
Stefan Hesse | Gerhard Schnell

Sensoren für die Prozessund Fabrikautomation

Funktion - Ausführung - Anwendung

5. Auflage

Stefan Hesse | Gerhard Schnell

Sensoren für die Prozess- und Fabrikautomation

Sensoren für die Prozessund Fabrikautomation

Funktion – Ausführung – Anwendung 5., korrigierte und verbesserte Auflage Mit 498 Abbildungen, 35 Tabellen und 3 Tafeln

Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Das in diesem Werk enthaltene Programm-Material ist mit keiner Verpflichtung oder Garantie irgendeiner Art verbunden. Der Autor übernimmt infolgedessen keine Verantwortung und wird keine daraus folgende oder sonstige Haftung übernehmen, die auf irgendeine Art aus der Benutzung dieses Programm-Materials oder Teilen davon entsteht.

Höchste inhaltliche und technische Qualität unserer Produkte ist unser Ziel. Bei der Produktion und Auslieferung unserer Bücher wollen wir die Umwelt schonen: Dieses Buch ist auf säurefreiem und chlorfrei gebleichtem Papier gedruckt. Die Einschweißfolie besteht aus Polyäthylen und damit aus organischen Grundstoffen, die weder bei der Herstellung noch bei der Verbrennung Schadstoffe freisetzen.

- 1. Auflage 1991
- 2. Auflage 1993
- 3. Auflage 2004
- 4. Auflage 2009
- 5., korrigierte und verbesserte Auflage 2011

Alle Rechte vorbehalten

© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011

Lektorat: Reinhard Dapper | Walburga Himmel

Vieweg+Teubner Verlag ist eine Marke von Springer Fachmedien. Springer Fachmedien ist Teil der Fachverlagsgruppe Springer Science+Business Media. www.viewegteubner.de

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlags unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Umschlaggestaltung: KünkelLopka Medienentwicklung, Heidelberg Druck und buchbinderische Verarbeitung: AZ Druck und Datentechnik, Berlin Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier Printed in Germany

ISBN 978-3-8348-0895-0

Vorwort

Die Automatisierung von Produktions-, Logistik- und Fabrikprozessen hat sich heute zu einem bedeutenden wirtschaftlichen Erfolgsfaktor entwickelt. Automation ist jedoch ohne Sensorik nicht erreichbar. Nur was man vorher gemessen hat, kann anschließend zielgerichtet gesteuert werden. Sensoren sind aber nicht nur wichtige Funktionselemente in flexiblen Automaten, sondern werden auch als moderne Mess- oder Überwachungsgeräte genutzt. Es sind neuartige Sensorstrukturen entstanden, moderne Herstellungstechnologien hinzugekommen und leistungsfähige Signalverarbeitungssysteme verfügbar. Die Technik der Sensoren und ihre Applikationen sind greifbarer technischer Fortschritt, der mit einem Höchstmaß an Innovation und auch an Wachstum verbunden ist. Die Anwendungen reichen von der Qualitätskontrolle bis zur Positionserfassung, von der Fahrzeugtechnik bis zur Prozessindustrie und von der Haustechnik bis zum Medizingerätebau. Die Anwendungsbreite ist wohl kaum noch überblickbar. Um alles richtig zu verstehen und Sensoren fachgerecht zu beurteilen, ist ein solides Basiswissen unabdingbar.

Das Buch behandelt in knapper, anwendungsnaher Form die Grundlagen der Sensortechnik. Es wendet sich an Techniker, Ingenieure und Studierende, die in der Praxis tätig sind bzw. sich darauf vorbereiten und die sich mit den technischen Sinnesorganen beschäftigen müssen. Das Buch ist deshalb nicht nach Sensorwirkprinzipen gegliedert, sondern nach den messtechnischen Aufgabenstellungen, wie beispielsweise die Erfassung fluidischer Größen oder die Positionserfassung. Damit soll dem Leser eine Orientierungshilfe für die Lösung von Problemen und Aufgaben gegeben werden, wie sie in der Prozess- und Fabrikautomation vorkommen. Ein Mini-Lexikon und die Auswahl von Internet-Adressen am Schluss des Buches dienen dem schnellen Nachschlagen und der Vertiefung bis hin zum Auffinden potentieller Lieferanten. Damit soll auch eine Brücke zwischen Buchwissen und Praxis geschlagen werden.

Ich danke Herrn Prof. Dr. Ing. *Gerhard Schnell*, der das Kapitel Sensorvernetzung und etliche Ergänzungen sowie Verbesserungen zu allen anderen Kapiteln beigesteuert hat. Die stets angenehme und hilfreiche Zusammenarbeit mit Herrn Dipl.-Ing. *Thomas Zipsner* vom Lektorat Technik des Vieweg Verlages sei ebenfalls dankend vermerkt.

Plauen, Januar 2004 Stefan Hesse

Vorwort zur 5. Auflage

Die inhaltlichen Ergänzungen des Buches in der 4. Auflage wurden von der Fachwelt sehr gut angenommen und haben damit eine weitere Auflage nötig gemacht. Das Glossar wurde um einige Termini erweitert, ebenso sind verschiedene Sensoranwendungen aufgenommen worden, die die Robotertechnik tangieren. Für die Betreuung danke ich Herrn Dipl.-Ing. *Reinhard Dapper*, Cheflektor des Lektorats Elektrotechnik.

Plauen, Oktober 2011

Stefan Hesse

Inhaltsverzeichnis

Vo	rwort				V
1	Sens	soren –	Sinneson	rgane der Technik	1
	1.1			ren?	
	1.2			Begriffe	
	1.3			nutzbare Effekte	
	1.4	Einsat	z und Aus	swahl	17
2	Sens	soren z	ur Positio	onserfassung	21
	2.1	Elektr	omechani	sche und elektrische Positionserfassung	21
	2.2			Ositionserfassung	
	2.3			ionserfassung	
	2.4	Kapaz	itive Posi	tionserfassung	38
	2.5			ve Positionserfassung	
		2.5.1	Hallsens	or	43
		2.5.2	Magnets	chalter	47
		2.5.3	Magnetis	sch steuerbare Widerstände	49
			2.5.3.1	Feldplattensensor	50
			2.5.3.2	Sättigungskernsonde	52
			2.5.3.3	Magnetoresistive Metall-Dünnschicht-Sensoren	54
	2.6	Positio	onserfassu	ung mit Ultraschall	55
	2.7	Optoe		che Positionserfassung	
		2.7.1	Allgeme	ine Grundlagen	62
		2.7.2		Lichtschranke	
		2.7.3	Reflexlic	chtschranke	75
		2.7.4	Reflexlic	chttaster	78
		2.7.5	Lichtgitt	er	84
		2.7.6		ische Sensoren	
		2.7.7	Positions	sempfindliche Fotoelemente	93
				neidung farbiger Objekte	
				isoren	
	2.8	Positio	onserfassu	ung mit Mikrowellen	107
	2.9	Positio	onserfassu	ung mit Kernstrahlung	108
	2.10	Füll- ı	and Grenz	zstandsmessung	110
		2.10.1	Allgen	neine Grundlagen	111
		2.10.2	Optisc	he Füllhöhenbestimmung	112
		2.10.3		henbestimmung mit Schwimmern	
		2.10.4		omechanische Füllhöhenbestimmung	
		2.10.5		abhängige Füllhöhenbestimmung	
		2.10.6	Kondu	ıktive Füllhöhenbestimmung	121

VIII Inhaltsverzeichnis

		2.10.7		zitive Füllhöhenbestimmung	
		2.10.8		rptionsabhängige Füllhöhenbestimmung	
		2.10.9		xionsabhängige Füllhöhenbestimmung	
				rimetrische Füllstandserfassung	
				Bahnführung von Schweißrobotern	
				Autonome Mobile Roboter	
	2.13	Senso	oren in de	r Endeffektortechnik	147
3	Sens	oren z	ur Erfass	sung mechanischer Größen	153
	3.1	Messi	ung von F	Kräften	153
	3.2	Messi	ung von I	Orehmomenten	170
	3.3			Beschleunigungen	
	3.4	Bestii	nmung v	on Massen	180
	3.5			eitsmessung	
	3.6	Erker	inen von	Bewegungen	192
1	Sen	soren 2	zur Erfas	ssung fluidischer Größen	194
	4.1	Druck	cmessung	Ţ	194
		4.1.1	Allgem	eine Grundlagen	195
		4.1.2	Magnet	oelastische Messung	198
		4.1.3	Kapazit	tive Messung	200
				ektrische Messung	
				sistive Messung	
				omagnetische Messung	
				nessung mit akustischen Oberflächenwellen	
	4.2			ssung	
		4.2.1		etrische Messung	
				Verdrängungsverfahren	
				Volumenzähler mit Messflügel	
				Schwebekörper-Durchflussmesser	
				uckverfahren	
			_	isch-induktive Durchflussmessung	
				s-Durchflussmessung	
				ussmessung mit Ultraschall	
				netrische Durchflussmessung	
	4.2			requenz-Durchflussmessung	
	4.3			1g	
				eine Grundlagen	
		4.3.2		esensoren	
			4.3.2.1	Taupunkthygrometer	
			4.3.2.2	Faserhygrometer.	
			4.3.2.3	Kapazitive Feuchtesensoren	
			4.3.2.4 4.3.2.5	Feuchtesensoren in SAW-Technologie	
			4.3.2.5	Elektrolysehygrometer	
			4.3.2.7	Aspirationshygrometer (Psychrometer)	
			4.3.4.1	Aspirationshygrometer (Psychrotheter)	∠41

Inhaltsverzeichnis IX

5	Sen	soren zur Erfassung der Temperatur	243
	5.1	Allgemeine Grundlagen	243
	5.2	Kontaktthermometrische Sensoren	
		5.2.1 Thermoresistive Temperaturmessung	245
		5.2.2 Thermoelektrische Temperaturmessung	
	5.3	Strahlungsthermometrie	
6	Sen	soren zur Erfassung von Wegen und Winkeln	270
	6.1	8	
	6.2		
		6.2.1 Tauchanker und Differentialtransformator	273
		6.2.2 Potenziometer	
		6.2.3 Kapazitive Weg- und Winkelmessung	
		6.2.4 Induktive Weg- und Winkelmessung	279
		6.2.5 Magnetische Wegmessung	281
		6.2.6 Resolver	282
		6.2.7 Inductosyn	283
	6.3	Digitale Messverfahren	285
		6.3.1 Optisch-inkrementale Weg- und Winkelmesssysteme	
		6.3.2 Codelineale und Codescheiben	
		6.3.3 Magnetische Längenmesssysteme	293
		6.3.4 Längenmessung mit Interferometer	
		6.3.5 Interferenzielle Längenmessung	
	6.4	Distanzmessung mit Triangulation	
	6.5	Distanzbestimmung mit Laufzeitmessung	
	6.6	Distanzbestimmung mit Phasenmessung	
	6.7	Magnetostriktive Wegmessung	
	6.8	Neigungsmessung	
7	Abl	oildung und Erkennung von Objekten	313
	7.1	Allgemeine Grundlagen	313
	7.2		
		7.2.1 Höhenprofilschnitt	
		7.2.2 Objekterkennung mit CCD-Zeile	
		7.2.3 Objekterkennung mit Lichtschnittverfahren	
		7.2.4 Objekterkennung mit CCD-Matrix	
		7.2.5 Objekterkennung durch Schattenbildauswertung	
		7.2.6 Bilderfassung mit stereoskopischem Prinzip	
		7.2.7 Beleuchtungstechnik	
	7.3	Nichtoptische Abtastsysteme	
	7.4	Erfassung codierter und nichtcodierter Informationen	
	, .¬r	7.4.1 Elektromechanische Erfassung	
		7.4.2 Optische Erfassung	
		7.4.3 Elektronische und elektromagnetische Erfassung	
		7. 1.5 Elektromisene und elektromagnetisene Elitassung	

X Inhaltsverzeichnis

8	Erf	assung	chemischer und biologischer Stoffgrößen	359
	8.1	Messi	ung von Gaskonzentrationen allgemein	359
	8.2	Sauer	stoffmessung	365
	8.3		ung der elektrolytischen Leitfähigkeit	
	8.4		ung des pH-Wertes	
	8.5		nalyse durch Wärmeleitfähigkeitsmessung	
	8.6		sung biologischer Substanzen	
	8.7		osionsschutz bei Sensoren	
9	Sen	sorveri	netzung	378
	9.1	Allge	meine Grundlagen	378
		9.1.1		
		9.1.2		
		9.1.3		
	9.2	Bussy	ysteme zur Sensorvernetzung	
		9.2.1		
		9.2.2	· · · · · · · · · · · · · · · · · · ·	
		9.2.3	Interbus	385
		9.2.4		
		9.2.5	CAN-Bus	387
	9.3	Ausbl	lick	388
10	Fac	hbegri	ffe	391
Into	ernet-	Suchb	egriffe	419
Lite	eratu	r und (Quellen	421
Sac	hwor	tverzei	ichnis	425

1 Sensoren – Sinnesorgane der Technik

1.1 Was sind Sensoren?

Ein Lebewesen ist nur existenzfähig, wenn es auf Umwelteinflüsse reagieren kann. Selbst Einzeller haben diese Fähigkeit entwickelt. Um spezifische Reize aus der Umgebung oder aus dem Körperinnern aufzunehmen, existieren biologische Strukturen, die als Rezeptor bezeichnet werden. Man unterscheidet zwei Arten:

- Exterorezeptoren
 Sie dienen zur Orientierung im Raum und nehmen Reize aus der Umwelt auf.
- Interorezeptoren
 Mit ihnen werden Reize aus dem Innern eines Organismus aufgenommen.

Die Sinnesphysiologie lehrt, dass jede Wahrnehmung über ein Sinnesorgan aus zwei Teilprozessen besteht. Der äußere Reiz wird vom Rezeptor in eine Nervenendigung umgesetzt. Der betroffene Nerv leitet das erzeugte elektrische Signal zum Zentralnervensystem (Gehirn) weiter. Dort erst entsteht ein Sinneseindruck (Wahrnehmung, Empfindung). Der Mensch besitzt etwa 10⁹ bis 10¹¹ Rezeptoren (*receptors*).

Inzwischen ist die Technik in ihrer Entwicklung derart fortgeschritten, dass sie ebenfalls Rezeptoren hervorbringen kann. Sie sind künstlich hergestellt und werden als Sensoren bezeichnet. Eingebaut in Maschinen, Vorrichtungen medizinischen Geräten, Anlagen, Fahrzeugen, Kaffeemaschinen und vielen anderen Erzeugnissen verleihen sie diesen die Fähigkeit, eigenständig auf bestimmte Zustände zu reagieren und diese zu kontrollieren. Sensoren übertragen das Wahrnehmungsvermögen des Menschen auf Maschinen. Dabei können den fünf Sinnen des Menschen entsprechende Sensortypen gegenübergestellt werden (**Tabelle 1-1**).

Mensch	Sinn	Organ	Sensorik	Erfassung von
Hören	Gehör	Ohr	Mikrofon	Schall
Sehen	Licht	Auge	Fotozelle, Kamera	Licht, Konturen, Szenen
Fühlen	Temperatur Schwere Kraft Tastsinn	Haut Muskel Nerven	Thermometer Waage Dehnmessstreifen Fühler, Schalter	Wärme Masse Kraft, Drehmoment Form, Lage
Riechen Schmecken	Geruch Geschmack	Nase Zunge/Gaumen	Rauchmelder Künstliche Zunge	Rauch, Gasen Inhaltsstoffen

Tabelle 1-1 Wahrnehmungsvermögen von Mensch und Maschine

Hinzu kommen noch weitere chemische, physikalische oder auch biologische Messgrößen, die den menschlichen Sinnen nicht zugänglich, aber mit Sensoren erfassbar sind.

In den letzten Jahren hat sich der Einsatz von Sensoren überdurchschnittlich gut entwickelt. In Zukunft darf man erwarten, dass fast alles von der Maschine bis zum Gebrauchsgegenstand mehr oder weniger sensorisiert sein wird. Große Bedeutung wird dabei den Mikrosystemen

zukommen. Sensor und Signalverarbeitung werden miteinander verschmelzen. Der Übergang zur sensorgestützten Maschinerie bedarf intensiver Auseinandersetzung mit den Möglichkeiten und Verfahren der Sensorik (sensorics, sensor technology). Dazu soll das Buch beitragen.

Was wird unter einem Sensor verstanden?

- Der Sensor ist ein technisches Bauteil, das aus einem Prozess zeitvariable physikalische oder auch elektrochemische Größen erfasst und in ein eindeutiges elektrisches Signal umsetzt.
- Diejenige Baueinheit, die aus einem (mechanischen) Umsetzelement und einem elektrischen Sensorelement besteht, heißt Elementarsensor oder Messwertaufnehmer (Bild 1-1).

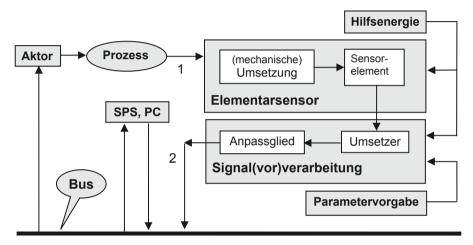


Bild 1-1 Prinzipanordnung eines Sensors

1 Eingangssignal, 2 Ausgangssignal

Der Begriff "Sensor" kommt vom lateinischen *sensus* für Gefühl bzw. Empfindung (*sensualis = die Sinne betreffend*) und fand erst in den 1970er-Jahren Eingang in die Fachliteratur. Vorher sprach man von Aufnehmern, Wandlern, Gebern, Meldern, Messfühlern, Initiatoren, Transducern und Transmittern. In der DIN/VDE-Richtlinie 2600 wird der Begriff "Sensor" als englische Übersetzung für Fühler angegeben. Die Genauigkeit bzw. Ungenauigkeit eines Sensors wird durch die Eigenschaften Linearität, Hysterese und Drift (*Offset*) beschrieben.

Wird der Messfühler (Elementarsensor) mit Hilfsenergie versorgt, dann handelt es sich um einen <u>passiven Sensor</u>. Das sind Impedanzen, die durch die physikalische Messgröße verändert werden (**Bild 1-2**). Es sind hohe Genauigkeiten erreichbar.

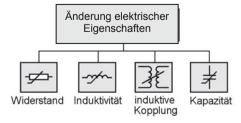


Bild 1-2 Beispiele für passive Sensoreffekte

1.1 Was sind Sensoren?

Aktive Messfühler sind Energiewandler (Spannungserzeuger). Sie wandeln eine zu messende nichtelektrische physikalische Größe oder chemische Veränderungen direkt in ein elektrisches Signal um. Dazu gehören z.B. Thermo- und Fotoelemente sowie piezoelektrische Fühler. Letztere wiederum können z.B. nur für dynamische Kräfte verwendet werden, nicht aber für statisch anfallende Messgrößen. Ziel der Messtechnik ist es, bei aktiven Sensoren die nichtelektrische Energie direkt, also ohne Zwischenschalten weiterer Energieformen, in elektrische Energie umzusetzen. Bei passiven Sensoren versucht man, die Zahl der Messglieder so klein wie möglich zu halten. Aktive Messfühler erreichen oft nur eine geringe Genauigkeit, vor allem bezüglich der Langzeitstabilität. Daraus resultiert, dass man oft eine häufigere Kalibrierung hinnehmen muss.

In der Robotertechnik, vor allem bei autonomen mobilen Robotern die sich in einer Outdoorumgebung frei bewegen können, ist eine Einteilung der Sensoren in interne und externe Sensoren aktuell. Das **Bild 1.3** zeigt eine Übersicht.

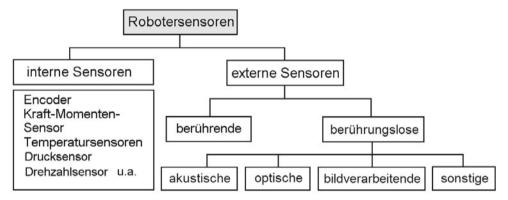


Bild 1-3 Gliederung der Sensoren für autonome mobile Roboter

Externe Sensoren (external sensors) dienen zum Aufnehmen von Messsignalen aus der Umwelt. Das sind beispielsweise Sensoren für Licht, Wärme, Schall (Mikrofon), Kollision mit Hindernissen, physikalischen Größen im technischen Prozess, Entfernungen, Objektkonturen und Umweltbilder (Kamera). Der Umfang an externen Sensoren hängt von Art und Komplexität der vorgesehenen Einsatzumgebung ab. Bei bewegten Systemen spielen auch Zeitanforderungen eine Rolle.

<u>Interne Sensoren</u> (internal sensors) erfassen die inneren Zustände eines Roboters, wie z. B. Position und Orientierung des Roboterarms und von Endeffektoren, Geschwindigkeiten mit der sich Gelenke bewegen, Innentemperatur, Batteriestand bei autonomen mobilen Robotern, Motorstrom, Kräfte und Momente. Beispiele sind u. a. auch Gyroskope, Rad-Encoder, Neigungs- und Beschleunigungssensoren. Für interne Sensoren gilt allgemein, dass ihre Messsignale eindeutig interpretiert werden können, da der Zusammenhang zwischen Messgröße und Messsignal durch die Konstruktion festgelegt und somit eindeutig bekannt ist.

Insgesamt hat die Sensorisierung von mobilen autonomen Robotern die Aufgabe, eine gewisse Autonomie zu erreichen. Ein technisches System ist autonom, wenn es bei der Ausführung eines gegebenen Auftrags selbstständig Entscheidungen treffen kann, die zum Erreichen des Zieles notwendig sind. Sensorik, Software und Selbstorganisation können dazu beitragen.

FEin Sensorsystem besteht aus Sensor und Messobjekt, zwischen denen zum Zeitpunkt der Messung eine Wirkungsübertragung stattfindet. Außerdem gibt es Wirkungsverbindungen mit der Umwelt. Ein Sensorsystem ist nichts Statisches, sondern verändert mehr oder weniger seinen Zustand. Das kann durch eine Verhaltensfunktion Γ allgemein beschrieben werden, die die Zusammenhänge zwischen den im System auftretenden Variablen widerspiegelt. Das System wird insgesamt charakterisiert durch die Umgebung, die Verhaltensfunktion Γ und die Struktur.

$$\Gamma = \Gamma(u_i, x_i, q, dq / dt, E, t) \tag{1.1}$$

 u_i Eingangsvariable q Zustand des Systems E Systemelemente dq/dt Zustandsänderung x_i Ausgangsvariable t Zeit

Für die Zukunft kristallisieren sich für die nächsten Sensorgenerationen folgende Tendenzen heraus:

- Größere Vorwärtsintegration; also mehr Intelligenz im Sensor und weniger Leistungsbedarf
- Miniaturisierung durch Mikroelektronik und Mikrosystemtechnik (Kleinstgehäuse)
- Senkung der Kosten durch Massenfertigungsverfahren und modularen Sensoraufbau
- Entwicklung von Kommunikationsstandards für Sensorsysteme (Bussysteme, Kommunikation zwischen Feld- und Leitebene, Diagnoseabfragen, Fehlersuche)
- Wesentlich reduzierter Installations- und Verdrahtungsaufwand; einfache Einbindung von Sensoren und Aktoren in ein Busnetzwerk, drahtlose Signalübertragung (Sensornetze)
- Bessere Kombinationsmöglichkeiten von Geräten unterschiedlicher Hersteller
- Robustere Messverfahren, die weitgehend störungssicher sind

Sensoren werden zunehmend auch mit weiteren Funktionen ausgestattet. Dazu gehören die Selbstüberwachung und die Selbstkalibrierung von Sensoren. Man braucht dazu spezielles Wissen über die Eigenschaften und vor allem über das Sensorverhalten sowie über die Vertrauensgrenzen der Sensorgrößen. Letztlich werden Regeln gebraucht, nach denen aus bestimmten Reaktionen ein definierter Eingriff selbsttätig abzulaufen hat. Außer den Regeln muss der Sensor natürlich auch hardwareseitig für den Selbsttest und die Einstelloperationen tauglich sein. Das Prinzip wird in **Bild 1-4** als Schema gezeigt.

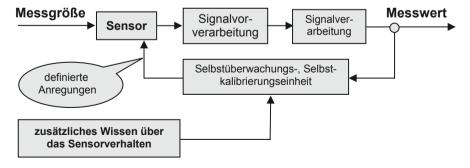
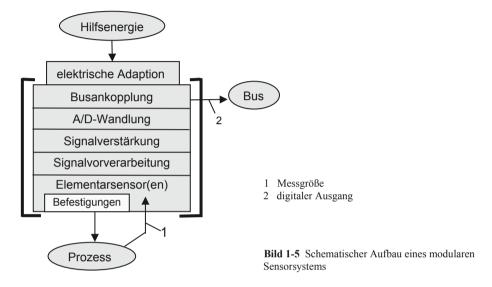



Bild 1-4 Selbstüberwachung und Selbstkalibrierung von Sensoren

1.1 Was sind Sensoren? 5

In jüngster Zeit ist man bemüht, die Fortschritte in der Mikrosystemtechnik auszunutzen, um Sensorsysteme aus modularen Komponenten anforderungsgerecht zusammenzubauen. Wie aus dem **Bild 1-5** ersichtlich ist, denkt man an eine "Turmbauweise", bei der die jeweils erforderlichen Module vertikal zu einem Stapel verbunden werden. Voraussetzung ist die Definition von elektrisch und geometrisch standardisierten Schnittstellen. Die Komponenten können dann in großer Stückzahl hergestellt werden und gehen in spezifisch zusammengestellte Sensoren ein, so wie sie aktuell in kleinen Stückzahlen vom Markt verlangt werden.

Für den Übergang von Messaussagen von der nichtelektronischen Welt in elektrisch bzw. elektronisch auswertbare Größen werden überwiegend die in **Bild 1-6** angegebenen technischphysikalischen Zusammenhänge ausgenutzt [1-1].

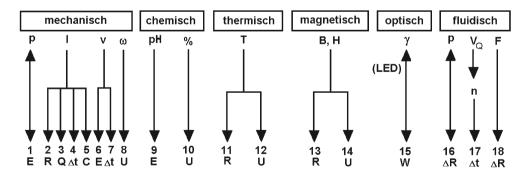


Bild 1-6 Eigenschaften von Objekten werden vom Sensor in elektrische Größen verwandelt

p Druck, l Weg, Abstand, pH Ionenkonzentration, n Drehzahl, Δt Zeitintervall, v Geschwindigkeit, C Kapazität, B Flussdichte, E elektrische Feldstärke, F Feuchte, H magnetische Feldstärke, Q Schwingkreisgüte, R Widerstand, T Temperatur, U Spannung, V_Q Volumendurchsatz, W elektrische Energie, ΔR Widerstandsänderung, M Gaskonzentration in Volumenprozent, M Winkelgeschwindigkeit, Drehzahl, M Lichtquant

Wie die Wandlung vor sich gehen kann, d. h. welche physikalischen Verknüpfungen beispielsweise verwendbar sind, wird in der **Tabelle 1-2** erklärt. Die Zahlen 1 bis 18 sind als Zeilennummerierung angegeben. Dort findet man in der ersten Spalte die Gleichung, welche die nichtelektrische Größe mit der elektrischen verknüpft. Diese Tabelle enthält Beispiele und ist somit nicht vollständig. Sie zeigt aber, auf welche vielfältige Weise physikalische und elektrotechnische Effekte für die Sensoren zur Anwendung kommen. In den einzelnen Kapiteln wird auf diese Grundlagen noch ausführlicher eingegangen.

Tabelle 1-2 Verknüpfungsgleichungen (einige ausgewählte Beispiele)

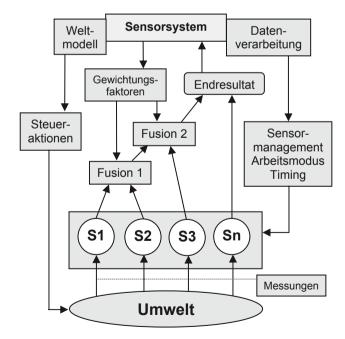
Nr.	Gleichung	Konstante	Erläuterung
1	$\Delta Q = \mathbf{K} \cdot p$	$K = 2.3 \cdot 10^{-12} \text{ As/N (Quarz)}$	piezoelektrischer Effekt
2	$\Delta L/L = (\mathbf{k} \cdot \Delta R)/R$	k = 2 (typisch), Konstantan	Dehnungsmessstreifen
3	$R_{\rm V} \sim 1/L, \ \ Q \sim 1/R_{\rm V}$		$R_{\rm p}$ durch Wirbelströme
4	$\Delta L = \Delta t \cdot v$		Weg-Zeit-Messung
5	$C = (\varepsilon \cdot A)/L$, $\varepsilon = \varepsilon_0 \cdot \varepsilon_{\rm r}$	$\varepsilon_0 = 8,66 \cdot 10^{-12} \text{ As/Vm}$	Kapazitätsmessung
6	$E = v \times B$	B magnetische Flussdichte	Lorentz-Feldstärke
7	$v = \Delta L/\Delta t$		Weg-Zeit-Messung
8	$\omega = U/(A \cdot B)$	A Leiterschleifenfläche B magnetische Flussdichte	Induktionsgesetz
9	$U = K \cdot (pH_{\rm v} - pH_{\rm m})$	K = 58,2 mV (20 °C) m Messstelle, v Vergleichsstelle	modifizierte Nernst'sche Gleichung
10	$U = [(\mathbf{R} \cdot T)/(n \cdot \mathbf{F})] \cdot \ln \cdot (P_1/P_2)$	P entspricht Volumen in Prozent R = 8,32 Ws/Grad $F = 9,65 \cdot 10^4 \text{ As/Grammatom}$	Nernst'sche Gleichung
11	$R(T) = R_0(1 + \alpha \cdot \Delta T)$	$\alpha = 3.9 \cdot 10^{-3} / \text{K}$ (typisch), Platin	Metalle
	$R(T) \approx R_0 \cdot \exp[\mathbf{B} \cdot (T^1 - T_0^{-1})]$	B = 4200 K (typisch), Mischoxid- Keramik	Heißleiter, NTC
	$R(T) \approx R_0 \cdot \exp[\alpha \cdot (T - T_0)]$	α = 16 %/K (typisch), dotierte Bariumtitan-Keramik	Kaltleiter, PTC
12	$U = \mathbf{a} \cdot (T_{\rm m} - T_{\rm v})$	$a = 53 \mu V/Grad$; Fe-Konstantan	Thermoelement
13	$R/R_0 \approx \mathbf{k} \cdot B$	k = 10/T (typisch)	magnetoresistiver Effekt
14	$U = (R_{\rm h} \cdot I \cdot B)/d$	$R_h \cong 2 \cdot 10^{-4} \text{ m}^3/\text{As (typisch)},$ Halbleiter	Halleffekt
15	f = W/h	$H = 6,625 \cdot 10^{-34} \text{ Ws}^2$ W = 1,92 eV (GaAsP)	lichtelektrischer Effekt, Einstein-Gleichung
16	$\Delta R/R \sim \Delta L/L = \varepsilon$	ε Dehnung, L Leiterlänge $1\Omega = 1V/1A$	Dehnungsmessstreifen, laminare Strömung
17	$V_{Q} = 2 \cdot \pi \cdot r \cdot A \cdot n$	r Turbinenradius A Strömungsquerschnitt n Drehzahl	Strömungsgesetze, laminare Strömung
18	$\Delta R = \mathbf{K} \cdot F^{\mathbf{n}}$	K Materialkonstante F Feuchte n materialabhängiger Wert	LiCl Taupunkthygrometer, Gleichgewichtstemperatur

1.2 Einteilung und Begriffe

Im Umfeld des Hauptbegriffes "Sensor" gibt es viele weitere Termini. Geht die Informationsverarbeitung über einfache Vorstufen hinaus und sind alle elektrischen Funktionen in einem Halbleiterbaustein untergebracht, bezeichnet man das auch als "intelligenten" Ein-Chip-Sensor. Auch die werbewirksame Bezeichnung *smart sensor* wird verwendet.

Weitere Begriffe sind:

Sensorelement, Elementarsensor, Messfühler


Bezeichnungen für das eigentliche Wandlerelement, welches über den physikalischen Effekt eine nichtelektrische Größe in eine elektrische Größe wandelt. Das geschieht mitunter auf dem Weg der Abbildung über eine Zwischengröße.

Sensorsystem

Bezeichnung für ein System, das aus mehreren Mess- und Auswertungskomponenten besteht und bei dem zum Zeitpunkt der Messung eine Wirkungsübertragung stattfindet, an der Sensor, Messobjekt und Umwelt beteiligt sind. Es verfügt über einen wesentlichen Anteil an Signal-aufbereitungsfunktionen.

Multisensorsystem

Bezeichnung für ein System, das aus mehreren Einzelsensoren besteht, wobei diese gleichzeitig Messgrößen aufnehmen (**Bild 1-7**). Sie sind vorwiegend als Halbleitersensoren ausgeführt und deshalb sehr platzsparend [1-3].

Bild 1-7 Prinzip der Datenintegration bei Multisensoren

Si Sensorelement

Multisensorielle Ansätze können auf drei Arten ausgelegt werden:

- Sensorkombination mit unterschiedlichen Messprinzipen, z. B. taktil, visuell, akustisch (heterogen)
- Sensorkombination mit demselben Messprinzip an verschiedenen Orten des Systems (homogen)
- Einzelsensor für die Erkennung mehrerer zueinander in Relation stehender Ereignisse,
 z. B. bewegter Objekte

Beim Einsatz von Multisensoren kann ein Ziel z. B. die Erhöhung der Zuverlässigkeit des Messwertes sein. Die Messwerte der Einzelsensoren werden zu einer Gesamtaussage verdichtet, wobei keine bloße Aufrechnung erfolgt, sondern eine gewichtete Auswertung. Möglicherweise muss ein Training an charakteristischen Umgebungen erfolgen, damit man zu den richtigen Gewichtsfaktoren kommt.

Beispiel Gassensor: Es werden Temperatur-, Feuchte- und Druckschwankungen zusätzlich mit erfasst, um zu einer präzisen Aussage zu kommen *(multistate sensor)*.

Eine andere Unterscheidung der Sensoren ist die in Binär-, Digital- und Analogsensoren.

Binärsensoren sind zweiwertige Schalter, die nur mit den beiden elektrischen Schaltsignalen EIN oder AUS arbeiten, wie z. B. Näherungssensoren, Druck- oder Temperaturschalter.

Analogsensoren liefern dagegen einen stetigen physikalischen Messwert, meistens als Spannung, z. B. 0...10 Volt, oder Strom, z. B. 0...20 mA bzw. 4...20 mA. Dazu gehören Sensoren für Wege, Winkel, Kräfte und z. B. für den Durchfluss. Durch Kalibrieren können Sensoren auch als Messwertgeber verwendet werden. Unter Kalibrieren versteht man nach DIN 1319 das Feststellen des Zusammenhangs zwischen Messgröße (wirklichem Wert) und Anzeige (Messwert).

```
Beispiel: Messgröße = 10,00; Anzeige = 10,86
Kalibrieren = Angleichen der Anzeige auf 10,00
```

In diesem Sinne werden die Sensoren auch nach dem Grad der Erfassungsfähigkeit eingeteilt in

- Messende Sensoren, die mit 2 bit und mehr arbeiten (Messen: Vergleichen mit einem Normal und Abzählen, wie oft die Normaleinheit in der zu messenden Größe enthalten ist.)
- Erfassende Sensoren, die mit nur einem einzigen bit auskommen. (Abzählen reduziert sich auf das Feststellen, ob die Messgröße den Vorgabewert über- bzw. unterschreitet.)

Beispiel Pneumatikzylinder:

In **Bild 1-8** werden Pneumatikzylinder gezeigt, bei denen die Kolbenstellung mit Sensoren abgefragt wird. Bei der Lösung nach **Bild 1-8a** trägt der Kolben einen Magnetring und über induktive Schalter werden nur die Endstellungen erfasst (siehe dazu auch Bild 2-1). Beim Aufbau nach **Bild 1-8b** ist die Kolbenstange dagegen mit Magnetelementen im Wechsel von Nord- und Südpolen besetzt, so dass eine Wegmessung über den gesamten Kolbenhub stattfinden kann. Es ist ein inkrementelles digitales System.

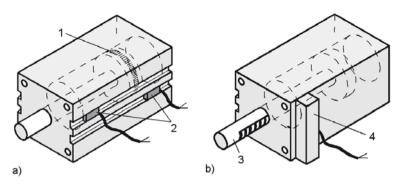


Bild 1-8 Pneumatikzylinder mit Sensoren

a) Endlagenerfassung mit induktiven Näherungssensoren, b) Wegmessung mit digital-magnetischer Kolbenstange. 1 Magnetring, 2 induktiver Näherungssensor, 3 Kolbenstange mit Magnetelementen, 4 Impulsgeber

Jeder Erkennung von Objekteigenschaften mit Hilfe von Sensoren liegt das Prinzip zugrunde, dass Energie irgendeiner Form durch das Objekt verändert bzw. moduliert und die dadurch aufgeprägte Information vom Sensor analysiert wird. Man kann die Sensoren auch nach der Energieform in Arten einteilen (Tabelle 1-3).

Tabelle 1-3 Einteilung der Sensoren nach der Energieart

Energieart	Sensortyp				
mechanisch	taktil, akustisch, fluidisch				
elektromagnetisch	elektrisch, magnetisch, induktiv, kapazitiv, die- lektrisch, Lichtbogen				
thermisch	Temperatur, Wärmebild				
elektromagnetische Wellen (optisch)	geometrisch-optisch, bildgebend				
elektromagnetische Wellen (radioaktiv)	Strahlungsabsorption, -streuung				

Die jeweils wirkenden physikalischen Grundgesetze bestimmen dabei wesentliche Eigenschaften der Sensoren und auch ihre Anwendungsgrenzen.

Eine Einteilung der Sensoren ist nach vielen weiteren Gesichtspunkten möglich, so z. B. nach den Hauptanwendungsgebieten. Man kann unterscheiden in Sensoren für Chemie, Dynamik, Gase und Flüssigkeiten, Geometrie, Mechanik u. a. oder man teilt ein nach Wirkprinzipen, wie z. B. in Ultraschallsensoren, induktive und kapazitive Sensoren u. a. Für die Maschinen-bzw. Fabrikautomatisierung könnte man die Sensoren sehr detailliert auch in folgende Gruppen einteilen:

Beschleunigungsaufnehmer
Drehschwingungssensoren
Wägezellen, Dosiersensoren
Induktiv-Tastsensoren
Magnetschalter-Sensoren
Schallsensoren
Tachosensoren
Widerstandssensoren

DMS-Sensoren
Dynamische Sensoren
Halleffektsensoren
Kapazitiv-Tastsensoren
Mechanische Schalter
Schutz- und Prüfsensoren
Ultraschallsensoren
Weg-, Winkelsensoren

Drehmomentsensoren
Elektrische Sensoren allgemein
Impulssensoren
Lasersensoren
Mikrobiologische Sensoren
Bildverarbeitungssysteme
Schwingungsaufnehmer

Sensoren der Optoelektronik

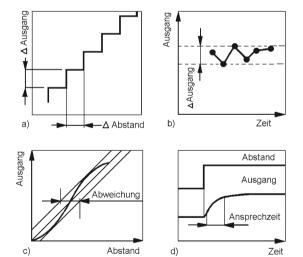
Sensoren müssen im übrigen als Konstruktionsteile verstanden werden und so gestaltet sein, dass sie in ein Ensemble anderer Bauteile und Baugruppen eingehen können. Deshalb muss ihre Ausfallwahrscheinlichkeit klein sein. Wichtige Eigenschaften sind auch Störgrößenempfindlichkeit (Querempfindlichkeiten) und Selbstjustierungsfähigkeit. Abhängig von der Aufgabenstellung spielen die folgenden messtechnischen Begriffe bei der Beurteilung und bei der Auswahl eine mehr oder weniger große Rolle:

Auflösung (resolution)

Sie gibt die kleinstmögliche Veränderung am Objekt an, die noch eine messbare Änderung am Ausgangssignal bewirkt.

Linearität (linearity)

Das ist ein Maß für die Abweichung der Kennlinie des Ausgangssignals von einer Geraden.


Ansprechzeit (response time)

Darunter versteht man jene Zeit, die der Signalausgang braucht, um den maximalen Signalpegel zu erreichen.

Wiederholgenauigkeit (repetition accuracy)

Das ist die Differenz von Messwerten aufeinanderfolgender Messungen innerhalb einer bestimmten Zeit und Umgebungstemperatur.

In **Bild 1-9** werden diese Begriffe am Beispiel von Sensoren zur Distanz- und Positionsmessung nochmals grafisch erklärt.

Bild 1-9 Wichtige messtechnische Begriffe am Beispiel von Abstandssensoren

- a) Auflösung
- b) Wiederholgenauigkeit
- c) Linearität
- d) Ansprechzeit

Einige weitere Begriffe aus der Messtechnik werden im Kapitel 10 (Fachbegriffe) aufgeführt.

Wichtig ist in jedem Fall, dass der Wert der Messgröße innerhalb des Messbereiches *(measu-ring range)* eines Sensors bzw. Messgerätes liegt. Nur dann kann man sich auf die vereinbarten Fehlergrenzen verlassen. Man kann von folgender Einteilung **(Bild 1-10)** ausgehen:

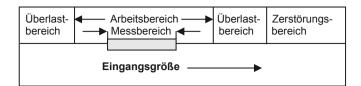
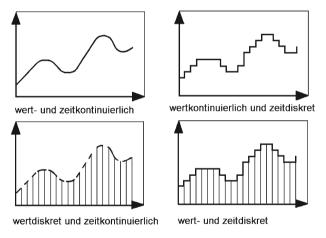


Bild 1-10 Definition Messbereich

Die zeitliche Folge von Messwerten bezeichnet man als Signale. Ein Signal kann verschiedene Formen annehmen und ist eine zeitvariable physikalische Zustandsgröße. Die Signalformen werden wie folgt systematisiert:

Deterministische Signale


Der Signalwert ist zu jedem beliebigen Zeitpunkt verfügbar. Man unterscheidet weiterhin in analoge und diskrete Signale (**Bild 1-11**).

Stochastische Signale

Sie haben einen regellos, zufällig schwankenden Signalverlauf. Rein stochastische Signale sind nur mit statistischen Methoden auswertbar.

Signalgemische

Das sind deterministische Signalformen mit einem stochastischen Anteil (Rauschen). Das Rauschen ist unerwünscht und wird mit elektronischen Mitteln unterdrückt. Sensoren und elektronische Signalverarbeitungsgeräte mit einem geringen Eigenrauschen werden besonders für die Erfassung sehr kleiner Messgrößen eingesetzt.

analog = kontinuierlich, stufenlose Werte

diskret = durch endliche Intervalle voneinander getrennt stehende Werte

kontinuierlich = unaufhörlich, durchlaufond

diskontinuierlich = aussetzend, unterbrochen

Bild 1-11 Charakteristische Signaltypen im zeitlichen Verlauf

Große Bedeutung haben in der Fertigungsautomatisierung Sensoren, die eine Annäherung an Objekte detektieren. Die meisten Annäherungssensoren geben einen Output ab, der der Entfernung von Sensor zum Objekt äquivalent ist. Das geschieht auf zwei Arten:

- Der Sensoroutput wächst mit dem Abstand zum Objekt, wie z. B. bei der Messung von Licht- und Schalllaufzeiten.
- Der Sensoroutput wird kleiner, wenn sich die Entfernung zum Objekt vergrößert, was
 z. B. bei der Abstandsmessung mit elektromagnetischen Feldern der Fall ist.

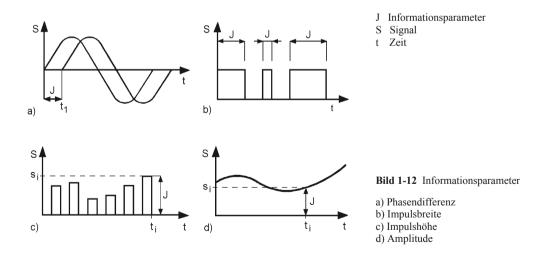
Einiges zum Begriff der Information:

Das Wort ist bereits in der Wissenschaftssprache des 19. Jahrhunderts nachweisbar. Zum Inhalt zählte man folgende Gegebenheiten:

- 1. **Absender:** Das können Lebewesen ebenso sein, wie Maschinen und Messgeräte.
- Empfänger: Dazu zählt man Menschen, aber auch entsprechend ausgelegte Vorrichtungen, Maschinen und elektronische Geräte.
- 3. Text: Das sind Beschreibungen, Befehle, Verbote, Empfehlungen, Messwerte u. a.
- 4. **Form:** Hier sind nicht nur beliebige Sprachen aktuell, sondern auch codierte Notationen, Signalcodes des Nervensystems oder ein chemischer Code, z. B. zur Fixierung von Erbmerkmalen.

In der DIN 44300 hat man dazu Folgendes festgelegt:

Information: Sinngehalt der Nachricht (was mitgeteilt werden soll)


Nachricht: Sie besteht aus Information und Signal und wird *unverändert* weitergegeben.

Signal: Das ist die physikalische Realisierung (*wie* es mitgeteilt wird).

Daten: Sie werden im Gegensatz zu Nachrichten verändert und weiterverarbeitet.

Informationsparameter einer physikalischen Größe bzw. eines Signalträgers bilden den Werteverlauf einer zu signalisierenden Größe ab. Das können nach **Bild 1-12** die folgenden sein:

- Phasendifferenz periodischer Vorgänge
- Impulsbreite
- Impulshöhe
- Amplitude

1.3 Aufgaben und nutzbare Effekte

In den 1930er Jahren begann man erstmals Fotozellen für das Sortieren von Reiskörnern, Bohnen und Zigarren nach ihrer Farbe einzusetzen. Dann folgte die Kontrolle von Konservendosen auf richtige Etikettierung. Bei einer amerikanischen Firma konnte man schon bald 14 Arbeitskräfte einsparen, nachdem man bei der Kontrolle von Nockenwellen Fotozellen eingesetzt hatte. Was bei James Watt galt, das gilt auch heute noch: Niemand kann etwas zielgerecht steuern oder regeln, was er nicht vorher gemessen hat.

Es gibt etwa 5000 physikalische und chemische Effekte in der unbelebten Natur, die man als Wirkprinzip für Sensoren einsetzen kann. Davon werden heute in der Praxis etwa 150 für Sensoren ausgenutzt.

Wie kann nun eine zu messende Größe aufgenommen werden?

- Über einen direkten mechanischen Kontakt oder über ein mechanisches Koppelsystem (taktiler Sensor),
- über ein auf Nahwirkung (Annäherung) beruhendem Arbeitsprinzip (approximativer Sensor) oder
- über ein abbildendes System, bei dem die Entfernung zum Messobjekt keine direkte Bedeutung für die sensorische Auswertung besitzt (Kamera mit Bildverarbeitungssystem).

Welche Größen müssen in der alltäglichen Produktionspraxis erfasst bzw. gemessen werden und welche Effekte lassen sich dafür ausnutzen?

Erfassung mechanischer Größen

- Induktionsgesetz
- piezoelektrischer Effekt und reziproker piezoelektrischer Effekt
- Abhängigkeit des elektrischen Widerstandes von geometrischen Größen
- Änderung des spezifischen Widerstandes unter mechanischer Spannung
- Kopplung zweier Spulen über einen Eisenkern
- Abhängigkeit der Induktivität einer Spule vom magnetischen Widerstand/Wirbelströmen
- Abhängigkeit der Kapazität eines Kondensators von geometrischen Größen
- Änderung der relativen Permeabilitätszahl unter mechanischer Spannung
- Abhängigkeit der Eigenfrequenz einer Saite oder eines Stabes von mechanischen Spannungen
- Wirkdruckverfahren
- Erhaltung des Impulses (Coriolis-Durchflussmesser)
- Wirbelbildung hinter einem Störkörper
- Durchflussmessung über die Erfassung des Wärmetransportes
- Abhängigkeit der Schallgeschwindigkeit von der Geschwindigkeit des Mediums

Erfassung thermischer Größen

- thermoelektrischer Effekt
- pyroelektrischer Effekt
- Abhängigkeit des elektrischen Widerstandes von der Temperatur
- Abhängigkeit der Eigenleitfähigkeit von Halbleitern von der Temperatur

- Ferroelektrizität (dem Ferromagnetismus analoges Verhalten einiger weniger Stoffe auf Grund bestimmter elektrischer Eigenschaften)
- Abhängigkeit der Quarz-Resonanzfrequenz von der Temperatur

Erfassung von Strahlungen

- äußerer Fotoeffekt
- innerer lichtelektrischer Effekt, Sperrschicht-Fotoeffekt
- Fotoeffekt, Compton-Effekt (Stoß zwischen Photon und einem freien Elektron) und Paarbildung
- Anregung zur Lumineszenz, radioaktive Strahlungen

Erfassung chemischer Größen

- Bildung elektrochemischer Potentiale an Grenzschichten
- Änderung der Austrittsarbeit an Phasengrenzen
- Temperaturabhängigkeit des Paramagnetismus von Sauerstoff
- Gasanalyse über die Bestimmung der Wärmeleitfähigkeit oder Wärmetönung
- Wasserstoff-Ionenleitfähigkeit von Festkörper-Elektrolyten
- Prinzip des Flammen-Ionisationsdetektors
- Hygroskopische Eigenschaften des Lithium-Chlorids
- Abhängigkeit der Kapazität vom Dielektrikum

Sensoren werden in den unterschiedlichsten Bereichen und Branchen eingesetzt. So müssen z. B. die in der Medizintechnik eingesetzten Sensoren anderen Forderungen und Randbedingungen genügen als die in der Fertigungstechnik benutzten. Welche Aufgaben sind nun in der Fertigungstechnik relevant?

Feststellen der Anwesenheit von Objekten

- Vorhandensein einzelner Objekte, z. B. einer Unterlegscheibe
- Vollständigkeitskontrolle aller Bauteile z. B. einer Montagebaugruppe
- Detektieren von strömenden Flüssigkeiten, Gasen bzw. Mengen
- Zählen von Objekten

Feststellung der Identität von Objekten

- Erkennung nicht erlaubter (falscher, fehlerhafter, verdorbener) Teile im Prozess
- Klassifizierung erlaubter Objekte, z. B. nach Toleranzklassen oder Sorten
- Optische Zeichenprüfung und -erkennung, z. B. Klarschrift, Balkencodes, Matrixcodes

Erfassung von Position und/oder Orientierung von Objekten

- Erkennung einzelner Objekte relativ zur Umgebung, z. B. zu greifende Teile auf einem Förderband, Position von Maschinenschlitten, Flächen- und Volumenschwerpunktbestimmung
- Relativlage-Erkennung von Objekten zu Werkzeugen, z. B. Schweißfuge zum Brenner
- Lageerkennung von Objekten zu einem begrenzten Untergrund, z. B. bei der Zuschnittoptimierung (nesting), Template-Matching-Verfahren, Drehlageerkennung
- Vermessung (Form- und Maßprüfung) von Objekten bezüglich Längen und Winkeln,
 z. B. zur Toleranzkontrolle, Verschiebung, Auslenkung, Verformung, Spiel, Schlag, Verkippung, Exzentrizität, Dicke

Erfassen der Formeigenschaften von Objekten

- Prüfen von Konturverläufen, z. B. auf Richtigkeit von Gewinde (Steigung, Profil)
- Pr

 üfen von Objektregionen, z. B. auf Vorhandensein von Kanten
- Untersuchung auf Vollzähligkeit von Formdetails, z. B. voll ausgespritztes Kunststoffteil (Sonderfall der Objekterkennung)
- Messung von Deformationen zum Zweck der Kraft- und Momentenbestimmung

Aufnehmen von Oberflächenmerkmalen auf Objekten

- Prüfen der Mikrogeometrie von Objekten, z. B. auf Rauheit, Welligkeit, Struktur
- Prüfen auf Homogenität der Mikrogeometrien von Objekten, z. B. auf Texturen, Beschädigungen oder Farbfehler, Topologie

Prüfen der Stoffeigenschaften von Objekten

- Beurteilung der Transparenz von Objekten oder auch des Glanzgrades
- Unterscheidung von Werkstoffarten, z. B. bei der Sortierung von Kunststoff-Recycling-Objekten auf Homogenität von Stoffen
- Bestimmung von Konzentrationen und stofflichen Zusammensetzungen

Eine große Rolle spielen heute Sensoren in der Robotertechnik. Eine Einteilung der dort verwendeten Sensoren geht aus **Bild 1-13** hervor.

Prinzip	ip taktil ele			elektr	isch	optisch/visuell			akustisch					
Sensortyp	mechanischer Taster	Dehnungsmessstreifen	Piezo-Kraftmessdose	druckempfindliche Kunststoffstrukturen	induktive Näherungs- schalter	kapazitive Näherungs- schalter	Lichtschranke	Reflexionslichttaster	Laserscanner	Mikrowellensensor	Videosysteme	Ultraschallschranke	Ultraschallarray	Sonar
digital														
analog														

Bild 1-13 Einteilung der Sensoren für die Industrierobotertechnik

Besonders wichtig sind die taktilen (tastenden) Sensoren. Der physiologische Tastsinn beim Menschen leistet allerdings mehr. Der Spürsinn der Haut besitzt die Fähigkeit, Strukturen zu erkennen, die mit der Hautoberfläche in Berührung kommen. Die Druckempfindlichkeit spricht auf Kräfte und Drehmomente an. Einiges davon sollen die taktilen Sensoren (tactile sensors) ebenfalls leisten. Sie vermögen Folgendes zu erfassen (Bild 1-14):

- Anwesenheit von Objekten und deren Vollständigkeit
- Form, Position und Orientierung eines Werkstücks
- Druck an der Berührungsfläche und Druckverteilung
- Größe, Ort und Richtung einer Kraft
- Größe, Ebene und Wirkungssinn eines Drehmoments

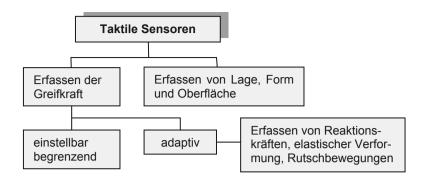


Bild 1-14 Einteilung der taktilen Sensoren

Der Umfang der Sensorisierung richtet sich nach den Erfordernissen und der Art des Prozesses. In **Tabelle 1-4** werden ganz grob einige Anforderungsprofile angegeben. Der auszuwählende Sensor muss nach dem Messprinzip, der Konstruktion und dem Störungsübertragungsverhalten möglichst gut zu einer bestimmten Klasse von Einsatzfällen passen.

Tabelle 1-4 Typische Regelgrößen, die durch die Technologie der Anwendung vorgegeben sind. (Sechs Punkte = sehr wichtig)

Regelgröße und An- wendungen	Position	Orientie- rung	Geschwin- digkeit	Kraft
Beschickung	*****			**
Sortieren	*****		***	
Palettieren	*****	***	***	
ortsfeste Montage	*****			***
Punktschweißen	*****	***		
Nahtschmelzschweißen	***	***	*****	
Brennschneiden	***		*****	
Farbauftrag	***	***	*****	
Bandmontage	****		*****	
Entgraten	***	***	****	*****
Fügen	****			*****
Kommissionieren	*****	***		
Kleben	****	***	*****	

Vor einem besonders schwierigen Problem steht der Roboter (besser sein Computer), wenn er mit einem Sichtsystem ein räumliches Objekt erkennen soll (bin picking problem). Das liegt daran, dass ein Körper aus verschiedenen Blickwinkeln völlig unterschiedliche Ansichten zeigt. Ein zylindrischer Trinkbecher kann eine Rechteck-, Kreis- oder Ovalform abgeben, wobei die Form der ovalen Enden exakt vom Sichtwinkel abhängt. Für den Zugriff des Roboters auf diesen Becher müssen aus den Ansichten Greifposition und Greiferorientierung abgeleitet werden. Moderne Sichtsysteme kommen heute aber damit zurecht, weil sie nicht nur Silhouetten, sondern auch Merkmale in der Fläche in den Erkennungsvorgang mit einbeziehen können.

1.4 Einsatz und Auswahl

Wenn im Rahmen einer Automatisierungsaufgabe Sensoren erforderlich werden, müssen zwei Teilaufgaben gelöst werden, Das sind:

- Welcher Bedarf an welchen sensorischen Funktionen liegt vor?
- Erarbeitung eines Anforderungsbildes je Sensor

Bei der Analyse der Ausgangsbedingungen kommt es auf Folgendes an:

- Welche Unbestimmtheiten treten im Prozess auf?
- Welche Unbestimmtheiten sind nicht tolerierbar und sollen mit dem Sensor beherrschbar werden?
- Welche Umgebungsbedingungen (Staub, Feuchte, Temperatur u. a.) sind zu berücksichtigen?
- Welche Zustandsgrößen sind wichtig und welcher Wertevorrat ist vorhanden?
- Auf welche Art sollen die Informationen übertragen werden?
- Welches physikalische Prinzip ist einsetzbar und verspricht den größten Erfolg?
- Welche Hilfsenergie ist bereitzustellen?

Zuerst spielen die funktionellen Anforderungen die ausschlaggebende Rolle, wie z. B. Auflösung, Linearität und Ansprechzeit. Bei Distanzmessungen kann man sich an den folgenden Parametern (**Tabelle 1-5**) orientieren [1-2].

 Tabelle 1-5
 Physikalische Parameter für Distanzmessungen

Sensorparameter	induktiv	optisch	akustisch
Messdistanz	0 bis 10 mm	15 bis 1000 mm	20 bis 2500 mm
Auflösung	0,1 µm	2 μm	0,3 mm
Wiederholgenauigkeit	1 μm	2 μm	0,5 mm
Linearität	0,4 bis 4 %	0,1 bis 1,2 %	0,5 %
Ansprechzeit	0,35 ms	0,9 ms	50 ms

Bei der Wahl des physikalischen Wirkprinzips sind der Abstand zwischen Sensor und Objekt sowie die Art des Zugriffs zu bewerten, d. h. es muss das Objekt punktuell, linienförmig, flächig oder räumlich erfasst werden. Eine grobe Übersicht bietet dazu das **Bild 1-15**.

Für eine Eignungsbewertung sind die technischen Kenngrößen dem Anforderungsbild gegenüber zu stellen. Das muss außerdem gewichtet geschehen, denn es gibt keinen Sensor, der alle durch die Messaufgabe geforderten Eigenschaften umfassend erfüllt. Folgende Kenngrößen können eine Rolle spielen:

- Ansprechzeiten, Reaktions-, Schaltgeschwindigkeit
- Anschlusssystem (2-, 3-, 4-Leitertechnik, Reihen-, Parallelschaltung u. a.)
- Betriebssicherheit, Ausfallrate, Zuverlässigkeit
- Eigenüberwachungsmöglichkeit
- Einsatztemperaturbereich
- Einstellbarkeit von Arbeitspunkt, Empfindlichkeit und Ansprechschwelle

- Rückwirkungsfreiheit des physikalischen Prinzips
- Schaltabstand, Schaltpunktdrift, Schaltpunkthysterese
- Schutzgrad (degree of protection)
- Spannungsversorgung (Betriebsspannung, Spannungsschwankungen und -spitzen)
- Störungsunterdrückung (Unempfindlichkeit gegenüber äußeren Störgrößen wie Schwingungen, Stoß, Fremdlicht u. a.)
- Technische Verfügbarkeit und Temperaturfestigkeit
- Überlastungsschutz (Kurzschlussschutz, Verpolungssicherheit, Überlastfestigkeit)
- Wirtschaftlichkeit (Aufwand/Nutzen, einschließlich der Anschaltkosten)
- Auflösung, Messgenauigkeit
- Korrosionsresistenz, Lebensdauer, Nutzungsdauer
- Leistungsgrenzen, Betriebsbereich
- Objekteigenschaften (Material, Remissionsgrad, Oberflächenmuster u. a.)
- Realisierungsaufbau (Abmessungen, Masse, Montagebedingungen, Anpassung an den Erfassungsort)
- Redundanz der Auswerteeinheit
- Reproduzierbarkeit des Schaltverhaltens
- Zulassung für Spezialanwendungen (Reinraum, Explosions-, Personenschutz u. a.)

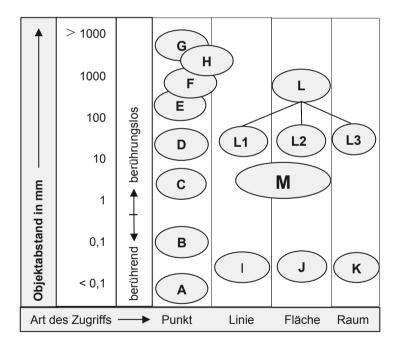


Bild 1-15 Gliederung sensorischer Prinzipe nach der Art des Zugriffs

A elektronischer Endschalter, B taktile Sensoren (Kraft, Druck, Masse), C Abstandssensoren (induktiv, kapazitiv), D Reflexlichttaster, E Triangulationssensor, F Lichtschranke, G Lichtimpuls-Laufzeitverfahren, H akustischer Abstandssensor, I tastende Sensor-Arrays, J Sensorarrays als Druck-/Kraftmatrix, K Mehrkomponenten-Kraftaufnehmer, L visuelle Systeme, L1 CCD-Linie, L2 CCD-Zeilenkamera, L3 Mehr-Kamerasysteme oder zweidimensionale Systeme mit Abstandssensoren, auch Stereosichtsysteme, M Sensorarray aus Sensoren mit punktförmigem Zugriff (optisch, akustisch)

Für den Sensoreinsatz gibt es außerdem viele spezifische Empfehlungen. So sollte man, wenn man die Wahl hat, bei optischer Erfassung Einweg-Lichtschranken einsetzen. Sie gewährleisten bei größtmöglicher Reichweite sicheres Schalten. Als nächste Möglichkeit ist an eine Reflexlichtschranke zu denken. Sie besitzt bei etwa halber Reichweite ebenfalls einen sicheren Schaltpunkt für die meisten Materialien. Bei hochglänzenden Objekten können Lichtschranken versagen. Zur Erhöhung der Störsicherheit werden dann Geräte eingesetzt, bei denen das Licht polarisiert wird. Da bei Lichtschranken der Empfänger das Licht sieht, wenn kein Werkstück vorhanden ist, und das Signal abfällt, wenn ein Werkstück erfasst wird, überprüft sich dieser Sensor selbst. Das Signal fällt auch ab, wenn der Sender keinen Lichtstrahl mehr abgibt.

Reflexionslichttaster kommen dort zum Einsatz, wo man Objekte nur von einer Seite aus abfragen kann. Transparente Objekte lassen sich mit diesem Sensor ebenfalls detektieren, mattschwarze Teile ziemlich schlecht. Sehr kleine Objekte kann man mit Lichtleitern optoelektronisch erfassen. Objektkanten verfolgt man bei größeren Entfernungen besser mit Laserstrahl-Reflexionslichtschranken.

Bei kapazitiven Sensoren muss der Bereich der aktiven Zone von Metallen und Stoffen mit hoher Permittivitätszahl frei gehalten werden. Beim Einsatz mehrerer Sensoren, die sich gegenseitig beeinflussen, sind Mindestabstände vorgeschrieben. Staubablagerungen können zu Fehlfunktionen führen. Bei solchen Umgebungsbedingungen setzt man kapazitive Sensoren mit zusätzlicher Kompensationselektrode ein.

Induktive und kapazitive Sensoren sind gegenüber intensiver Röntgenstrahlung und starken Magnetfeldern nicht immun. Letztere treten z.B. an Arbeitsplätzen für das Widerstandsschweißen auf. Man wählt dann schweißstromfeste Sensoren aus. Beim Einbau induktiver Sensoren ist die Einbauumgebung zu beachten. Wenn der Sensor bündig zur Oberfläche eines Maschinenbauteils eingebaut werden soll, kann eine Freisparung des umgebenden Werkstoffs notwendig werden. Man sollte übrigens immer Sensoren mit LED-Anzeige verwenden, um den Betriebszustand des Sensors beobachten zu können.

Reed-Kontaktschalter als Signalgeber an Pneumatikzylindern sind zwar um ein Vielfaches der Erdbeschleunigung schockbeständig, sollten aber trotzdem vor Schlägen geschützt werden. In starken magnetischen Feldern kann es auch bei diesen Sensoren zu Fehlschaltungen kommen. Es gibt ebenfalls Mindestabstände zum nächsten Pneumatikzylinder, die man einhalten muss. Anstelle der Reed-Schalter können auch kontaktlose magnetisch-induktiv arbeitende Näherungsschalter eingesetzt werden, die etwas teurer sind, aber störungsunempfindlicher und genauer arbeiten.

Viele Sensoren sind übrigens nicht geeignet, um Elektromagnete von z. B. Pneumatik-Wegeventilen direkt zu schalten. Bei einer nichtelektronischen Steuerung sollte man über Hilfsrelais gehen oder eine geeignete Schutzbeschaltung vorsehen.

Druckschalter können durch innere Reibungswiderstände (Feder) eine Hysterese im Schaltpunkt aufweisen. Bei steigendem Druck, wenn der Einstellpunkt erreicht ist, folgt das elektrische Signal. Bei fallendem Druck schaltet der Sensor nicht am gleichen Punkt. Einschaltpunkt ist nicht gleich Ausschaltpunkt. Dieses Verhalten ist bei der Einstellung eines Druckschalters zu beachten, abhängig davon, ob bei steigendem Druck geschaltet werden muss oder nicht.

Beim Einsatz relativ nahe beieinander montierter Ultraschallsensoren kann ein vom Sensor A verursachtes Echo auch von Sensor B empfangen werden. Das wäre eine Fehlmessung. Durch

Gleichschaltung (Synchronisation) aller Sensoren kann man die gegenseitige Beeinflussung ausschließen. Alle Sensoren senden gleichzeitig. Wenn nun der Weg des Schalls vom Sensor A zum Sensor B größer ist als die maximale Erfassungsdistanz, treten keine Probleme auf. Eine andere Betriebsart wäre der Multiplexbetrieb, bei der die Sensoren nacheinander aktiviert werden und sich ebenfalls nicht gegenseitig stören.

In welchen Schritten werden Sensoren ausgewählt?

- 1 Wahl eines geeigneten physikalischen Wirkprinzips
- 2 Bestimmung des benötigten Messbereiches
- 3 Festlegung der zu erwartenden Messgrößenänderung
- 4 Feinheit der Auflösung des Messsignals
- 5 Bestimmung des kleinsten zu messenden Wertes
- 6 Zulässiger Fehler als Auswirkung des statischen und dynamischen Verhaltens
- 7 Aufwand für Abschirmmaßnahmen (elektromagnetische Verträglichkeit)
- 8 Aufwand für Verstärkung und Auswertung des Messsignals
- 9 Bewertung von Betriebssicherheit, Zuverlässigkeit, Lebensdauer und Wartungsaufwand
- 10 Untersuchung der An- und Einbaubedingungen
- 11 Möglichkeiten zum Anschluss an Feldbussysteme
- 12 Kosten für Beschaffung und Installation

Welche Sensoren werden am häufigsten eingesetzt?

Aus einer wertmäßigen Betrachtung des Weltmarktes ergab sich etwa folgende Rangfolge für die Sensorarten (Quelle: *Intechno Consulting*, 1998):

- Temperatursensoren
- Drucksensoren
- Durchflusssensoren
- Binäre Positionssensoren
- Positionssensoren
- Flüssigkeits-Chemosensoren
- Füllstandssensoren
- Geschwindigkeitssensoren
- Gas-Chemosensoren

Der zivile Weltmarkt für Sensoren wurde 2010 von der AMA (Fachverband für Sensorik e.V.) auf 70 bis 120 Milliarden \$ geschätzt. Er ist damit in 25 Jahren um das 25-fache gestiegen.

Zur weiteren Vertiefung und zum Nachschlagen findet der interessierte Leser in der Literatur [1-4] bis [1-15] umfangreiche Darstellungen zur Sensorik.

2 Sensoren zur Positionserfassung

2.1 Elektromechanische und elektrische Positionserfassung

In der Fertigung müssen maschinelle Werkzeug- und Werkstückbewegungen laufend kontrolliert werden. Dazu ist die Position von Maschinenteilen und Objekten der verschiedensten Art zu erfassen und als Signal bereitzustellen. Oft genügt auch schon eine Kontrolle der Anwesenheit

Taktile Sensoren werden zur Ermittlung von Positionen, Formen, Temperaturen, Kräften, Momenten und Drücken eingesetzt. Zu den taktilen Sensoren gehören auch die mechanischen Positionsschalter (Grenztaster, Endschalter, Mikroschalter, Präzisionsschaltwerke), die an vielen Fertigungseinrichtungen für die Rückmeldung ausgeführter Bewegungen sorgen. Weil sie nur die Aussagen EIN oder AUS liefern, werden sie auch als Binärsensoren bezeichnet. Sie arbeiten zwar recht genau und automatisch, verschleißen jedoch und die Kontakte prellen. Sie können deshalb nicht so rasch schalten, wie berührungslos arbeitende Näherungsschalter. Das Prinzip tastender Schalter wird in **Bild 2-1** gezeigt. Grenztaster enthalten oft zur Erhöhung der Funktionssicherheit zwei Kontakte (Doppelkontakt) je Schaltstelle.

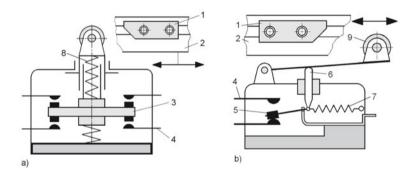


Bild 2-1 Elektromechanische Grenztaster

a) Taster, b) Sprungschalter. 1 Schaltnocken, 2 Maschinenteil, 3 Kontaktzunge, 4 Kontakt, 5 bewegliches Schaltstück, 6 Stößel, 7 Zugfeder, 8 Druckfeder, 9 Tastrolle

Die Bewegung des Tastorgans wird auf Kontakte übertragen, die einen Stromkreis öffnen oder schließen. Um einen exakten Schaltvorgang zu gewährleisten, sind bei vielen Schaltern dieser Art Feder-Sprungmechanismen eingebaut, die ein schlagartiges Umschalten gewährleisten (Bild 2-1b). Außerdem gibt es für die Bewegungsübertragung vom Maschinenteil zum Schalter verschiedene Betätigungsvorsätze. Neben einer Rolle sind das Rollenhebel, Kipprollenhebel mit Leerrücklauf, Federstabansätze, Zugösen u. a. Die Reproduzierbarkeit des Schaltpunktes liegt selbst bei Low-cost-Sensoren bei ± 0,01 mm und ist damit ausgezeichnet. Präzisionsschalter können noch um eine Zehnerpotenz genauer sein. Mechanischer Verschleiß und Kontaktabbrand begrenzen aber die Lebensdauer von Mikroschaltern auf 10 Millionen Schaltspiele. Elektromagnetische Felder beeinträchtigen die Funktion nicht. Außerdem sind sie recht