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Preface

The structure of this little textbook is essentially methodological and
introduces in a concise way the student to a working practice in the
ab initio calculations of electronic molecular structure, giving a sound
basis for a critical analysis of the current calculation programmes. It
originates from the need toprovidequantumchemistry studentswith their
own personal instant book, giving at low cost a readable introduction to
the methods of molecular quantum mechanics, a prerequisite for any
understanding of quantum chemical calculations. This book is a recom-
mended companion of the previous book by the author, Elementary
Methods of Molecular Quantum Mechanics, published in 2007 by
Elsevier,which containsmanyworked examples, and designed as a bridge
between Coulson’s Valence and McWeeny’s Methods of Molecular
Quantum Mechanics. The present book is suitable for a first-year
postgraduate university course of about 40 hours.
The book consists of 12 chapters. Particular emphasis is devoted to the

Rayleigh variational method, the essential tool for any practical applica-
tion both in molecular orbital and valence bond theory, and to the
stationary Rayleigh–Schroedinger perturbation methods, much attention
being given to the Hylleraas variational approximations, which are
essential for studying second-order electric properties of molecules and
molecular interactions, as well as magnetic properties. In the last chapter,
elements on molecular symmetry and group theoretical techniques are
briefly presented. Major features of the book are: (i) the consistent use
from the very beginning of the system of atomic units (au), essential for
simplifying all mathematical formulae; (ii) the introductory use of density
matrix techniques for interpreting the properties ofmany-body systems so
as to simplify calculations involvingmany-electronwavefunctions; (iii) an
introduction to valence bond methods, with an explanation of the origin



of the chemical bond; and (iv) a unified presentation of basic elements of
atomic and molecular interactions, with particular emphasis on the
practical use of second-order calculation techniques. Though many ex-
amples are treated in depth in this book, for other problems and their
detailed solutions the readermay refer to the previous book by the author.
The book is completed by alphabetically ordered bibliographical refer-
ences, and by author and subject indices.
Finally, I wish to thankmy sonMario for preparing the drawings at the

computer, and my friends and colleagues Deryk W. Davies and Michele
Battezzati for their careful reading of the manuscript and useful discus-
sions. In saying that, I regret that, during the preparation of this book,
DWD died on 27 February 2008.
I acknowledge support by the Italian Ministry for Education University

andResearch (MIUR), under grant number 2006030944003, andAracne
Editrice (Rome) for the 2008 publishing of what is essentially the Italian
version entitled Elementi di Meccanica Quantistica Molecolare.

Valerio Magnasco
Genoa, 15 May 2009
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1
Principles

1.1 THE ORBITAL MODEL

Thegreatmajority of the applications ofmolecular quantummechanics to
chemistry are based on what is called the orbital model. The planetary
model of the atom can be traced back to Rutherford (Born, 1962). It
consists of a point-like nucleus carrying the whole mass and the whole
positive charge þZe surrounded byN electrons each having the elemen-
tary negative charge �e and amass about 2000 times smaller than that of
the proton and moving in a space which is essentially that of the atom.1

Electrons are point-like elementary particles whose negative charge is
distributed in space in the form of a charge cloud, with the probability of
finding the electron at point r in space being given by

jcðrÞj2 dr ¼ probability of finding in dr the electron in state cðrÞ
ð1:1Þ

The functions c(r) are called atomic orbitals (AOs, one centre) or
molecular orbitals (MOs, many centres) and describe the quantum states
of the electron. For (1.1) to be true, c(r) must be a regular (or Q-class)
mathematical function (single valued, continuouswith its first derivatives,

1 The atomic volumehas a diameter of the order of 102 pm, about 105 times larger than that of the

nucleus.
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quadratically integrable) satisfying the normalization conditionð
dr jcðrÞj2 ¼

ð
dr c�ðrÞcðrÞ ¼ 1 ð1:2Þ

where integration is extended over the whole space of definition of the
variable r andwhere c�ðrÞ is the complex conjugate to c(r). The last of the
above physical constraints implies that c must vanish at infinity.2

It seemsappropriateat thispointfirst to introduce inanelementarywaythe
essential mathematical methods which are needed in the applications, fol-
lowed by a simple axiomatic formulation of the basic postulates of quantum
mechanics and, finally, by their physical interpretation (Margenau, 1961).

1.2 MATHEMATICAL METHODS

In what follows we shall be concerned only with regular functions of the
general variable x.

1.2.1 Dirac Notation

Function cðxÞ ¼ jci Y ket
Complex conjugate c�ðxÞ ¼ hcj Y bra

�
ð1:3Þ

The scalar product (see the analogy between regular functions and
complex vectors of infinite dimensions) of c� by c can then be written in
the bra-ket (‘bracket’) form:ð

dx c�ðxÞcðxÞ ¼ hcjci ¼ finite number > 0 ð1:4Þ

1.2.2 Normalization

If
hcjci ¼ A ð1:5Þ

thenwe say that the functionc(x) (the ket jci) is normalized toA (thenorm
of c). The function c can then be normalized to 1 by multiplying it by the
normalization factor N ¼ A�1=2.

2 In an atom or molecule, there must be zero probability of finding an electron infinitely far from

its nucleus.
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1.2.3 Orthogonality

If

hcjwi ¼
ð
dx c�ðxÞwðxÞ ¼ 0 ð1:6Þ

then we say that w is orthogonal (?) to c. If

hc0jw0i ¼ Sð6¼ 0Þ ð1:7Þ

then w0 and c0 are not orthogonal, but can be orthogonalized by choosing
the linear combination (Schmidt orthogonalization):

c ¼ c0; w ¼ Nðw0 � Sc0Þ; hcjwi ¼ 0 ð1:8Þ

whereN ¼ ð1� S2Þ�1=2 is the normalization factor. In fact, it is easily seen
that, if c0 and w0 are normalized to 1:

hcjwi ¼ Nhc0jw0 � Sc0i ¼ NðS� SÞ ¼ 0 ð1:9Þ

1.2.4 Set of Orthonormal Functions

Let

fwkðxÞg ¼ ðw1w2 . . .wk . . .wi . . .Þ ð1:10Þ

be a set of functions. If

hwkjwii ¼ dki k; i ¼ 1;2; . . . ð1:11Þ

where dki is the Kronecker delta (1 if i ¼ k, 0 if i 6¼ k), then the set is said to
be orthonormal.

1.2.5 Linear Independence

A set of functions is said to be linearly independent ifX
k

wkðxÞCk ¼ 0 with; necessarily; Ck ¼ 0 for any k ð1:12Þ

For a set to be linearly independent, it will be sufficient that the
determinant of themetricmatrixM (seeChapter 2) be different fromzero:

MATHEMATICAL METHODS 3



detMki 6¼ 0 Mki ¼ hwkjwii ð1:13Þ

A set of orthonormal functions, therefore, is a linearly independent set.

1.2.6 Basis Set

A set of linearly independent functions forms a basis in the function space,
andwe can expand any function of that space into a linear combination of
the basis functions. The expansion is unique.

1.2.7 Linear Operators

An operator is a rule transforming a given function into another function
(e.g. its derivative). A linear operator Â satisfies

Â½c1ðxÞþc2ðxÞ� ¼ Âc1ðxÞþ Âc2ðxÞ
Â½ccðxÞ� ¼ cÂ½cðxÞ�

�
ð1:14Þ

where c is a complex constant. The first and second derivatives are simple
examples of linear operators.

1.2.8 Sum and Product of Operators

ðÂþ B̂ÞcðxÞ ¼ ÂcðxÞþ B̂cðxÞ ¼ ðB̂þ ÂÞcðxÞ ð1:15Þ

so that the algebraic sum of two operators is commutative.
In general, the product of two operators is not commutative:

ÂB̂cðxÞ 6¼ B̂ÂcðxÞ ð1:16Þ

where the inner operator acts first. If

ÂB̂ ¼ B̂Â ð1:17Þ

then the two operators commute. The quantity

½Â; B̂� ¼ ÂB̂� B̂Â ð1:18Þ

is called the commutator of the operators Â; B̂.
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1.2.9 Eigenvalue Equation

The equation

ÂcðxÞ ¼ AcðxÞ ð1:19Þ
is called the eigenvalue equation for the linear operator Â. When (1.19) is
satisfied, the constant A is called the eigenvalue, the function c the
eigenfunction of the operator Â. Often, Â is a differential operator, and
there may be a whole spectrum of eigenvalues, each one with its corre-
sponding eigenfunction. The spectrum of the eigenvalues can be either
discrete or continuous. An eigenvalue is said to be n-fold degenerate when
n different independent eigenfunctions belong to it.We shall see later that
the Schroedinger equation for the amplitude c(x) is a typical eigenvalue
equation, where Â ¼ Ĥ ¼ T̂þV is the total energy operator (the
Hamiltonian), T̂ being the kinetic energy operator and V the potential
energy characterizing the system (a scalar quantity).

1.2.10 Hermitian Operators

A Hermitian operator is a linear operator satisfying the so-called ‘turn-
over rule’:

hcjÂwi ¼ hÂcjwið
dx c�ðxÞðÂwðxÞÞ ¼

ð
dx ðÂcðxÞÞ�wðxÞ

8<
: ð1:20Þ

The Hermitian operators have the following properties:

(i) real eigenvalues;
(ii) orthogonal (or anyway orthogonalizable) eigenfunctions;
(iii) their eigenfunctions form a complete set.

Completeness also includes the eigenfunctions belonging to the contin-
uous part of the eigenvalue spectrum.
Hermitian operators are �i@=@x, �ir, @2=@x2,r2, T̂ ¼ �ð�h2=2mÞr2

and Ĥ ¼ T̂þV, where i is the imaginary unit (i2 ¼ �1),
r ¼ ið@=@xÞþ jð@=@yÞþ kð@=@zÞ is the gradient vector operator,
r2 ¼ r �r ¼ @2=@x2 þ @2=@y2 þ @2=@z2 is the Laplacian operator
(in Cartesian coordinates), T̂ is the kinetic energy operator for a particle
of mass m with �h ¼ h=2p the reduced Planck constant and Ĥ is the
Hamiltonian operator.
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1.2.11 Anti-Hermitian Operators

@=@x and r are instead anti-Hermitian operators, for which�
cj @w

@x

�
¼ �

�
@c

@x
jw
�

hcjrwi ¼ �hrcjwi

8><
>: ð1:21Þ

1.2.12 Expansion Theorem

Any regular (Q-class) function F(x) can be expressed exactly in the
complete set of the eigenfunctions of any Hermitian operator3Â. If

ÂwkðxÞ ¼ AkwkðxÞ; Â
� ¼ Â ð1:22Þ

then

FðxÞ ¼
X
k

wkðxÞCk ð1:23Þ

where the expansion coefficients are given by

Ck ¼
ð
dx0w�

kðx0ÞFðx0Þ ¼ hwkjFi ð1:24Þ

as can be easily shown by multiplying both sides of Equation (1.23) by
w�
kðxÞ and integrating.
Some authors insert an integral sign into (1.23) to emphasize that

integration over the continuous part of the eigenvalue spectrum must be
included in the expansion. When the set of functions fwkðxÞg is not
complete, truncation errors occur, and a lot of the literature data from
the quantum chemistry side is plagued by such errors.

1.2.13 From Operators to Matrices

Using the expansion theorem we can pass from operators (acting on
functions) to matrices (acting on vectors; Chapter 2). Consider a finite

3 A less stringent stipulationof completeness involves the approximation in themean (Margenau,

1961).
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n-dimensional set of basis functions fwkðxÞgk ¼ 1; . . . ; n. Then, if Â is a
Hermitian operator:

ÂwiðxÞ ¼
X
k

wkðxÞAki ¼
X
k

jwkihwkjÂwii ð1:25Þ

where the expansion coefficients now have two indices and are the
elements of the square matrix A (order n):

Aki ¼ hwkjÂwii ¼
ð
dx0 w�

kðx0ÞðÂwiðx0ÞÞ ð1:26Þ

fAkig Y A ¼
A11 A12 � � � A1n

A21 A22 � � � A2n

� � � � � � � � � � � �
An1 An2 � � � Ann

0
BB@

1
CCA ¼ w�Âw ð1:27Þ

which is called the matrix representative of the operator Â in the basis
fwkg, and we use matrix multiplication rules (Chapter 2). In this way,
the eigenvalue equations of quantum mechanics transform into eigen-
value equations for the corresponding representative matrices. We
must recall, however, that a complete set implies matrices of infinite
order.
Under a unitary transformation U of the basis functions w ¼

ðw1w2 . . .wnÞ:
w0 ¼ wU ð1:28Þ

the representative A of the operator Â is changed into

A0 ¼ w0�Âw0 ¼ U�AU ð1:29Þ

1.2.14 Properties of the Operator r

We have seen that in Cartesian coordinates the vector operator r (the
gradient, a vector whose components are operators) is defined as
(Rutherford, 1962)

r ¼ i
@

@x
þ j

@

@y
þ k

@

@z
ð1:30Þ
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Now, let F(x,y,z) be a scalar function of the space point P(r). Then:

rF ¼ i
@F

@x
þ j

@F

@y
þ k

@F

@z
ð1:31Þ

is a vector, the gradient of F.
If F is a vector of components Fx, Fy, Fz, we then have for the scalar

product

r � F ¼ @Fx
@x

þ @Fy
@y

þ @Fz
@z

¼ div F ð1:32Þ

a scalar quantity, the divergence of F. As a particular case:

r �r ¼ r2 ¼ @2

@x2
þ @2

@y2
þ @2

@z2
ð1:33Þ

is the Laplacian operator.
From the vector product ofrby the vectorFweobtain a newvector, the

curl or rotation of F (written curl F or rot F):

r� F ¼

i j k

@

@x

@

@y

@

@z

Fx Fy Fz

���������

���������
¼ curl F ¼ i curlx Fþ j curly Fþ k curlz F ð1:34Þ

a vector operator with components:

curlx F ¼ @Fz
@y

� @Fy
@z

curly F ¼ @Fx
@z

� @Fz
@x

curlz F ¼ @Fy
@x

� @Fx
@y

8>>>>>>>><
>>>>>>>>:

ð1:35Þ

In quantummechanics, the vector product of the position vector rby the
linearmomentumvector operator�i�hr (see Section1.3) gives the angular
momentum vector operator L̂:

L̂ ¼ �i�hr�r ¼ �i�h

i j k

x y z

@

@x

@

@y

@

@z

���������

���������
¼ iL̂x þ jL̂y þ kL̂z ð1:36Þ
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with components

L̂x ¼ �i�h y
@

@z
� z

@

@y

 !
; L̂y ¼ �i�h z

@

@x
� x

@

@z

 !
;

L̂z ¼ �i�h x
@

@y
� y

@

@x

 ! ð1:37Þ

In the theory of angular momentum, frequent use is made of the ladder
(or shift) operators:

L̂þ ¼ L̂x þ iL̂y ðstep-upÞ; L̂� ¼ L̂x � iL̂y ðstep-downÞ ð1:38Þ

These are also called raising and lowering operators4 respectively.
Angular momentum operators have the following commutation rela-

tions:

½L̂x; L̂y� ¼ iL̂z; ½L̂y; L̂z� ¼ iL̂x; ½L̂z; L̂x� ¼ iL̂y

½L̂z; L̂þ � ¼ L̂þ ; ½L̂z; L̂� � ¼ �L̂�
½L̂2

; L̂k� ¼ ½L̂2
; L̂�� ¼ 0 k ¼ x; y; z

8><
>: ð1:39Þ

The same commutation relations hold for the spin vector operator Ŝ
(Chapter 5).

1.2.15 Transformations in Coordinate Space

We now give the definitions of the main coordinate systems useful in
quantum chemistry calculations (Cartesian, spherical, spheroidal), the
relations between Cartesian and spherical or spheroidal coordinates, and
the expressions of the volume element dr and of the operatorsr andr2 in
the new coordinate systems. We make reference to Figures 1.1 and 1.2.

(i) Cartesian coordinates (x,y,z):

x; y; z 2 ð�¥;¥Þ ð1:40Þ
dr ¼ dx dy dz ð1:41Þ

4 Note that the ladder operators are non-Hermitian.
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r ¼ i
@

@x
þ j

@

@y
þ k

@

@z
ð1:42Þ

r2 ¼ @2

@x2
þ @2

@y2
þ @2

@z2
ð1:43Þ

(ii) Spherical coordinates (r,u,w):

rð0;¥Þ; uð0;pÞ; wð0;2pÞ ð1:44Þ

x ¼ r sin u cos w; y ¼ r sin u sin w; z ¼ r cos u ð1:45Þ

Figure 1.2 Cartesian and spheroidal coordinate systems

Figure 1.1 Cartesian and spherical coordinate systems
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dr ¼ r2dr sin u du dw ð1:46Þ

r ¼ er
@

@r
þ eu

1

r

@

@u
þ ew

1

r sin u

@

@w
ð1:47Þ

r2 ¼ 1

r2
@

@r
r2

@

@r

� �
þ 1

r2
1

sin u

@

@u
sin u

@

@u

� �
þ 1

sin2u

@2

@w2

� 	

¼ r2
r �

L̂
2
=�h2

r2
ð1:48Þ

where er, eu, and ew are unit vectors along r, u, and w. In
Equation (1.48):

r2
r ¼

1

r2
@

@r
r2

@

@r

� �
¼ @2

@r2
þ 2

r

@

@r
ð1:49Þ

is the radial Laplacian and

L̂
2 ¼ L̂ � L̂ ¼ ��h2

1

sin u

@

@u
sinu

@

@u

 !
þ 1

sin2u

@2

@w2

2
4

3
5

¼ ��h2
@2

@u2
þ cot u

@

@u
þ 1

sin2u

@2

@w2

0
@

1
A

8>>>>>><
>>>>>>:

ð1:50Þ

is the square of the angular momentum operator (1.36). For the
components of the angular momentum vector operator L̂ we
have

L̂x ¼ �i�h �sin w
@

@u
� cot u cos w

@

@w

� �
ð1:51Þ

L̂y ¼ �i�h cos w
@

@u
� cot u sin w

@

@w

� �
ð1:52Þ

L̂z ¼ �i�h
@

@w
ð1:53Þ

L̂þ ¼ �h expðiwÞ @

@u
þ i cot u

@

@w

� �
ð1:54Þ

L̂� ¼ �h expð�iwÞ � @

@u
þ i cot u

@

@w

� �
ð1:55Þ
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(iii) Spheroidal coordinates ðm; n;wÞ:
m ¼ rA þ rB

R
ð1 � m � ¥Þ; n ¼ rA � rB

R
ð�1 � n � 1Þ; wð0;2pÞ

ð1:56Þ

x ¼ R

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2� 1Þð1� n2Þ

q
cosw; y ¼ R

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2� 1Þð1� n2Þ

q
sin w;

z ¼ R

2
ðmnþ 1Þ ð1:57Þ

dr ¼ R

2

� �3

ðm2 � n2Þ dm dn dw ð1:58Þ

r¼ 2

R
em

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2�1

m2�n2

s
@

@m
þen

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�n2

m2�n2

s
@

@n
þew

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2�1Þð1�n2Þ

p @

@w

" #

ð1:59Þ

r2¼ 4

R2ðm2�n2Þ

� @

@m
ðm2�1Þ @

@m

� 	
þ @

@n
ð1�n2Þ @

@n

� 	
þ m2�n2

ðm2�1Þð1�n2Þ
@2

@w2

� �
ð1:60Þ

Equations (1.44)–(1.55) are used in atomic (one-centre) calculations,
whereas Equations (1.56)–(1.60) are used in molecular (at least two-
centre) calculations.

1.3 BASIC POSTULATES

Wenow formulate in an axiomaticway the basis of quantummechanics in
the form of three postulates.

1.3.1 Correspondence between Physical Obervables
and Hermitian Operators

In coordinate space, we have the basic correspondences

r ¼ ixþ jyþ kz ) r̂ ¼ r
p ¼ ipx þ jpy þ kpz ) p̂ ¼ �i�hr

�
ð1:61Þ

where i is the imaginary unit (i2 ¼ � 1) and �h ¼ h=2p is the reduced
Planck constant. More complex observables can be treated by repeated
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applications of the correspondences (1.61) under the constraint that the
resulting quantum mechanical operators must be Hermitian.5 Kinetic
energy andHamiltonian (total energy operator) for a particle ofmassm in
the potential V are examples already seen. We now give a few further
examples by specifying the nature of the potential energy V.

(a) The one-dimensional harmonic oscillator

If m is the mass of the oscillator of force constant k, then the
Hamiltonian is

Ĥ ¼ � �h2

2m
r2 þ kx2

2
ð1:62Þ

(b) The atomic one-electron problem (the hydrogen-like system)

If r is the distance of the electron of mass m and charge �e from a
nucleus of charge þZe (Z ¼ 1 will give the hydrogen atom), then the
Hamiltonian in SI units6 is

Ĥ ¼ � �h2

2m
r2� 1

4p«0

Ze2

r
ð1:63Þ

To get rid of all fundamental physical constants in our formulae we
shall introduce consistently at this point a system of atomic units7 (au)
by posing

e ¼ �h ¼ m ¼ 4p«0 ¼ 1 ð1:64Þ
Thebasic atomic units of charge, length, energy, and time are expressed
in SI units as follows:

charge; e e ¼ 1:602 176 462� 10� 19 C

length; Bohr a0 ¼ 4p«0
�h2

me2
¼ 5:291 772 087� 10�11 m

energy; Hartree Eh ¼
1

4p«0

e2

a0
¼ 4:359 743 802� 10�18 J

time t ¼ �h

Eh
¼ 2:418 884 331� 10�17 s

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð1:65Þ

5 The quantities observable in physical experiments must be real.
6 An SI dimensional analysis of the two terms of Equation (1.63) shows that they have the

dimension of energy (Mohr and Taylor, 2003): j�h2r2=2mj ¼ ðkgm2 s�1Þ2 m�2 kg�1 ¼
kgm2 s�2 ¼ J; jZe2=4p«0rj ¼ C2 ðJ C� 2 mÞm�1 ¼ J.
7 Atomic units were first introduced by Hartree (1928a).
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At the end of a calculation in atomic units, as we always shall do, the
actual SI values can be obtained by taking into account the SI equiva-
lents (1.65).

The Hamiltonian of the hydrogenic system in atomic units will then
take the following simplified form:

Ĥ ¼ � 1

2
r2� Z

r
ð1:66Þ

Fromnowon,we shall consistently use atomic units everywhere, unless
explicitly stated.
(c) The atomic two-electron system

Two electrons are attracted by a nucleus of charge þZ. The
Hamiltonian will be

Ĥ ¼ � 1

2
r2

1 �
1

2
r2

2�
Z

r1
� Z

r2
þ 1

r12
¼ ĥ1þ ĥ2 þ 1

r12
ð1:67Þ

where

ĥ ¼ � 1

2
r2 � Z

r
ð1:68Þ

is the one-electron Hamiltonian (which has the same functional
form for both electrons) and the last term is the Coulomb repulsion
between the electrons (a two-electron operator). Z ¼ 2 gives the He
atom.
(d) The hydrogen molecule-ion Hþ

2

This is a diatomic one-electron molecular system, where the electron is
simultaneously attracted by the two protons at A and B. The Born–
Oppenheimer Hamiltonian (see Chapter 9) will be

Ĥ ¼ ĥþ 1

R
¼ � 1

2
r2 � 1

rA
� 1

rB
þ 1

R
¼ ĥA þV ð1:69Þ

where ĥA is the one-electron Hamiltonian (1.68) for atom A (with
Z ¼ 1) and

V ¼ � 1

rB
þ 1

R
ð1:70Þ

is the interatomic potential between the hydrogen atom A and the
proton B.
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