iPhone, iPad, and Mac Programming Made Easy

Swift

for Absolute Beginners

Gary Bennett | Brad Lees

Apress




For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress*



Contents at a Glance

About the AUtROrS.........cccsriemmisrns s ————————————— Xv
About the Technical REVIEWET .......ccusesssssssmsssmssmmssssssmssmssssssssssssssssssssssssssssssssssnsssnsssnsnss Xvii
ACKNOWIEAYMENES .....ceuiiirimmissssnnnnsnnnnssssssssssnsssnsssesssssssssnsnssnsssssssssssnnnnnnnssssssssssnnnnnnnnsssssssnns Xix
INtroducCtion .......cccuvierie s ————S—————_—S—=————=—_—— xxi
Chapter 1: Becoming a Great i0S DeVvelOPer .......ccuueurrmssssnnnmssssssnsssssssssssssssssnssssssssnssssssnns 1
Chapter 2: Programming BaSiCS......cuuuuurrmmsssssssssnnsssssssssssssssssssssssssssssssnssnsssssssssssssnnnnnssnnss 11
Chapter 3: It’s All About the Data .........ccccicmmnismmnisnmisns s ——————————— 23
Chapter 4: Making Decisions, Program Flow, and App DesSign.......cccuseemmmmmssmsnmmssssssnnnnans 37
Chapter 5: Object-Oriented Programming with Swift.........cccccunsemmmmmnsemmmmmsesnmmsasn. 61
Chapter 6: Learning Swift and Xcode ........cccusmmmmsmnmmsssnsssssnsssssnsssssnsssssssesssssesssnsesssnnessnns 79
Chapter 7: Swift Classes, Objects, and Methods .........ccccemmrmmnnmmmmssssssnnnnmmmmsssssssnms 101
Chapter 8: Programming Basics in SWift ........ccccunmmmmnsemmmmmmsssmmmmmssssmmsssssmmssssnns 125
Chapter 9: Comparing Data ......ccccccrmmsemmmmssmmmmssssmmssssmssssnsssssssssssssssssssesssssessnnsessansessnnness 151
Chapter 10: Creating User INterfaces ........ccoussemmmssmsmsssasmsssasssssassssssnssssassssssnssssnnssssnnnnsss 167



vi

Contents at a Glance

Chapter 11: Storing Information...........ccccirninmmnmnnnsnnmmnsssnm——————————— 189
Chapter 12: Protocols and Delegates ........cccuumsmmmmssanssssanssssanssssansssssnsssssnnssssnsssssnnssssnnsss 217
Chapter 13: Introducing the Xcode Debugger .........cccocumsmmmmmmsssnnnnmsssssnsssssssssssssssssnssnssss 231
Chapter 14: A SWift IPhONE APP ...ceerriiinemmmminssnnmmmssssmmmsssssmmssssssnsssssssssssssssssesssssnssssss 249



Introduction

Over the past three years, we’ve heard the following countless times:
“I've never programmed before, but | have a great idea for an iPhone/iPad app.”
“Can | really learn to program the iPhone or iPad?”

To the latter we answer, “Yes, but you have to believe you can.” Only you are going to tell yourself
you can’t do it.

For the Newbhie

This book assumes you may have never programmed before. The book is also written for someone
who may have programmed before but never using object-oriented programming (OOP) languages.
There are several Swift books out there, but all of these books assume you have programmed before
and know OOP and computer logic. We wanted to write a book that takes readers from knowing
little or nothing about computer programming and logic to being able to program in Swift. After all,
Swift is a native programming language for the iPhone, iPad, and Mac.

Over the past six years, we have taught thousands of students at xcelMe.com to be iPhone/iPad
(I0S) developers. Many of our students have developed some of the most successful iOS apps
in their category in the iTunes App Store. We have incorporated what we have learned in our first
two courses, Introduction to Object-Oriented Programming and Logic and Swift for iPhone/iPad
Developers, into this book.

For the More Experienced

Many developers who programmed years ago or programmed in a non-OOP language need a
background in OOP and logic before they dive into Swift. This book is for you. We gently walk you
through OOP and how it is used in iOS development to help make you a successful iOS developer.



xxii Introduction

How This Book Is Organized

You’ll notice that we are all about successes in this book. We introduce the OOP and logic concepts
in playgrounds and then move those concepts to Xcode and Swift. Many students are visual learners
or learn by doing. We use both techniques. We’ll walk you through topics and concepts with visual
examples and then take you through step-by-step examples that reinforce the concepts.

We often repeat topics in different chapters to reinforce what you have learned and apply these
skills in new ways. This enables new programmers to reapply development skills and feel a sense
of accomplishment as they progress. Don’t worry if you feel you haven’t mastered a topic. Keep
moving forward!

The Formula for Success

Learning to program is an interactive process between your program and you. Just like learning to
play an instrument, you have to practice. You must work through the examples and exercises in this
book. Understanding the concept doesn’t mean you know how to apply it and use it.

You will learn a lot from this book. You will learn a lot from working through the exercises in this
book. However, you will really learn when you debug your programs. Spending time walking through
your code and trying to find out why it is not working the way you want is an unparalleled learning
process. The downside of debugging is that a new developer can find it frustrating. If you have never
wanted to throw your computer out the window, you will. You will question why you are doing this
and whether you are smart enough to solve the problem. Programming is humbling, even for the
most experienced developer.

Like a musician, the more you practice, the better you get. By practicing, we mean programming!
You can do some amazing things as a programmer. The world is your oyster. Seeing your app in the
iTunes App Store is one of the most satisfying accomplishments. However, there is a price, and that
price is time spent coding and learning.

Having taught many students to become iOS developers, we have put together a formula for what
makes students successful. Here is our formula for success:

Believe you can do it. You'll be the only one who says you can’t do this.
So, don’t tell yourself that.

Work through all the examples and exercises in this book.
Code, code, and keep coding. The more you code, the better you’ll get.

Be patient with yourself. If you were fortunate enough to have been a 4.0
student who could memorize material just by reading it, this will not happen with
Swift coding. You are going to have to spend time coding.

You learn by reading this book. You really learn by debugging your code.

Use the free xcelMe.com webinars and YouTube videos explained at the end of
this introduction. The free live and recorded training videos will be invaluable in
quickly becoming a successful iOS developer.

Don’t give up!



Introduction xxifi

The Development Technology Stack

We will walk you through the development process for your iOS apps and what technology you
need. However, briefly looking at all the technology pieces together is helpful. These are the key iOS
development technologies you will need to know in order to build a successful app and get it on the
App Store:

Apple’s developer website

iTunes Connect

Xcode

Swift

Object-oriented programming and logic
Debugging

Performance tuning

We know this is a lot of technology. Don’t worry, we will go through it, and you will become
comfortable using it.

Required Software, Materials, and Equipment

One of the great things about developing iOS apps is that everything you need to develop your app
is free.

Xcode

Swift

OSX 10.10 Yosemite

Integrated development environment
iPhone and iPad simulators

All you need to get started is a Mac and knowledge of where to download everything. We will
cover this.

Operating System and IDE

When developing iOS apps, you have to use Xcode and Mac OS X. You can download both of these
for free from the Mac App Store.



Xxiv Introduction
aoe
<

Other Apps

-

08 X Yesemite

Agerture
e e %

MainStage 3

ek e e @ Paings

iBooks Author
e

08 X Server

i

Movie

Numbers
e e e 3

Final Cut Pro.

FaceTime

] o
e\.\.

g,

ettt

Featursd

s iy 3an A

*

Top Chasts

| g

Categories  Purchases

¢

Updates

GarageBand

Hd el B R

Keynote
Productivit

ek dede s 174 Ratings

Moticn

HR IR

Software Development Kits

You will need to register as an iOS developer. You can do this for free at
http://developer.apple.com/iphone.

When you are ready to upload your app to the iTunes App Store, you will need to pay $99 per year in

order to access.

Comprassor

ok

Appia Remate Desicop

D08 x yosemite

St By: Featured

Sort By: Faaturod

Sort By: Featured

Sort By: Featured

Laogic Pro X

Sent By: Featured
Appls Configurator

HRRN L 5 Ratio


http://developer.apple.com/iphone

Introduction XXV

@ Developer Technologies  Resources  Programs  Support  Member Center
Ff i0S Dev Center 105 Dev Center
Hi, Guest Register
Access additional resources in the iOS Dev Center. @ELLD
Sign in with the Apple ID you used to register as an Apple Developer, or register for free today.
Development Resources i0S Developer Program
Documentation and Videos Featured Content App Review
Prepare your apps for the
ii IS Developer Library W DS 8 for Developers review process.
View the latest documentation and sample ® i05 Design Resources Learn more »
code for i05 8.
W Xcode Continuous Integration Guide
. Caliing dariac .+ ampie Coda W start Developing i0S Apps Today App Store Resource Center
= Technical Notes % Get information on —
- Technical Q&As W S - distributing your app on (@J
W Developing Apps for iPad the App Store. Sign in »
W 05 App Programming Guide
W iO5 Human Interface Guidelines
Development Videos R i Kty
[ . 057 TechTalks + WWDC 2014 W Programming with Objective-C Stay up-to-date with the _“.
latest Apple developer news
W Programming with Swift and updates. Learn more »
Downloads
Xcode 6
R Download the complete developer toolset for bullcing Mac, iPhone, and iPad apps, including the
| - Xcode |DE, performance analysis tools, IO5 Simulator, and the lawest O5 X and iO5 SDKs.

Custom BZB Apps

Sell

Dual Monitors

We recommend developers have a second monitor connected to their computers. It is great to
step through your code and watch your output window and iOS simulator at the same time on dual
independent monitors.

Apple hardware makes this easy. Just plug your second monitor into the display port of any Mac,
with the correct Mini DisplayPort adapter, and you have two monitors working independently of one
another. Note that dual monitors are not required. You will just have to organize your open windows
to fit on your screen if you don'’t.



XXVi Introduction

286 < | - ASUS VS247 (2)

(ol

| Display Arrangement Color |

To rearrange the displays, drag them to the desired position.
To relocate the menu bar, drag it to a different display.

| Mirror Displays

AirPlay Display: No Devices Detected <

Show mirroring options in the menu bar when available

Gather Windows

2



Introduction  xxvii

FREE LIVE WEBINARS, Q&A, AND YOUTUBE VIDEOS

Every Monday night at 5:30 p.m. Pacific time, we have live webinars and discuss a topic from the book or a timely item of
interest. These webinars are free, and you can register for them at www.xcelme.com/latest-videos/.

xcelme.com v]

O]

in¥ f X
e HOME  COURSES  SCHEDULE  CONSULTING ABOUT  FAQ  FREE VIDEOS

XCEL DIFFERENT

Home Latest Videos

Free Swift iOS Webinars

Every Monday night at 5:30 PM Pacific time xcelMe.com is providing FREE webinars.

Gary Bennett discusses Swift, xCode, Interface Builder, iOS, Maker topics, and answers your programming questions.
Webinars are recorded and available on his YouTube channel.
Make sure you subscribe to his channel to be notified when new videos are uploaded.

To register for the FREE weblnar, click HERE.
Once registered you will receive an email confirming registration with information you need to join the Webinar.

Upcoming Live Swift Tutorials

Mon, Jan 12, 2015 5:30 PM - 5:45 PM PST Introduction and Chapter 1 — Using Swift Playgrounds
Mon, Jan 19, 2015 5:30 PM - 5:45 PM PST Chapter 1 — More on Swift Playgrounds

Mon, Jan 12, 2015 5:30 PM - 5:45 PM PST Chapter 2 — Programming Basics

Mon, Jan 19, 2015 5:30 PM — 5:45 PM PST Chapter 3 — It's all About the Data

Mon, Jan 26, 2015 5:30 PM - 5:45 PM PST Chapter 4 — Making Decisions, Program Flow, and App Design
Mon, Feb 2, 2015 5:30 PM - 5:45 PM PST Chapter 5 — Object-Oriented Programming with Swift
Mon, Feb 8, 2015 5:30 PM - 5:45 PM PST Chapter 6 — Learning Swift and Xcode

Mon, Feb 16, 2015 5:30 PM - 5:45 PM PST Chapter 7 — Swift Classes, Objects, and Methods
Mon, Feb 23, 2015 5:30 PM - 5:45 PM PST Chapter 8 — Programming Basics in Swift

Mon, Mar 2, 2015 5:30 PM — 5:45 PM PST Chapter 9 — Comparing Data

Mon, Mar 8, 2015 5:30 PM — 5:45 PM PDT Chapter 10 — Creating User Interfaces

Mon, Mar 16, 2015 5:30 PM - 5:45 PM PDT Chapter 11 — Storing Information

Mon, Mar 23, 2015 5:30 PM - 5:45 PM PDT Chapter 12 - Protocols and Delegates

Mon, Mar 30, 2015 5:30 PM - 5:45 PM PDT Chapter 13 — Introducing the Xcode Debugger

Mon, Apr 6, 2015 5:30 PM - 5:45 PM PDT Chapter 14 — A Swift iPhone App

At the end of the webinars, we do a Q&A. You can ask a question on the topic discussed or on any topic in the book.

Additionally, all these webinars are recorded and available on YouTube. Make sure you subscribe to the YouTube channel
S0 you are notified when new recordings are uploaded.


http://www.xcelme.com/latest-videos/

xxvili  Introduction

Free Book Forum

We have developed an online forum for this book at http://forum.xcelme.com, where you can ask questions while
you are learning Swift and get answers from the authors. Also, Apple makes frequent changes to the programming
language and SDK. We try our best to make sure any changes affecting the book get updated on the forum along with any
significant text or code changes.

You can download the source code from the chapters on this forum too.

o0 e® < M ® forum.xcelme.com

Latest Videos | Xcelme

xcelMe.com

xcelMe Training Center And Interactive Developer Forum.

{; Board index
F{user Control Panel » View your posts

It is currently Mon Dec 15, 2014 2:18 pm
[ Moderator Cantrol Panel ]

View unanswered posts » { SEARCH_UNREAD } = View new posts = View active topics

FORUM TOPICS POSTS
How To Access Your Course Webinars And How To Use The Forum
New need to the ched pdf and follow instructions to register for your weblnars after you purchase the class. 3 12
: Additionally, there are directions and updates on how to access your course and forum, post g he board, watch
training videos, etc.
Lo smrrre
Book -> Swift for Absolute Beginners: iPhone and Mac Programming Made Easy 16 16
< This forum contains all the guestions readers may have for each chapter and and chapter or code changes.
— Moderator: gary.bennett

Book > UBJeTtive-c-for-Absaluta Aagi (20d Editinn) iRk d-Mec-PTORTSTmIng Made Easy

This forum contains all the assignments and questions readers may have for each chapter. 20
Moderator: gary.bennett

Free Live Webinars for iPhone Developers

This forum lists the schedule for upcoming live webinars for iPhone developers. Webinars are live and have limited seats. Current and
former students get first notifications. Seats for all others is first-come-first serve.

The sessions are recorded and will be made available to current and former students on this forum.

Mederator: gary.bennett

Current Student & Alumni Recorded Webinars and More
. This Forum is for current and former students
: gary.bennett

224

Instructor App
Applications that xcelme instructors and students have successfully posted on Tunes AppStore. 38 61
: gary.bennett

Swift Course 1 - Intro to OOP and Logic 1 14
: gary.bennett

Swift Course 2 - Swift for i05 Developers
Swift Course 2 - Swift for iOS Developers 11 11
Moderator: gary.bennett
Swift Course 3 - Cocoa Touch for i0S Developers

Swift Course 3 - Cocoa Touch for i0S Developers 6 6
Moderator: gary.bennett
Swift Course 4 - iPhone and iPad Programming Part 1
Swift Course 4 - iPhone and iPad Programming Part 1

Swift Course 1 - Intro to OOP and Logic



http://forum.xcelme.com/

Chapter

Becoming a Great iOS Developer

Now that you’re ready to become a software developer and have read the introduction of this book,
you need to become familiar with several key concepts. Your computer program will do exactly what
you tell it to do—no more and no less. It will follow the programming rules that were defined by the
operating system and the Swift programming language. Your program doesn’t care if you are having
a bad day or how many times you ask it to perform something. Often, what you think you’ve told
your program to do and what it actually does are two different things.

Key to success If you haven’t already, take a few minutes to read the introduction of this book. The
introduction shows you where to go to access the free webinars, forums, and YouTube videos that go
with each chapter. Also, you’ll better understand why this book uses the Swift playground programming
environment and how to be successful in developing your iOS apps.

Depending on your background, working with something absolutely black and white may be
frustrating. Many times, programming students have lamented, “That’s not what | wanted it to
do!” As you begin to gain experience and confidence in programming, you’ll begin to think like a
programmer. You will understand software design and logic, and you will experience having your
programs perform exactly as you want and the satisfaction associated with this.

Thinking like a Developer

Software development involves writing a computer program and then having a computer execute
that program. A computer program is the set of instructions that you want the computer to perform.
Before beginning to write a computer program, it is helpful to list the steps that you want your
program to perform in the order you want them accomplished. This step-by-step process is called
an algorithm.



2 CHAPTER 1: Becoming a Great i0S Developer

If you want to write a computer program to toast a piece of bread, you would first write an algorithm.
This algorithm might look something like this:

1. Take the bread out of the bag.
Place the bread in the toaster.
Press the toast button.

Wait for the toast to pop up.

o R~ LN

Remove the toast from the toaster.

At first glance, this algorithm seems to solve the problem. However, the algorithm leaves out many
details and makes many assumptions. Here are some examples:

What kind of toast does the user want? Does the user want white bread, wheat
bread, or some other kind of bread?

How does the user want the bread toasted? Light or dark?

What does the user want on the bread after it is toasted: butter, margarine,
honey, or strawberry jam?

Does this algorithm work for all users in their cultures and languages? Some
cultures may have another word for toast or not know what toast is.

Now, you might be thinking this is getting too detailed for making a simple toast program. Over the
years, software development has gained a reputation of taking too long, costing too much, and not
being what the user wants. This reputation came to be because computer programmers often start
writing their programs before they have really thought through their algorithms.

The key ingredients to making successful applications are design requirements. Design requirements
can be formal and detailed or simple like a list on a piece of paper. Design requirements are
important because they help the developer flush out what the application should do and not do
when complete. Design requirements should not be completed in a programmer’s vacuum but
should be produced as the result of collaboration between developers, users, and customers.

Note If you take anything away from this chapter, take away the importance of considering design
requirements and user interface design before starting software development. This is the most effective
(and least expensive) use of time in the software development cycle. Using a pencil and eraser is a lot easier
and faster than making changes to code because you didn’t have others look at the designs before starting
to program.



CHAPTER 1: Becoming a Great i0S Developer 3

Another key ingredient to your successful app is the user interface (Ul) design. Apple recommends
you spend more than 50 percent of the entire development process focusing on the Ul design.
The design can be done using simple pencil and paper or using Xcode’s storyboard feature to lay
out your screen elements. Many software developers start with the Ul design, and after laying out
all the screen elements and having many users look at paper mock-ups, they then write the design
requirements from their screen layouts.

After you have done your best to flush out all the design requirements, laid out all the user interface
screens, and had the clients or potential customers look at your design and give you feedback,
coding can begin. Once coding begins, design requirements and user interface screens can change,
but the changes are typically minor and easily accommodated by the development process.

See Figures 1-1 and 1-2.

il ATET = 7:54 PM
Balances  Transfer Money  Pay Bills
vings (xx1772)
Business Accounts vailable Balance $1234.21
Present Balance $2123.22
Business Checking (xx4327)
Available Balance $2100.22
Present Balance $4201.35 IRA (xx177) )
Available Balance $1234.21 J
Business Savings (xx1234) Present Balance $2123.22
Available Bal 1234.21 )
Present Balance. bl Car Loan (xx172)
' Outstanding Principle $1234.21
Next Payment Amount $2123.22
Personal Accounts Due Date 08/17/20098
Last Pay Amount $452.99
Checking (xx3423) Last Pay Date 07/17/2009
Available Balance
Present Balance

Home Locations Contact Us FAQ Log Out

Home Equity Loan (xx7672)

QOutstanding Principle $12,34.21
Next Payment Amount $2123.22
Due Date 08M17/2009 |
Last Pay Amount $452.99
Last Pay Date 07/17/2009

Figure 1-1. This is a Ul mock-up of the account balance screen for an iPhone mobile banking app before development begins.
This Ul design mock-up was completed using OmniGraffle



4 CHAPTER 1: Becoming a Great i0S Developer

all ATET 3G 12:46 PM -
Accounts Log Off
Checking
Checking (****7045)
Current Balance: $554.50 >
Available Balance: $539.33

Savings (****3428)

Current Balance: $500.00 ?
Available Balance: $505.40

Line Of Credit

LOC CCR (****3163)
Current Balance: $922.91 ?
Available Balance: ($920.81)
Loan

¢

Accounts

Figure 1-2. This is a completed iPhone mobile banking application as it appeared on the iTunes App Store. This app is called
Woodforest Mobile Banking

Figure 1-1 shows a mock-up of a mobile banking app screen prior to development. Developing
mock-up screens along with design requirements forces developers to think through many of the
application’s usability issues before coding begins. This enables the application development time
to be shortened and makes for a better user experience and better reviews on the iTunes App Store.
Figure 1-2 shows how the view for the mobile banking app appears when completed.

Completing the Development Cycle

Now that you have the design requirements and user interface designs and have written your
program, what’s next? After programming, you need to make sure your program matches the
design requirements and user interface design and ensure that there are no errors. In programming
vernacular, errors are called bugs. Bugs are undesired results of your programming and must be
fixed before the app is released to the App Store. The process of finding bugs in programs and
making sure the program meets the design requirements is called testing. Typically, someone who
is experienced in software testing methodology and who didn’t write the app performs this testing.
Software testing is commonly referred to as quality assurance (QA).

Note When an application is ready to be submitted to the iTunes App Store, Xcode gives the file an .app
or .1ipa extension, for example, appName.app. That is why iPhone, iPad, and Mac applications are called
apps. This book will use program, application, and app to mean the same thing.



CHAPTER 1: Becoming a Great i0S Developer 5

During the testing phase, the developer will need to work with QA staff to determine why the
application is not working as designed. The process is called debugging. It requires the developer
to step through the program to find out why the application is not working as designed. Figure 1-3
shows the complete software development cycle.

Figure 1-3. The typical software development cycle

Frequently during testing and debugging changes to the requirements (design) must occur to make
the application more usable for the customer. After the design requirements and user interface
changes are made, the process begins over again.

At some point, the application that everyone has been working so hard on must be shipped to the
iTunes App Store. Many considerations are taken into account when this happens:

Cost of development
Budget

Stability of the application
Return on investment

There is always the give-and-take between developers and management. Developers want the

app perfect, and management wants to start realizing revenue from the investment as soon as
possible. If the release date were left up to the developers, the app would likely never ship to the
App Store. Developers would continue to tweak the app forever, making it faster, more efficient, and
more usable. At some point, however, the code needs to be pried from the developers’ hands and
uploaded to the App Store so it can do what it was meant to do.



6 CHAPTER 1: Becoming a Great i0S Developer

Introducing Object-Oriented Programming

As discussed in detail in the introduction, playgrounds enable you to focus on object-oriented
programming (OOP) without having to cover all the Swift programming syntax and complex Xcode
development environment in one big step. Instead, you can focus on learning the basic principles of
OOP and using those principles quickly to write your first programs.

For decades, developers have been trying to figure out a better way to develop code that is
reusable, manageable, and easily maintained over the life of a project. OOP was designed to help
achieve code reuse and maintainability while reducing the cost of software development.

OOP can be viewed as a collection of objects in a program. Actions are performed on these objects
to accomplish the design requirements.

An object is anything that can be acted on. For example, an airplane, person, or screen/view on the
iPad can all be objects. You may want to act on the plane by making the plane bank. You may want
the person to walk or to change the color of the screen of an app on the iPad. Actions are all being
applied to these objects; see Figure 1-4.

LA Balicons — Baloons. playground = Edited
s B Bascons playgrouna setghieral ) = L] Tmevn @ Batoors piayground (Tmeine)

unc deDidMoveToView(scene : SEScene,
delegate @ SKP
Blisp Control

fsetforTine = { 4 in Function)
turn 89 = sin(i / 10.0) (1058 times)

{Function)

155 times)

SKTexture SKTeature SKTe.
4 timen)

«noiseFi ) s3(0.7,
snimat LonSpeed:0. 8)

¢, delegate)
annons (scene, delegate)

handleContactibodyA @ SX
body8 : %

Figure 1-4. There are multiple objects in this view: cannons, balloons, and blimps. All objects can have actions applied—raise,
lower, shoot, and so on

Playgrounds execute your code as you complete each line, such as the one shown in Figure 1-4. When
you run your playground applications, the user can apply actions to the objects in your application.
Xcode is an integrated development environment (IDE) that enables you to run your application from
within your programming environment. You can test your applications on your computers first before
running them on your iOS devices by running the apps in Xcode’s simulator, as shown in Figure 1-5.



CHAPTER 1: Becoming a Great i0S Developer

Figure 1-5. This sample iPhone app contains a table object to organize a list of tech toys. Actions such as “rotate left” or “user
did select row 3” can be applied to this object

Carrier =

Color

7:48 PM

_

iPad Air
Thunderbolt Display

Mac Pro

Delete List

B

Actions that are performed on objects are called methods. Methods manipulate objects to
accomplish what you want your app to do. For example, for a jet object you might have the

following methods:

goup

goDown

bankLeft
turnOnAfterBurners
lowerLandingGear

7



8 CHAPTER 1: Becoming a Great i0S Developer

The table object in Figure 1-5 is actually called UITableView when you use it in a program, and it
could have the following methods:

numberOfRowsInSection
cellForRowAtIndexPath
canEditRowAtIndexPath
commitEditingStyle
didSelectRowAtIndexPath

All objects have data that describes those objects. This data is defined as properties. Each property
describes the associated object in a specific way. For example, the jet object’s properties might be
as follows:

altitude = 10,000 feet
heading = North

speed = 500 knots

pitch = 10 degrees

yaw = 20 degrees
latitude = 33.575776
longitude = -111.875766

For the UITableView object in Figure 1-5, the following might be the properties:

backGroundColor = Red
selectedRow = 3
animateView = No

An object’s properties can be changed at any time when your program is running, when the
user interacts with the app, or when the programmer designs the app to accomplish the design
requirements. The values stored in the properties of an object at a specific time are collectively
called the state of an object.

State is an important concept in computer programming. When teaching students about state, we
ask them to go over to a window and find an airplane in the sky. We then ask them to snap their
fingers and make up some of the values that the plane’s properties might have at that specific time.
Those values might be as follows:

altitude = 10,000 feet
latitude = 33.575776
longitude = -111.875766

Those values represent the state of the object at the specific time that they snapped their fingers.

After waiting a couple minutes, we ask the students to find that same plane, snap their fingers again,
and record the plane’s possible state at that specific point in time.

The values of the properties might then be something like the following:
altitude = 10,500 feet

latitude = 33.575665

longitude = -111.875777

Notice how the state of the object changes over time.



CHAPTER 1: Becoming a Great i0S Developer 9

Working with the Playground Interface

Playgrounds offer a great approach in using the concepts just discussed without all the complexity
of learning Xcode and the Swift language at the same time. It takes only a few minutes to familiarize
yourself with the playground interface and begin writing a program.

Technically speaking, the playground interface is not a true IDE like you will be using to write your
iOS apps, but it is pretty close and much easier to learn in. A true IDE combines code development,
user interface layout, debugging tools, documentation, and simulator/console launching for a single
application; see Figure 1-6. However, playgrounds offer a similar look, feel, and features to the
Xcode IDE you develop apps with.

K0S Simulator - IPhone 6 - IPhone 6 /105 8.1 (128411)

o 1 Lister Carrier ¥ 957 PM - ook Hele
™ 3 tarpets. muitiple platforms. Abstract:
README.md
¥ [ Lister 105 App The "Li m — le documents for users No Quick Help
¥ [ Main App te R
Main storybaard M -ﬂ —.
Launch xib
ek anges
. AppDelegate switt isport UIKit ] Orang
¥ [ View Controsers import ListerKit
2 ListDocumen..antrofer swift Milk
+ MewListDocy...ontroller. swit class ListDocumentsViewControll gate,
= ListViewControlier.swift UIDocumentMenuDelegate, UIDC
» I Views // MARK: Types Q Bread
* 7 Bupporting Files .
. woq': struct MainStoryboard { a
Ty 3 struct ViewControllerIde
> I8 Ustarkit Framework (05} static let listView
Lister 0S X App static let listVied @ troller”
Shared Listarkit Framowork Cods T
* Shared Lister Resources
* (7 Imparted Framewarcs struct TableViewCellIde
» I Procucts i static let listDocut
struct Segueldentifiers
static let newListDy
ic let showlistl
atic let showListl rosUserAct ivity™ s el i e
N } managament mocel in 109
/7 MARK: Properties Manigation Controller - A
11 WARK: Properti B e e e e
through & hierarchy of views.
var listController: ListConi
didSet {
tCont er.delef Table View Controlier - A
} Cortroner hat manages B LD vew
}
& slate Lis Tab Bar G -
private var pendingUserActi Delete List r—.: m:r’m::‘:r::':‘\-:\::‘w:;ﬂ
4 T fpresent LA Dar e,
/7 MARK: View Life Cycle
it View Controller - &
override func viewDidload() { ?ﬁmmv-:m‘mu:m
super.viewDidLoad() manages left and right view cortroll

Figure 1-6. The Xcode IDE with the iPhone Simulator

In the next chapter, you will go through the playground interface and write your first program.



10 CHAPTER 1: Becoming a Great i0S Developer

Summary

Congratulations, you have finished the first chapter of this book. It is important that you have an
understanding of the following terms because they will be reinforced throughout this book:

Computer program
Algorithm

Design requirements
User interface

Bug

Quiality assurance (QA)
Debugging
Object-oriented programming (OOP)
Object

Property

Method

State of an object

Integrated development environment (IDE)

What’s Next

The next 13 chapters provide the information you need to learn Swift and write iOS applications.
Terms and concepts are introduced and reinforced over and over so you will begin to get more
comfortable with them. Keep going and be patient with yourself.

Exercises

Answer the following questions:
Why is it so important to spend time on your user requirements?
What is the difference between design requirements and an algorithm?
What is the difference between a method and a property?
What is a bug?
What is state?

Write an algorithm for how a soda machine works from the time a coin is
inserted until a soda is dispensed. Assume the price of a soda is 80 cents.

Write the design requirements for an app that will run the soda machine.



Chapter

Programming Basics

This chapter focuses on the building blocks that are necessary to become a great Swift programmer.
This chapter covers how to use the playground user interface, how to write your first Swift program,
and how to use the Xcode integrated development environment (IDE).

Note We will introduce you to using playgrounds, which will enable you to program right away without
worrying about the complexities of Xcode. We have used this approach for the last five years and know that it
helps you learn the concepts quickly, without discouragement, and gives you a great foundation to build upon.

Touring Xcode

Xcode and playgrounds make writing Swift code incredibly simple and fun. Type a line of code, and
the result appears immediately. If your code runs over time, for instance through a loop, you can
watch its progress in the timeline area. When you’ve perfected your code in the playground, simply
move that code into your Swift iOS project. With Xcode, you can do the following:

Design a new algorithm, watching its results every step of the way
Create new tests, verifying that they work before promoting into your test suite
Experiment with new APlIs to hone your Swift coding skills

First you’ll need to learn a little more about the Xcode user interface. When you open an Xcode iOS
project, you are presented with a screen that looks like Figure 2-1.

1



12 CHAPTER 2: Programming Basics

Launch.b
= AppDelogato.swift
¥ [ View Controliers
s ListDocumen.. ontrollorswitt
= NowListDocu, . ontrollen swift
» ListViewCortrolor swift
» [0 views
|11 Suppening Files
» [ Today Widge:
=[] Listerkit Framework (i05)
[ Uister O X App
= [2) Shared Listerkin Framowor Code

() Uister ) W iPhone B

Lister | Build Lister: Succeaded | 11/18/14 at 9:57 PM 2
ListDocumentsViswControliorswift

B uister Lister i05 App Main App Viow Centroliors o ListDecumontsViewControliorswift | No Selection

import ListerKit

class ListDocumentsViewController: UITableViewController, ListCentrollerDelegate,

UIDocumentMenuDelegate, UIDocumentPickerDelegate {
/4 MARK: Types

struct MainStoryboard {
struct ViewControllerIdentifiers {
static let listViewController = "listViewl
static let listViewMavigationCentroller =

ontroller”
listViewNavigationController"

}

struct TableViewCellIdentifiers {
static let listDocumentCell = "listDocumentCell"
}

struct Segueldentifiers {
static let newListDocument = "newlistDocument™
static let showListDocument = “showListDocument”

static let showListDocumentFromUserActivity = "showlistDocumentFromUserActivity”

}
// MARK: Properties
var listController: ListController! {

didset

listContreller.delegate = self

}
}
private var pendingUserActivity: NSUserActivity? = nil
// MARK: View Life Cycle

override func viewDidLoad() {
super.viewDidLoad()

navigationController?.navigationBar.titleTextAttributes =
N5FontAttributeName: UIFont.prefer redFontForTextStyle[U‘.[Fcn‘Tex*SterF-ac ine),
NSForegroundColorAttributeName: List.Color.Gray.colorVa

NSMotificationCenter,defaultCenter(). add()hseruer[sel‘, selector:
“handleContentSizeCategoryDidChangeNotification:"”, name:
UIContentSizeCategoryDidChangeNotification, ebject: nil)

}

override func viewWillAppear{animated: Bool) {
super.viewWillAppear(aninated)

navigationController?.navigationBar.titleTextAttributes = [

Figure 2-1. Opening screen in Xcode with a Swift project

Identity and Type
hame ListDocumontsViowControlier,
wwift

Type Defaut - Switt Source B

Location _Ralative to Group B
ListDocumentsViewContro
lior gwift -

Full Path /Usersigwbenastt/
Downlcads/
ListerAProductivityAppOb)-
CandSwift-3Switt/Uster/
ListDocumentsViewControll
orewift (-]

Target Mombership
&) Listor
¥ Listercsix
B Listerkit
8 ListorkiOgx
£ ListorToday
ListerTodayOSX
[ ListerkitTests
[ UstortitTests 05X
Toxt Settings
Text Enceding Unicode (UTF-8) B
O @D
View Controller - A controlier that

supports the funcameszal view-
maragemant mocel in i0S.

Movigation Controlier - &
< controlier that manages navigation
through a hierarchy of views.

Table View Controlier - A
controlier that manages o tabio view.

Tab Bar Controller - A controler
1hat manages & set of view controers
that represent tab bar Sems.

Spiit View Controlier - &
compasite view controier that
manages ieft and right view cortroil..

The Xcode user interface is set up to help you efficiently write your Swift applications. The user
interface for playgrounds is similar to the user interface for an iOS application. You will now explore
the major sections of Xcode’s IDE workspace and playgrounds.

Exploring the Workspace Window

The workspace window, shown in Figure 2-2, enables you to open and close files, set your
application preferences, develop and edit or app, and view text output and the error console.



CHAPTER 2: Programming Basics 13

Havigator seiector bar Toalbar Jump bars
LA N B l J Lister | @l Phone 6 1 Lister | Bube Lister: Succpeded | 1171874 ot 9:57 P 1 @ & [ W Inapector selecior bar

LatDocsmartsViewC ol pailt i@

bR QAo o G E Uster Lister |05 App M View Controlers © + ListDocumentsViewController.switt | No Selection ) —

[ Mavigator T (" Editor \ (’ Utility “\II F— Inspector pane
| Area ) i : | ; : Area )

Litrary

=

-

™ Ubmry
e

[ .'x Debug ‘)
\ Area

Finer bar |

Debug bar

Figure 2-2. Xcode’s workspace window

The workspace window is your primary interface for creating and managing projects. The workspace
window automatically adapts itself to the task at hand, and you can further configure the window to
fit your work style. You can open as many workspace windows as you need.

The workspace window has four main areas: Editor, Navigator, Debug, and Utility.

When you select a project file, its contents appear in the Editor area, where Xcode opens the file in
the appropriate editor.

You hide or show the other three areas by using buttons in the view selector in the toolbar.

E Clicking this button shows or hides the Navigator area. This is where you view and maneuver
through files and other facets of your project.

Q Clicking this button shows or hides the Debug area. This is where you control program
execution and debug code.

Clicking this button shows or hides the Utilities area. You use the Utilities area for several
purposes, most commonly to view and modify attributes of a file and to add ready-made resources
to your project.



14 CHAPTER 2: Programming Basics

Navigating Your Workspace

You can access files, symbols, unit tests, diagnostics, and other facets of your project from the
Navigator area. In the navigator selector bar, you choose the navigator suited to your task. The
content area of each navigator gives you access to relevant portions of your project, and each

navigator’s filter bar allows you to restrict the content that is displayed.

Choose from these options in the navigator selector bar:

E Project navigator. Add, delete, group, and otherwise manage files in your
project, or choose a file to view or edit its contents in the editor area.

e

Q Find navigator. Use search options and filters to quickly find any string within
your project.

& Issue navigator. View issues such as diagnostics, warnings, and errors found
when opening, analyzing, and building your project.

&

Symbol navigator. Browse the class hierarchy of the symbols in your project.

Test navigator. Create, manage, run, and review unit tests.

= Debug navigator. Examine the running threads and associated stack
information at a specified point or time during program execution.

Breakpoint navigator. Fine-tune breakpoints by specifying characteristics
such as triggering conditions.

@ Report navigator. View the history of your builds, app console output,
continuous integration, and source control tasks.

Editing Your Project Files

Most development work in Xcode occurs in the Editor area, which is the main area that is always
visible within the workspace window. The editors you will use most often are as follows:

Source editor: Write and edit Swift source code.

Interface Builder: Graphically create and edit user interface files (see Figure 2-3).



CHAPTER 2: Programming Basics 15

Figure 2-3. Xcode’s Interface Builder

Project editor: View and edit how your apps should be built, such by specifying
build options, target architectures, and app entitlements.

When you select a file, Xcode opens the file in an appropriate editor. In Figure 2-3, the file
Main.storyboard is selected in the Project navigator, and the file is open in Interface Builder.

The editor offers three controls:

(i

Clicking this button opens the Standard editor. You will see a single editor pane with the
contents of the selected file.

Clicking this button opens the Assistant editor. You will see a separate editor pane with
content logically related to that in the Standard editor pane.
= Clicking this button opens the Version editor. You will see the differences between the
selected file in one pane and another version of that same file in a second pane.

Creating Your First Swift Playground Program

Now that you have learned a little about Xcode, it’s time to write your first Swift playground program
and begin to understand the Swift language, Xcode, and some syntax. First you have to install
Xcode.



16 CHAPTER 2: Programming Basics

Installing and Launching Xcode 6

Xcode 6 is available for download from the Mac App Store for free, as shown in Figure 2-4, and from
the iOS Dev Center, as shown in Figure 2-5.

Xcode

Apple Web Site »
. Mare Xeode Support »
What's New in Version 6.0.1 App License Agreement »
Includes SDKs for 05 X 10.9 Mavericks and i05 8.0
i Privacy Palicy >
..More
Information

Category: Developer Tools
Updated: Sep 18, 2014
W

W Koode Fee Udn Vew Find  Mavgats (dtoe Feoduwit Debug Sownce Costrsl Wndow teip 0T wedddlam QK
o [ -

[ — ]

5 Clwas F tmans | 35

Rated 4+

Compatibility
05X 10.9.4 0

Mare by Apple

%% Final Cut Pro

B Logic Pro X
. Aperture

Figure 2-4. Xcode 6 is available for download from the Mac App Store for free



CHAPTER 2: Programming Basics 17

‘ Developer Technologies

iOS Dev Center

Resources Programs Support

i0S Dev Center

Access additional resources in the iOS Dev Center. @D

Sign in with the Apple ID you used to register as an Apple Developer, or register for free today.

Development Resources

Documentation and Videos

ii i0S Developer Library
View the latest documentation and sample
code for i0S 8.

Getting Started » Sample Code
Guides Technical Notes
= Reference Technical Q&As
* Release Notes

.

Development Videos
* j0S 7 Tech Talks = WWDC 2014

Downloads

Xcode 6

Custom B2B Apps

Sell custom business apps directly to
your customers who have a Volume
Purchase Program account

Figure 2-5. The iOS Dev Center

Swift Programming Language

Learn about the new programming
anguage for i0S and OS X.

Featured Content

W i05 & for Developers

W OS5 Design Resources

W Xcode Continuous Integration Guide
W Start Developing iO5 Apps Today

W App Distribution Guide

W Developing Apps for iPad

W 05 App Programming Guide

W i05 Human Interface Guidelines

W Programming with Objective-C

W Programming with Swift

Download the complete developer toolset for building Mac, iPhone, and iPad apps, including the
Xcode IDE, performance analysis tools, i05 Simulator, and the latest O5 X and i0OS SDKs.

entertain, work, and live.

Apps We Can't Live Without
Watch how developers have changed
the way we all interact, learn,

Hi, Guest Register Log In

iOS Developer Program

App Review

Prepare your apps for the
review process.

Learn more »

App Store Resource Center

Get information on =
distributing your app on ‘@I

the App Store. Sign in »

News and Updates

Stay up-to-date with the A
latest Apple developer news

and updates. Learn more »

Promote Your Apps

Use the App Store badge and Apple
product images to promote your apps
on the App Store,

# Download on the

App Store

Note This package has everything you need to write iOS apps. To develop iPhone apps, you will need to
apply for the iPhone Developer Program and pay $99 (when ready to test on your i0S device and submit to
the App Store). See http://developer.apple.com.


http://developer.apple.com/

18 CHAPTER 2: Programming Basics

Now that you have installed Xcode, let’s begin writing a Swift playground.
Launch Xcode and click “Get started with a playground,” as shown in Figure 2-6.

Version 6.1 (6A1052d)

Get started with a playground
Explore new ideas quickly and easily.

Createan
Start building a new iPhone, iPad or Mac application.

D(‘ Check out an existing project
Start working on something from an SCM repository.

Show this window when Xcode launches

Figure 2-6. Creating your first Swift playground

Using Xcode 6
After launching Xcode, follow these steps:

1. Let’s name the playground HelloWorld and select iOS as the platform, as
shown in Figure 2-7. Then click Next and save your app in the directory of
your choice.



