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Introduction

The present volume arises from the intensive research period “Configura-
tion spaces: Geometry, Combinatorics and Topology” which took place
at the Centro di Ricerca Matematica Ennio De Giorgi, Pisa, in May-June
2010.

The program was very intense and included two conferences, nine
minicourses and two weekly seminars one of which organized by Filippo
Callegaro and run by the younger participants.

The period covered a large number of different topics all centering
around the notion of configuration spaces. These included among others:

1. Study of local systems on the complements of a hyperplane arrange-
ments. Characteristic and resonance varieties. Cohomology and mon-
odromy computations. Study of the fundamental group of comple-
ments of arrangements. Hodge theoretical aspects.

2. Qualitative and quantitative problems related to the study of partition
functions. Relations with the theory of Box Splines and applications
to index theory. Enumeration of lattice points in rational polytopes.
Relations with toric geometry.

3. Invariants of braids and knots. Topological quantum field theory. Ap-
plications to low dimensional topology. Construction of representa-
tions of braid groups and related groups.

4. Applications of the theory of hyperplane arrangements and toric ar-
rangements to the study of the combinatorics of matroids and gener-
alizations.

5. Homotopy theory aspects of the study of configuration spaces and
moduli spaces. Relations between cohomology of braid and mapping
class groups.

6. Combinatorial aspects of the theory of Coxeter and Artin groups. Co-
homological computations for both abelian and non abelian local sys-
tems.
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7. Toric geometry. Moment angle complexes and applications. Geome-
try and topology of real and complex toric varieties.

Many of these topics were covered by the minicourses whose list we
include here:

Fred Cohen: Moment-angle complexes, their stable structure and co-
homology.
Eduard Looijenga: Aspects of the KZ system.

Stefan Papadima, Alex Suciu: Cohomology jumping loci and ho-
mological finiteness properties.

Claudio Procesi: Splines and partition functions
Dev Sinha: Hopf rings in topology and algebra.

Alexander Varchenko: The quantum integrable model of an arrange-
ment of hyperplanes.

Michele Vergne: Remarks on Box splines.

Sergey Yuzvinsky: A short introduction to arrangements of hyper-
planes

Sergey Yuzvinsky: Resonance varieties for arrangements and their
relations to combinatorics and algebraic geometry

We feel that the papers appearing in this volume very well represent the
spirit and the topics of the research period.
We very warmly thank both the authors of these papers and the other
participants who very much contributed to the success of this activity.
Finally we wish to thank the staff of Centro di Ricerca Ennio De Giorgi
and of the Scientific Section of Edizioni della Scuola Normale for a very
efficient job both in running our period and in editing the present volume.

Pisa, July 2012

A. Bjorner, F. Cohen, C. De Concini,
C. Procesi and M. Salvetti



On the structure of spaces of commuting
elements in compact Lie groups

Alejandro Adem* and José Manuel Gémez

Abstract. In this note we study topological invariants of the spaces of homo-
morphisms Hom(sr, G), where 7 is a finitely generated abelian group and G is
a compact Lie group arising as an arbitrary finite product of the classical groups
SU(r), U(q) and Sp(k).

1 Introduction

Let P denote the class of compact Lie groups arising as arbitrary finite
products of the classical groups SU(r), U(g) and Sp(k). In this article
we use methods from algebraic topology to study the spaces of homomor-
phisms Hom(rr, G) where 7 denotes a finitely generated abelian group
and G € P. Our main interest is the computation of invariants associated
to these spaces such as their cohomology and stable homotopy type, as
well as their equivariant K -theory with respect to the natural conjugation
action. The natural quotient space under this action is the space of repre-
sentations Rep(swr, G), which can be identified with the moduli space of
isomorphism classes of flat connections on principal G—bundles over M,
where M is a compact connected manifold with ;(M) = m. Thus our
results provide insight into these geometric invariants in the important
case when 11 (M) is a finitely generated abelian group.

Our starting point is the observation (see [3]) that when G € P and &
is a finitely generated abelian group, the conjugation action of G on the
space of homomorphisms Hom(rr, G) satisfies the following property:
for every element x € Hom(zr, G) the isotropy subgroup G, is connected
and of maximal rank. This property plays a central part in our analysis.
Indeed, let T C G be a maximal torus; in general if a compact Lie group

*Partially supported by NSERC.



G acts on a compact space X with connected maximal rank isotropy sub-
groups then there is an associated action of W on the fixed—point set X7
and many properties of the space X are determined by the action of W on
XT (see [3,8]). For our examples this means that a detailed understand-
ing of the W-action on the subspace Hom(rr, G)? = Hom(rr, T) can be
used to describe key homotopy—theoretic invariants for the original space
of homomorphisms.

This approach can be used for example to obtain an explicit description
of the number of path—connected components in Hom(x, G). Indeed we
show that if 7 = 7Z" @& A, where A is a finite abelian group, then the
number of path—connected components in Hom(z, G) equals the number
of distinct orbits for the action of W on Hom(A, T)

In [1] a stable splitting for the spaces of commuting n-tuples in G,
Hom(Z", G), was derived for any Lie group G that is a closed subgroup
of GL,(C). Here we show that this splitting can be generalized to the
spaces of homomorphisms Hom(r, G) when G € P and 7 is any finitely
generated abelian group. This is done by constructing a stable splitting
on Hom(wr, G)T = Hom(r, T) and proving that this splitting lifts to the
space Hom(swr, G). Suppose that 7 = Z/(q1) ® --- ® Z/(q.), where
n > 0and gy, ...,q, are integers. Here we allow some of the g;’s to
be 0 and in that case Z/(0) = Z. Thus Hom(sr, G) can be seen as the
subspace of G" consisting of those commuting n-tuples (xj, .. ., x,) such
that xl-q" =lgforalll <i <n.Forl <r <nletJ,, denote the set of
all sequences of the form m := {1 <m; < --- < m, < n}. Given such
a sequence m let Py () 1= Z/(qm,) @ --- ® Z/(gm,) be a quotient of
. Let S1(Pw (), G) be the subspace of Hom(Py(7), G) consisting of
those r-tuples (x,,,, ..., X,) in Hom(Py(7r), G) for which at least one
of the x,,,’s is equal to 1¢.

Theorem 1.1. Suppose that G € P and that & is a finitely generated
abelian group. Then there is a G-equivariant homotopy equivalence

®: ZHom(r,G) » \/ ( \/ Hom(Pm(n),G)/S](Pm(n),G)>.

1<r<n meJy,.

In Section 4 we determine the homotopy type of the stable factors appear-
ing in the previous theorem for certain particular cases. In particular we
determine the stable homotopy type of Hom(rr, SU(2)) for any finitely
generated abelian group.

Suppose now that G is any compact Lie group. The fundamental group
of the spaces of homomorphisms of the form Hom(Z", G) was computed



in [7]. Let 1 € Hom(Z", G) be the trivial representation. If 1 is chosen
as the base point, then by [7, Theorem1.1] there is a natural isomorphism
m1(Hom(Z", G)) = (;(G))". Here we show that the methods applied
in [7] can be used to compute 7;(Hom(swr, G)) for any choice of base
point if we further require that G € P and that 7 is a finitely generated
abelian group. Write 7 in the form & = Z" @ A, with A a finite abelian
group. Then the space of homomorphisms Hom(sr, G) can naturally be
identified as a subspace of the product Hom(Z", G) x Hom(A, G). Given
f € Hom(A, T) let

1;:=1x f € Hom(w, G) C Hom(Z", G) x Hom(A, G).

Every path—connected component in Hom(sr, G) contains some 1, and
thus it suffices to consider the elements of the form 1 ; as base points in
Hom(mr, G). With this in mind we have the following.

Theorem 1.2. Let 1 = Z" @ A, with A a finite abelian group and let
G € P. Suppose f € Hom(A,T) and take 1 as the base point of
Hom(m, G). Then there is a natural isomorphism mi(Hom(w, G)) =
(1 (G )" where Gy = Zg(f) is the subgroup of elements in G com-
muting with f(x) forall x € A.

In Section 6 we study the equivariant K -theory of the spaces of ho-
momorphisms Hom(rr, G) with respect to the conjugation action by G.
When r is a finite group, then Hom(rr, G) is the disjoint union of homo-
geneous spaces of the form G/H where H is a maximal rank subgroup.
Using this it is easy to see that K /;(Hom(rr, G)) is a free module over the
representation ring of rank | Hom(sr, 7')|. This result can be generalized
for finitely generated abelian groups of rank 1 in the following way.

Theorem 1.3. Suppose that G € P is simply connected and of rank r.
Let m = 7. ® A where A is a finite abelian group. Then K (Hom(rw, G))
is a free R(G)-module of rank 2" - | Hom(A, T)]|.

It turns out that K (Hom(m,G)) is not always free as a module
over R(G). In fact, as was pointed out in [3], the R(SU(2))-module
K ;U(Z)(Hom(Zz, SU(2))) is not free. However, K ;‘U(z)(Hom(Zz, SUQ)))®
Q turns out to be free as a module over R(SU (2)) ® Q. The next theorem
shows that a similar result holds for all the spaces of homomorphisms
that we consider here.

Theorem 1.4. Suppose that G € P is of rank r and that 7 is a finitely
generated abelian group written in the form w = 7" @& A, where A is a
finite abelian group. Then KF(Hom(w, G)) ® Q is a free module over
R(G) ® Q of rank 2" - | Hom(A, T)|.



The layout of this article is as follows. In Section 2 some general
properties of the spaces of homomorphisms Hom(w, G) are determined.
In Section 3 we study the cohomology groups with rational coefficients
of these spaces. In Section 4 Theorem 1.1 is proved and some explicit
examples are computed. In Section 5 the fundamental group of the spaces
Hom(zr, G) are computed for any choice of base point. Finally, in Section
6 we study the problem of computing K /;(Hom(z, G)), where G acts by
conjugation on Hom(w, G).

Both authors would like to thank the Centro di Ricerca Matematica
Ennio De Giorgi at the Scuola Normale Superiore in Pisa for inviting
them to participate in the program on Configuration Spaces: Geometry,
Combinatorics and Topology during the spring of 2010.

2 Preliminaries on spaces of commuting elements

Let r be a finitely generated discrete group and G a Lie group. Consider
the set of homomorphisms from 7 to G, Hom(sr, G). This set can be
given a topology as a subspace of a finite product of copies of G in the fol-
lowing way. Fix a set of generators ey, ..., e, of 7 and let F, be the free
group on n-letters. By mapping the generators of F,, onto the different
e;’s we obtain a surjective homomorphism F,, — m. This surjection in-
duces an inclusion of sets Hom(w, G) < Hom(F,, G) = G". This way
Hom(rr, G) can be given the subspace topology. It is easy to see that this
topology is independent of the generators chosen for w. In case 7 hap-
pens to be abelian, then any map F,, — = factors through F,, - Z" — &
yielding an inclusion of spaces Hom(w, G) — Hom(Z", G) — G".
Thus the space of homomorphisms Hom(sr, G) can be seen as a subspace
of the space of commuting n-tuples in G, Hom(Z", G).

In this note we collect some facts about these spaces of homomor-
phisms in the particular case that 7 is a finitely generated abelian group
and G belongs to a suitable family of Lie groups. We are mainly inter-
ested in the following family of Lie groups.

Definition 2.1. Let P denote the collection of all compact Lie groups
arising as finite cartesian products of the groups SU (r), U (¢) and Sp(k).

Whenever G belongs to the family P the space of homomorphisms
Hom(rr, G) satisfies the following crucial condition as we prove below
in Proposition 2.3.

Definition 2.2. Let X be a G-space. The action of G on X is said to
have connected maximal rank isotropy subgroups if for every x € X, the
isotropy group G, is a connected subgroup of maximal rank; that is, for
every x € X we can find a maximal torus 7, in G such that 7, C G,.



Proposition 2.3. Suppose that  is a finitely generated abelian group
and G € P. Then the conjugation action of G on Hom(r, G) has con-
nected maximal rank isotropy subgroups.

Proof. Choose generators ey, ..., e, of w. As pointed out above we can
use these generators to obtain an inclusion of G-spaces Hom(w, G) —
Hom(Z", G). Given this inclusion it suffices to show that the conjugation
action of G on Hom(Z", G) has connected maximal rank isotropy groups.
In [3, Example 2.4] it was proven that the action of G on Hom(Z", G) has
connected maximal rank isotropy subgroups if and only if Hom(Z"*!, G)
is path—connected. The proposition follows by noting that Hom(Z*, G)
is path—connected for all £ > 0 whenever G € P. O

Suppose that a compact Lie group G acts on a space X with connected
maximal rank isotropy subgroups. Choose a maximal torus 7" in G and
let W be the Weyl group. By passing to the level of 7T-fixed points, the
action of G on X induces an action of the Weyl group W on X”. Many
properties of the action of G on X are determined by the action of W on
XT as explained in [8] and in some situations the former is completely
determined by the latter up to isomorphism. For example, we can use this
approach to produce G-CW complex structures on the spaces of homo-
morphisms as is proved next.

Corollary 2.4. Suppose that v is a finitely generated abelian group and
G € P. Then Hom(z, G) with the conjugation action has the structure
of a G-CW complex.

Proof. Since m is a finitely generated abelian group it can be written
in the form 7 = Z" @ A, where A is a finite abelian group. Let
X := Hom(mw, G) with the conjugation action of G. Note that X7 =
Hom(w, G)T = T" x Hom(A, T). Since Hom(A, T) is a discrete set,
it follows that X7 has the structure of a smooth manifold on which W
acts smoothly. In particular, by [9, Theorem 1] it follows that X7 has
the structure of a W-CW complex. Since the conjugation action of G on
X has connected maximal rank isotropy subgroups then by [3, Theorem
2.2] it follows that this W-CW complex structure on X7 induces a G-CW
complex on X. O

This approach can also be used to determine explicitly the structure of
these spaces of homomorphisms whenever 7 is a finite abelian group.

Proposition 2.5. Suppose that 7 is a finite abelian group and G € P.
Then there is a G-equivariant homeomorphism

® : Hom(w, G) — || ¢y
[fleHom(x,T)/ W



Here [ f] runs through a system of representatives of the W-orbits in
Hom(mw, T') and each Gy is a maximal rank subgroup with W(G ) =
Wi,

Proof. Consider the G-space X:=Hom(z,G). Note that X T—Hom(m,T)
is a discrete set endowed with an action of W. By decomposing X7 into
the different W-orbits we obtain a W-equivariant homeomorphism

L] wiw,.

[fleHom(w,T)/ W

XT
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Here [ f] runs through a set of representatives for the action of W on
Hom(mw, T'). For each f € Hom(m, T) let G denote the subgroup of
elements in G commuting with f(x) for all x € w. This group is a
maximal rank subgroup in G as T C G . Moreover, by [8, Theorem 1.1]
it follows that W(G y) = Wy. Also note that if we let G act on the left on
the homogeneous space G/ G s then (G/Gf)T = W/W;. Let

Y = || ¢/a,.
[fleHom(xw,T)/ W

The left action of G on Y has maximal rank isotropy and there is a W-
equivariant homeomorphism ¢ : X7 — YT. By [8, Theorem 2.1] there
is a unique G-equivariant extension ® : X — Y of ¢ and this map is in
fact a homeomorphism. O

3 Rational cohomology and path—connected components

In this section we explore the set of path connected components and the
rational cohomology groups of the spaces of homomorphisms Hom(z,G).

Suppose that G is a compact connected Lie group and let 7 be a max-
imal torus in G. Assume that G acts on a space X of the homotopy type
of a G-CW complex with maximal rank isotropy subgroups. Consider
the continuous map

$p:GxXT > X
(g, x) — gx.

Since G acts on X with maximal rank isotropy subgroups for every x € X
we can find a maximal torus 7, in G such that 7, C G,. As every pair of
maximal tori in G are conjugate it follows that for every x € X we can
find some g € G such that gx € XT. This shows that ¢ is a surjective
map. The normalizer of T in G, Ng(T) acts on the right on G x X7 by



(g, x)-n = (gn,n"'x) and the map ¢ is invariant under this action. Thus
¢ descends to a surjective map

QDZGXNG(T)XTZG/T xWXT—>X
(g, x] — gx

The map ¢ is not injective in general. Indeed, as was proven in [4], given
x € X there is a homeomorphism ¢~ '(x) = GS/NGQ (T), where Gg
denotes the path—connected component of G, containing the identity el-
ement. Let [F be a field with characteristic relatively prime to |W|. Then
as observed in [4] the space G°/N, 60 (T) has F-acyclic cohomology. The
Vietoris-Begle theorem shows that ¢ induces an isomorphism in coho-
mology with F-coefficients. As a consequence we obtain the following
proposition (first proved in [4]).

Proposition 3.1. Suppose that G is a compact connected Lie group act-
ing on a spaces X with maximal rank isotropy subgroups. If I is a field
with characteristic relatively prime to |W | then

H*(X;F) = H*(G/T xw XT;F) = H*(G/T x XT; F)V.

Remark 3.2. Suppose that G acts on X with connected maximal rank
isotropy groups. As pointed out above the map ¢ is not injective in gen-
eral since ¢ ' (x) = GY/Ngo(T) for x € X. Under the given hypothesis
we have Gg = G,. By [8, Theorem 1.1] the assignment (H) — (WH)
defines a one to one correspondence between the set of conjugacy classes
of isotropy subgroups of the action of G on X and the set of conjugacy
classes of isotropy subgroups of the action of W on X”. Thus the differ-
ent isotropy subgroups of the action of W on X” determine how far the
map ¢ is from being injective. In particular, if W acts freely on X7 then
@ is a continuous bijection and thus a homeomorphism if for example X7
is compact.

Suppose now that G € P and let = be a finitely generated abelian
group. By Proposition 2.3 the conjugation action of G on Hom(rr, G) has
connected maximal rank isotropy subgroups. In this case Hom(r, G)T =
Hom(r, T). As a consequence of the previous result the following is
obtained.

Corollary 3.3. Suppose that G € P and let w be a finitely generated
abelian group. Then there is an isomorphism H*(Hom(w, G); Q) =
H*(G/T x Hom(m, T); QY.

As an application of Corollary 3.3 the following can be derived.



Corollary 3.4. Suppose that G € P and let w be a finitely generated
abelian group written in the form m = 7" ® A. Then the number of
path—connected components in Hom(mw, G) equals the number of differ-
ent orbits of the action of W on Hom(A, T')

4 Stable splittings

In this section we show that the fat wedge filtration on a finite product
of copies of G induces a natural filtration on the spaces of homomor-
phisms Hom(rr, G). It turns out that this filtration splits stably after one
suspension whenever 7 is a finitely generated abelian group and G € P.

Suppose that 77 is a finitely generated abelian group. Using the funda-
mental theorem of finitely generated abelian groups 7 can be written in
the form

T=Z/(q\) ® - DL/(qn),

where n > 0 and ¢y, ..., g, are integers. Here we allow some of the ¢;’s
to be 0 and in that case Z/(0) = Z. This way we can see Hom(rwr, G) as
the subspace of G” consisting of those commuting n-tuples (xi, ..., x,)
such that x!" = 15 for all 1 < i < n. The fat wedge filtration on G"
induces a natural filtration on the space of homomorphisms Hom(w, G).
To be more precise, foreach 1 < j < n let

Sj(m,G) ={(x1,...,x,) € Hom(w,G) C G" | x; = ¢

for at least j of the x;’s}.
This way we obtain a filtration of Hom(r, G)

(g, ..y 16)} = Su(, G) C Sp—1(w, G) C --- C So(m, G)

= Hom(z, G). @D

Note that each S;(mr, G) is invariant under the conjugation action of G.
In particular each S; (7, G) can be seen as a G-space that has connected
maximal rank isotropy subgroups. On the level of the 7'-fixed points the
filtration (4.1) induces a filtration of Hom(rr, G)”

(g, 1)} = Su(m, G) C Syt (m, G C -+ C So(mr, G)'
; (4.2)
= Hom(m, G)".

For each 1 < i < n consider Hom(Z/q;, T) = {t € T | t% = 1}.
Note that each Hom(Z/q;, T') is a space endowed with the action of W.
Whenever ¢; = 0 we have Hom(Z/q;, T) = T and if q; # 0O then
Hom(Z/q;, T) is a discrete set. Since T is abelian it follows that

Hom(w, G)! = Hom(w, T) = Hom(Z/q:,T) x --- x Hom(Z/q,, T).



Moreover, the filtration (4.2) is precisely the fat wedge filtration of
Hom(, G)T where we identify Hom(z, G)T with the above product. It
is well known that the fat wedge filtration on a product of spaces splits
stably after one suspension. More precisely, foreach0 < j <n — 1 we
can find a continuous map

ri 28, G — £, G)T

in such a way that there is a homotopy /; between r; o X(i;) and
1E(Sj+](7[,G)T)‘ Here

ij: S, G — S, G)

denotes the inclusion map. Moreover, both the map r; and the homo-
topy h; can be arranged in such a way that they are W-equivariant. The
W-action that we have in sight is the diagonal action of W on the prod-
uct Hom(Z/q,, T) x --- x Hom(Z/q,, T). Consider the action of G
on X Hom(m, G) with G acting trivially on the suspension compo-
nent. This action has connected maximal rank isotropy subgroups and
(X Hom(wr, G))! = £ Hom(x, T). By [8, Theorem 2.1] we can find a
unique G-equivariant extension

R;:S;(1,G) - 2S,1(7, G)

of r; and a unique G-equivariant homotopy H; between R; o X (I;) and
Ls(s;41(0.6) extending & ;. Here I; : S;(w, G) — S;(7, G) as before
denotes the inclusion map.

Let J, , denote the set of all sequences of the form m := {1 < m; <

- <m, < n}. Note that J,, , contains precisely () elements. Given such
a sequence m, there is an associated abelian group P () := Z/(qm,) ®
--- @ Z/(gm,) obtained as a quotient of w and also a G-equivariant pro-
jection map

Py : Hom(r, G) — Hom(Puy(7), G)
(X1, s Xp) = Xy s ooy X, ).
The above can be used to prove the following theorem.

Theorem 4.1. Suppose that G € P and that 7 is a finitely generated
abelian group. Then there is a G-equivariant homotopy equivalence

® : ¥ Hom(w, G) — \/ ) ( \/ Hom(Pm(rr),G)/Sl(Pm(n),G)>.

1<r<n meJ,,,



