figure 1-2. Selecting the command-line tools



 
5CHAPTER 1: Hello Swift

Quick Tour of Xcode
If you launch Xcode without opening a project, you’ll see the screen shown in Figure 1-3. 
You can create or open existing projects or a playground.

Figure 1-3. Xcode Welcome Screen

Let’s start by creating a new playground, using the Get started with a playground option. 
As Figure 1-4 shows, the next screen asks you to name your playground and pick the 
operating system framework you’d like the playground to use. For now, just pick the default 
iOS and name your playground Learn Swift, then select Next to save your playground on 
your computer.



 
6 CHAPTER 1: Hello Swift

And now you’re ready to play with Swift. As you can see in Figure 1-5, line numbers are not 
on by default. To turn them on—and set all of your text editing preferences—select Xcode 
➤ Preferences again and then select the Text Editing tab. The first option you’ll see lets you 
enable line numbers, so you’ll be able to easily find a line as I discuss it.

Figure 1-4. Naming a playground



 
7CHAPTER 1: Hello Swift

Once you have created the playground and updated the preferences. You will be greeted by 
the playground window as shown in Figure 1-6.

Figure 1-5. Setting text-editing Preferences



 
8 CHAPTER 1: Hello Swift

There are two parts to the playground. On the left, is the editor where you write code, and on 
the right is a sidebar that shows what happens when the code runs. As you can see, there is 
already some code in the file.

Line 1 shows a single-line comment, which starts with // and ends with new line. You can 
have as many as you like, but each must start on a new line. You can also use multiline 
comments, which start with /* and end with  */ and can span multiple lines, like this:
 
/* this the first line of comment,
   it continues on the second line */
 
Line 3 tells the compiler to import the iOS Cocoa Touch API so I can use it if I want.

Figure 1-6. Interactive playground window

Note Cocoa is the framework that defines the API for developing OS X applications. Cocoa Touch 
is the equivalent for iOS. Sometimes Cocoa is used to mean both OS X and iOS and, in that case, the 
desktop version is referred to as AppKit.

Notice that there’s no semicolon (;) at the end of the import statement, In Swift, semicolons 
are optional; they are required only if you put more that one statements on a line, such as 
var a = 4; var b = 8.



 
9CHAPTER 1: Hello Swift

Line 5 is a variable declaration, which shows the keyword var and the name of the variable, 
and assigns the initial value to the variable. As you’d expect, the keyword var tells the 
compiler I’m declaring a variable. Then I give it a name; the default name is str but it could 
be any valid string (as I’ll discuss in a later chapter).

Quick Tour of Swift
Whenever you learn a new language, there’s a long-standing tradition that your first 
program is one that displays “Hello, World”. Let’s stick with that tradition. In Swift, this 
takes just one line:
 
println("Hello, Swift!")
 
This is a complete Swift program, so you don’t need to import a separate library to use the 
function. And you don’t need a special entry point, such as the main function in Objective-C.

Basic Types
To create values, you use either let or var. The first keyword, let, creates a constant value, 
which can be assigned only once; var creates a variable whose value can change during the 
execution.
 
var myVariable = 11
myVariable = 33
let someOtherVariable = 22
 
Notice that I didn’t give explicit types to these variables. They are implicitly inferred from the 
type of value they were assigned, integers in this case.

If the type information can’t be derived from the initial value, then it must be specified. You 
do this by adding the type specifier after the variable, separated by a colon (:)
 
var implicitDoubleValue = 1.0
var explicitDoubleValue : Double = 22
var a, b, c : Float
 
Values are never implicitly converted from one type to another type. Every type that needs to 
convert to anther type must provide a conversion function. Look at the following code:
 
var myString = "The answer is "
let answer = 42
let myAnswer = myString + answer
 
Swift would give an error here. You have to use one of the String functions that converts an 
integer to a string:
 
let myAnswer = myString + String(answer) + "."
 



 
10 CHAPTER 1: Hello Swift

What this does is create a new string from answer, which is then appended to myString and 
provides the final answer:
 
println(myAnswer)
 
Another way to insert values into strings is to use the \() expression conversion function To 
do this, you can write the expression:
 
let myAnswer = "The Answer is \(answer)."
 
The basic types are String, Character, Int, UInt, Float, and Double.

Aggregate Types
You can define arrays and dictionaries using bracket syntax.
 
var myArray : [String]()
var myDictionary : [String : String]()
 
The types within the brackets are the types of values aggregates can hold. Here I define the 
array to hold only string type values, and, for the dictionary, both the key and the value are of 
type string. But these don’t have to be of type string; they can be Int or other aggragate 
types.
 
var myFavoriteFruits =["Oranges", "Bananas", "Grapes", "Mangos"]
myFavoriteFruits[2] = "Guavas"
var favorites = ["myFavorites" : myFavoriteFruits]
favorites["MishalsFavorite"] = ["Oranges", "Watermelon", "Grapes"]
favorites["AdamsFavorite"] = ["Apples", "Pears"]

Control Flow
You can choose if or switch for conditionals, and for-in, for, while, and do-while for 
loops. The paretheses around the contidional and loop variables are optional:
 
if a == b or if (a == b)
switch foo or switch (foo)
while a < b or while (a < b)
 
But the braces around the body are required:
 
If a == b
{
println(“they are equal”)
}
 



 
11CHAPTER 1: Hello Swift

Functions
The syntax for a function is:
 
func functionName(arguments) -> returnType
{
}
 
or
 
func functionName(arguments)
{
}
 
In the second example, the function doesn’t return a value.

Note You also use the keyword func when defining methods for classes.

Functions in Swift are full-fledged types. You can pass them as arguments and return them 
from functions. You can have a function that takes a function and returns a function. There’s 
a special kind of function called a closure.  Closures are unnamed functions that can be 
passed as data.You write the code for closures between {}:
 
{ (arguments) -> Int in /* body */ }
 

Note In Objective-C the concept equivalent to closures is blocks. When interfacing with 
Objective-C from Swift, blocks are imported as closures.

Objects
Use the keyword class to define class objects, similar to functions:
 
class MyClass {
}
 
Classes in Swift don’t require parent classes.
 
class myClass : ParentClass, Protocol, AnotherProtocol
{
}
 



 
12 CHAPTER 1: Hello Swift

Use enum to create enumeration types
 
Enum : Int
{
  case One
  case Two
  case Three, Four, Five
}
 
The big difference in Swift for enums is they can include methods that operate on the cases 
of the enum.

Use the struct keyword to define structs:
 
struct MyStruct
{
}
 
Structs support most of what classes can do. But the big difference between classes and 
structs is that when passing structs around the code, they are always copies, while classes 
are passed by reference.

Generics
Generic types are used when you design a class that can operate on different types of 
objects, which allows maximum reusability of the code. You can have a linked list of integers 
or characters or strings. In a language like Objective-C, you’d end up using id or NSObject 
to hold different types of objects. In Swift, you define your object with a gerenic type in angle 
brackets <>. Then, anytime you have to define a variable with a method or somewhere in 
your class, you use the type that was given in angle brackets. Typically, developers use T 
for type, but when you instantiate the class you have to give a proper type, such as Int or 
Double or String.
 
class Node<T>
{
  var value : T
}
 
var myNode : Node<Int>
 
In this example T is replace with Int, and now Node can hold only Int type values.

Getting the Sample Code
Xcode is a large application and will take some time to download and install. While you’re 
waiting, you can download the sample code for this book from the Apress site. Go to 
http://www.apress.com/book/view/9781484203774. In the middle of the page below the 
book description, you’ll see a tab that says Source Code/Downloads, where you’ll find the 
download link. Click that link to download the source code to your preferred folder.

http://www.apress.com/book/view/9781484203774


 
13CHAPTER 1: Hello Swift

Summary
You should have every thing you need now to start playing with Swift or developing 
your app. Don’t forget to download the development tools and set up your development 
environment.

You’ve gotten just a quick overview of the Swift language so far. Next, we are going to jump 
right in and start to play with Swift itself. By the end of this book, you’l be writing programs 
yourself.



 

15

Chapter 2
The Swift Playground in 
Xcode 6

The Swift playground is a new interactive environment in which developers can view 
and manipulate their code live, instead of having to continually go throught the complete 
compile-run-test cycle. You type your code, it’s evaluated, and you get feedback right away. 
You can see immediately whether your code is behaving as expected. Think of it as a mini 
project with one file and an SDK to compile against.

This chapter will walk you through creating your first playground and show you how to 
interact with the playground. You’ll also create your first simple program in Swift.  
You’ll be using playgrounds throughout this book, whenever you need to try out some 
standalone code.

I’ll also delve into the different parts of the playground and discuss the functionality they 
provide, and show how to become really good at using playgounds.

Getting Started with a Playgorund
When you launch Xcode, you’ll be greeted with its welcome screen, where you can create a 
new playground. If that window isn’t visible, you can create a new playground by selecting 
File ➤ New ➤ Playround... or use Option-Shift-Command-N to get the dialog shown in 
Figure 2-1.



 
16 CHAPTER 2: The Swift Playground in Xcode 6

Start by creating a new OS X playground, then name your playground and press Next. You’ll 
be greeted by the window shown in Figure 2-2.

Figure 2-1. Naming your playground

Figure 2-2. Playgound interaction window



 
17CHAPTER 2: The Swift Playground in Xcode 6

There are two parts to the playground, the editor on the left and what’s called the sidebar  
on the right. The editor area is where you enter code into the playground for Swift to 
interpret. The sidebar is where Swift will show the results and respond to your command if it 
has something to let you know. As you can see, there’s already some code in the sidebar.

Line 1 is a single-line comment, as discussed in Chapter 1. Line 3 tells the compiler to 
import the entire desktop Cocoa API so it will be available for use.

Notice there’s no semicolon (;) at the end of the import statement. This is because, in Swift, 
using semicolons to terminate a statement is optional if you only have one statement on a 
line. If you put more than one statement on a line, you must separate each statement with 
semicolons, except for the last statement. You can do this: var a = 4; var b = 8.

Line 5 defines a variable and then assigns a value to it. The default name is str, but it could 
be any valid string, (as I’ll discuss in a later chapter).

You’ll note that I didn’t give the type of variable, such as Int or Float. That’s because of 
type inference—Swift infers the type of the variable from the initial value assigned to it. Once 
the initial type is set for a variable, the type can’t be changed. So, if you try to set an integer 
value to str, the compiler will give you an error, as line 6 in Figure 2-3 shows.

This error says that the String type doesn’t have a method that can take an integer 
argument and return a string when assigning to str.

Let’s create another variable called value without assigning a value. The compiler is not 
happy, Because Swift is strongly typed, the language enforces the types for variables at 
compile time. If you make an error as you’re writing code, you’ll see the stop icon to the left 
of the line numbers. If you need to see the error message, click on the icon to display the 
error, as shown in Figure 2-4.

Figure 2-3. Error when the wrong type is assigned



 
18 CHAPTER 2: The Swift Playground in Xcode 6

To give a type to a variable in Swift, you add the type after the variable name, separated by a 
colon. If you write var value : String, the compiler is happy. However, if you try to use this 
variable in an expression, the compiler will again complain, because the variable has not yet 
been initialized, as Figure 2-5 shows. This is one of the Swift’s safety requirements.

Figure 2-4. A missing-type error

Figure 2-5. Uninitialized variable error



 
19CHAPTER 2: The Swift Playground in Xcode 6

If you look at the right-hand side of the window—the sidebar—you’ll see the result of the 
statement on line 5: the value of the variable str was set to the string “Hello, playground”.

If you hover over the value on line 5, you’ll see two icons on the right side of the line. The 
first, which looks like an eye, is QuickLook. Clicking it pops up a view of the object. The 
built-in types are supported and you can customize it for your own types. This is handy if the 
value is too long or complex to be displayed fully on the right side. The icon that looks like a 
circle brings up the value history display in the Assistant Editor.

To give this a try, type the following in the editor:

 
for i in 1...10 {
    i * i
}
 
Then select the value history and, as Figure 2-6 shows, the Assistant Editor will display a 
visual representation of the loop.

Figure 2-6. Assistant history view



 
20 CHAPTER 2: The Swift Playground in Xcode 6

The Assistant Editor uses QuickLook to visualize the output. The supported types are:

Objects (Structs and Classes)	

Strings	

Images	

Colors	

Views	

Array and Dictionaries	

Points, Rects and Sizes	

Bezier Paths	

URLs (using WebView)	

You can use use the debugQuickLookObject function to display objects that are derived 
from NSObject, which encompasses pretty much any existing Cocoa framework. Examples 
include UIImage, NSImage, UIColor, NSColor, UIView, NSView, and more.

Custom QuickLook Plugins
Because you’re not yet familiar with the language, you might find the following examples a 
bit terse. Still, they will give you an idea how powerful playgrounds can be.

To develop a custom plugin, you use the XCPlayground module, which has three functions 
that let you display custom values and views in the Assistant Editor.

Note XCPlayground only works for NSView- and UIView-based subviews.

XCShowView
If you’re developing a custom view and want to see how it’s going, you can call this method 
to display what the view looks like. XCShowView takes an identifier that’s displayed at the top 
of the view so you know which view is being displayed.

 
XCShowView(identifier : String, view : NSView)
XCShowView(identifier : String, view : UIView)



 
21CHAPTER 2: The Swift Playground in Xcode 6

XCCaptureValue
If you’re developing your program and want to display some values, you can use the 
XCCaptureValue function to display the values:

 
XCCaptureValue<T>(identifier : String, value : T)

XCPSetExecutionShouldContinueIndefinitely
Client/server communication is common in mobile computing, but the network is 
inherently unreliable. As a result, most communication is therefore asynchronus, where 
the client makes a call to server and when the server returns the response, the client 
then acts on it. But the call gets executed quickly and runs on the background thread. 
If the tasks on the main thread finish too quickly, the program could exit without giving 
the client a chance to process the response from the server. To prevent this, use the 
XCPSetExecutionShouldContinueIndefinitely function to keep the main program from 
terminating.

This function allows you to execute long-running asynchronous tasks. Here’s how you could 
use it to download some JSON data from the network:

 
XCPSetExecutionShouldContinueIndefinitely(continueIndefinitely: Bool = default)

Custom Modules for Playground
These functions are all good, but suppose you have your own code and don’t want to copy 
and paste it into the playground, you just want to use your own classes in the playground. 
This is possible, but there are some prerequisites:

The code must be in a framework.	

The classes you plan to use in the playground must have public access.	

The playground must be in the same workspace as the project with the 	
framework.

The framework must already be built.	

For iOS, the framework must be built for a 64-bit runtime.	

There must be a scheme that builds a target.	

Build location preference must be set to Legacy.	

The playground name must not be same as the build target.	



 
22 CHAPTER 2: The Swift Playground in Xcode 6

Importing Your Code 
Once you’ve fulfilled these conditions, you can simply use import ModuleName to import your 
code into the playground.

Now let’s start create a framework. Launch Xcode and select the Create a new Xcode 
project option, as shown in Figure 2-7.

On the next screen you’ll be asked to select the template for the project, as shown in 
Figure 2-8. Under iOS, select Framework & Library, and then choose Cocoa Touch 
Framework.

Figure 2-7. Xcode Welcome window


