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Preface 

This book is about those little numbers that we just cannot escape. Try to 
remember the last day you didn’t hear at least something about probabilities, 
chance, odds, randomness, risk, or uncertainty. I bet it’s been a while. In 
this book, I will tell you about the mathematics of such things and how it 
can be used to better understand the world around you. It is not a textbook 
though. It does not have little colored boxes with definition or theorems, nor 
does it contain sections with exercises for you to solve. My main purpose is 
to entertain you, but it is inevitable that you will also learn a thing or two. 
There are even a few exercises for you, but they are so subtly presented that 
you might not even notice until you have actually solved them. 

The spousal thanks is always more than a formality. I thank Ahxpfp~? 
for putting up with irregular work hours and everything else that comes with 
writing a book, but also for help with Greek words and for reminding me 
of some of my old travel stories that you will find in the book. I am deeply 
grateful to Professor Olle Haggstrom at Chalmers University of Technology in 
Goteborg, Sweden. He has read the entire manuscript, and his comments are 
always insightful, accurate, and clinically free from unnecessary politeness. 
If you find something in this book that strikes you as particularly silly, chances 
are that Mr.Haggstrom has already pointed it out to me but that I decided to 
keep it for spite. I have also received helpful comments from John Haigh at the 
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University of Sussex, Steve Quigley at Wiley, and from an anonymous referee. 
Thanks also to Kris Parrish and Susanne Steitz at Wiley, to Sheree Van Vreede 
at Sheree Van Vreede Publications Services for excellent copyediting, and to 
Amy Hendrickson at Texnology Inc. for promptly and patiently answering 
my LaTeX questions. 

A large portion of this book was written during the tumultuous Fall of 
2005. Our move from Houston to New Orleans in early August turned out 
to be a masterpiece of bad timing as Hurricane Katrina hit three weeks later. 
We evacuated to Houston, and when Katrina’s sister Rita approached, we took 
refuge in the deserts of West Texas and New Mexico. Sandstorms are so much 
more pleasant than hurricanes! However, it was also nice to return to New 
Orleans in January 2006; the city is still beautiful, and its chargrilled oysters 
are unsurpassed. I am grateful to many people who housed us and helped us in 
various ways during the Fall and by doing so had direct or indirect impact on 
this book. Special thanks to Kathy Ensor & Co. at the Department of Statistics 
at Rice University in Houston and to Tom English & Co. at the College of the 
Mainland in Texas City for providing me with office space. Finally, thanks 
to Professor Peter Jagers at Chalmers University of Technology, who as my 
Ph.D. thesis advisor once in a distant past wisely guided me through my first 
serious encounters with probabilities, those little numbers that rule our lives. 

PETER OLOFSSON 
www.peterolofsson.com 

New Orleans, 2006 
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Corn pu ti ng Pro ba bi I i t ies: Right Ways 
and Wrong Ways 

THE PROBABILIST 

Whether you like it or not, probabilities rule your life. If you have ever tried 
to make a living as a gambler, you are painfully aware of this, but even those 
of us with more mundane life stories are constantly affected by these little 
numbers. Some examples from daily life where probability calculations are 
involved are the determination of insurance premiums, the introduction of 
new medications on the market, opinion polls, weather forecasts, and DNA 
evidence in courts. Probabilities also rule who you are. Did daddy pass you 
the X or the Y chromosome? Did you inherit grandma’s big nose? And on a 
more profound level, quantum physicists teach us that everything is governed 
by the laws of probability. They toss around terms like the Schriidinger wave 
equation and Heisenberg’s uncertainy principle, which are much too difficult 
for most of us to understand, but one thing they do mean is that the fundamental 
laws of physics can only be stated in terms of probabilities. And the fact that 
Newton’s deterministic laws of physics are still useful can also be attributed 
to results from the theory of probabilities. Meanwhile, in everyday life, many 
of us use probabilities in our language and say things like “I’m 99% certain” 
or “There is a one-in-a-million chance” or, when something unusual happens, 
ask the rhetorical question “What are the odds?” 

Some of us make a living from probabilities, by developing new theory 
and finding new applications, by teaching others how to use them, and occa- 
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2 COMPUTING PROBABILITIES: RIGHT WAYS AND WRONG WAYS 

sionally by writing books about them. We call ourselves probabilists. In the 
universities, you find us in mathematics and statistics departments; there are 
no departments of probability. The terms “mathematician” and “statistician” 
are much more well known than “probabilist,” and we are a little bit of both but 
we don’t always like to admit it. If I introduce myself as a mathematician at 
a cocktail party, people wish they could walk away. If I introduce myself as a 
statistician, they do. If I introduce myself as a probabilist ... well, most actually 
still walk away. They get upset that somebody who sounds like the Swedish 
Chef from the Muppet Show tries to impress them with difficult words. But 
some stay and give me the opportunity to tell them some of the things I will 
now tell you about. 

Let us be etymologists for a while and start with the word itself, probability 
The Latin roots are probare, which means to test, to prove, or to approve, and 
habilis, which means apt, skillful, able. The word “probable” was originally 
used in the sense “worthy of approval,” and its connection to randomness came 
later when it came to mean “likely” or “reasonable.” In my native Swedish, 
the word for probable is “sannolik,” which literally means “truthlike” as does 
the German word “wahrscheinlich.” The word “probability” still has room 
for nuances in the English language, and Merriam-Webster’s online dictionary 
lists four slightly different meanings. To us a probability is a number used to 
describe how likely something is to occur, and probability (without indefinite 
article) is the study of probabilities. 

Probabilities are used in situations that involve randomness. Many clever 
people have thought about and debated what randomness really is, and we 
could get into a long philosophical discussion that could fill the rest of the 
book. Let’s not. The French mathematician Pierre-Simon Laplace (1749- 
1827) put it nicely: “Probability is composed partly of our ignorance, partly 
of our knowledge.” Inspired by Monsieur Laplace, let us agree that you can 
use probabilities whenever you are faced with uncertainty. You could: 

0 Toss a coin, roll a die, spin a roulette wheel 

0 Watch the stock market, the weather, the Super Bowl 

0 Wonder if there is an oil well in your backyard, if there is life on Mars, if 
Elvis is alive 

These examples differ from each other. The first three are cases where the 
outcomes are equally likely. Each individual outcome has a probability that 
is simply one divided by the number of outcomes. The probability is 1/2 



THE PROBABILIST 3 

to toss heads, 1/6 to roll a 6, and I /38 to get the number 29 in roulette (an 
American roulette wheel has the numbers 1-36, 0, and 00). Pure and simple. 
We can also compute probabilities of groups of outcomes. For example, 
what is the probability to get an odd number when rolling a die? As there 
are three odd outcomes out of six total, the answer is 3/6 = 1/2. These 
are examples of classical probability, the first type of probability problems 
studied by mathematicians, most notably, Frenchmen Pierre de Fermat and 
Blaise Pascal whose seventeenth century correspondence with each other is 
usually considered to have started the systematic study of probabilities. You 
will learn more about Fermat and Pascal later in the book. 

The next three examples are cases where we must use data to be able 
to assign probabilities. If it has been observed that under current weather 
conditions it has rained about 20% of the days, we can say that the probability 
of rain today is 20%. This probability may change as more weather data are 
gathered and we can call it a statistical probability. As for the 2006 Super 
Bowl, I placed a bet on the Houston Texans that gave odds of 800 to 1, which 
means that the bookmaker assigned a probability of less than 1/800 that the 
Texans would win. However he came to this conclusion, he must have used 
plenty of data other than that he once spent a summer in Houston and almost 
died of heatstroke. 

The third trio of examples is different from the previous two in the sense 
that the outcome is already fixed; you just don’t know what it is. Either there is 
an oil well or there isn’t. Before you start drilling, you still want to have some 
idea of how likely you are to find oil and a geologist might tell you that the 
probability is about 75%. This percentage does not mean that the oil well is 
there nine months of the year and slides over to your neighbor the other three, 
but it does mean that the geologist thinks that your chances are pretty good. 
Another geologist may tell you the probability is 8596, which is a different 
number but means the same thing. Chances are pretty good. We call these 
subjective probabilities. In the case of a living Elvis, I suppose that depending 
on whom you ask you would get either 0% or 100%. I mean, who would say 
25%? Little Richard? 

Some knowledge about proportions may be helpful when assigning sub- 
jective probabilities. For example, suppose that your Aunt Jane in Pittsburgh 
calls and tells you that her new neighbor seems nice and has a job that “has 
something to do with the stars, astrologer or astronomer.” Without having 
more information, what is the probability that the neighbor is an astronomer? 
As you have virtually no information, would you say 50%? Some people 
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might. But you should really take into account that there are about four times 
as many astrologers as astronomers in the United States, so a probability of 
20% is more realistic. Just because something is “eithedor” does not mean it 
is “50-50.” Andy Rooney may have been more insightful than he intended 
when he stated his 50-50-90 rule: “Anytime you have a 50-50 chance of 
getting something right, there’s a 90% probability you’ll get it wrong.” 

THE PROBABILIST’S TOYS AND LANGUAGE 

Probabilists love to play with coins and dice. In a Platonic sense. We like the 
idea of tossing coins and rolling dice as experiments that have equally likely 
outcomes. Suppose that a family with four children is chosen at random. 
What is the probability that all four are girls? A coin-tossing analogy would 
be to ask for the probability to get four heads when a coin is tossed four times. 
Many probability problems can be illustrated by coin tossing, but this would 
quickly become boring so we introduce variation by also rolling dice, spinning 
roulette wheels, picking balls from urns, or drawing from decks of cards. Dice, 
roulette, and card games are also interesting in their own right, and you will 
find a chapter on gambling later in the book. Of course. Probability without 
gambling is like beer without bubbles. 

Probability is the art of being certain of how uncertain you are. The state- 
ment “the probability to get heads is l/2” is a precise statement. It tells you 
that you are as likely to get heads as you are to get tails. Another way to think 
about probabilities is in terms of average long-term behavior. In this case, if 
you toss the coin repeatedly, in the long run you will get roughly 50% heads 
and 50% tails. Of this you can be certain. What you cannot be certain of is 
how the next toss will come up. 

Probabilists use special terminology. For example, we often refer to a sit- 
uation where there is uncertainty as an “experiment.” This situation could be 
an actual experiment such as tossing a coin or rolling a die, but also some- 
thing completely different such as following the stock market or watching the 
Wimbledon final. An experiment results in an outcome such as “heads,” “6,” 
“Volvo went up,” or “Bjorn Borg won” (those were the days). A group of 
outcomes is called an event. In plain language, an event is something that 
can happen in an experiment. It can be a single outcome (roll 6) or a group 
of outcomes (roll an odd number). The mathematical description of an event 
is that it is a subset of the set of all possible outcomes, and mathematicians 
would describe outcomes as elements of this set. Probabilists use the words 
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Red coin: @ @ @ @ 

Blue coin: @ @ @ @ 

Figure 1.1 The four equally likely outcomes when you toss two coins. 

“outcome” and “event” to emphasize the connection with things that happen 
in reality. In formulas, we denote events by uppercase letters and use the letter 
“P” to denote probability. The mathematical expression P(A) should thus be 
read “the probability of (the event) A.” We may also talk about the probability 
of a statement rather than an event. However, it is mere language; the verbal 
description of an event is of course a statement. 

Sometimes 
there is more than one choice of sample space. For example, suppose that 
you toss two coins and ask for the probability that you get two heads. As 
the number of heads can be 0, 1, or 2, you might be tempted to take these 
three numbers as the sample space and conclude that the probability to get 
two heads is 1/3. However, if you repeated this experiment, you would notice 
after a while that you tend to get two heads less than one third of the tosses. 
The problem is that your sample space consists of three outcomes that are not 
equally likely. Let us distinguish between the two coins by painting one red 
and the other blue. There are then four equally likely outcomes: both show 
heads; the red shows heads and the blue shows tails; the red shows tails and 
the blue shows heads; and both show tails. In a more convenient notation, our 
sample space consists of the four equally likely outcomes HH, HT, TH, and 
TT. One out of four gives two heads, and the correct probability is 1/4. See 
Figure 1.1 for an illustration of the four equally likely outcomes. 

Here is a similar problem. If you roll two dice, what is the probability that 
the sum of the two equals eight? First note that the sum of two dice can be 
any of the numbers 2, 3, ..., 12 but that these are not equally likely. To find 
the equally likely outcomes, we need to distinguish between the two dice, for 

The set of all possible outcomes is called the sample space. 

‘The term ‘Sample space” was coined by mathematician and Austro-Hungarian fi ghter pilot 
Richard von Mises. That is, he coined the German term Merkmuhlruum (label space), which 
appears in his 193 1 book with the impressive German title Wahrscheinlichkeitsrechnung (prob- 
ability calculus). 
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2 

1 0 . 0 0 0 .  

1 2 3 4 5 6  

Figure 1.2 The sample space of 36 equally likely outcomes when you roll two dice. 
The event that the sum equals eight is marked; note that it consists of fi ve outcomes 
because there are two ways to get 2 and 6 as well as 3 and 5 but only one way to get 
4 and 4. 

example, by pretending that they have different colors, red and blue, just like 
we did with the two coins above, and consider 36 possible outcomes. As the 
sum can be eight by adding 2 + 6 , 3  + 5 ,  or 4 + 4, we might first think that there 
are 3 possibilities out of 36 to get sum eight, but we also need to distinguish, 
for example, between the cases “blue die equals 2 and red die equals 6” on 
the one hand and “blue die equals 6 and red die equals 2” on the other. If we 
make this distinction, we realize that there are five ways to get sum eight and 
the probability is 5/36. See Figure 1.2 for an illustration of the sample space 
of 36 equally likely outcomes and the event that the sum equals eight. 

Here is another example of a similar nature. Consider a randomly chosen 
family with three children. What is the probability that they have exactly one 
daughter? There can be 0, 1, 2, or 3 girls, but you know by now that these 
are not equally likely. Instead, distinguish the kids by birth order so that, for 
example, BGB means that the first child is a boy, the second a girl, and the 
third a boy. The eight equally likely outcomes are as follows: 

BBB, BBG, BGB, GBB, BGG, GBG, GGB, GGG 

We’re on easy street now; just note that three of the eight outcomes have one 
girl, and the probability of exactly one girl is therefore 3/8. Now consider a 
randomly chosen girl who has two siblings. What is the probability that she 
has no sisters? This situation looks similar. If she has no sisters, this means 



THE PROBABILIST'S TOYS AND LANGUAGE 7 

that her family has three children, exactly one of whom is a girl and we just 
saw that the probability of this is 3/8. Convinced? You should not be. This 
situation is different because we are not choosing a family with three children; 
we are choosing a girl who belongs to such a family. Thus, the outcome BBB 
is impossible. Is the probability then 3/7? Think about this for a while before 
you read on. 

I hope you answered no. We need a completely new sample space that also 
accounts for the chosen girl. If we denote her by an asterisk, the 12 equally 
likely outcomes are as follows: 

BBG*, BG*B, G*BB, BG*G, BGG*, G*BG 

GBG*, G*GB, GG*B, G*GG, GG*G, GGG" 

and the probability that she has no sisters is 3/12 = 1/4. Note how the 
previous outcomes are now split up according to how many girls they contain. 
The one with three girls, GGG, is split up into three equally likely outcomes 
because either of the three girls may be the chosen one. The probabilities that 
we have computed show that 37S% of three-children families have exactly 
one daughter and 2S% of girls from three-children families have no sisters. 

What is the probability that all three children are of the same gender? 
Consider the following faulty argument: Two children must always be of the 
same gender. Whatever this gender is, the third child is equally likely to be 
of this gender or not, and thus the probability that all three are of the same 
gender is 1/2. This example is a variant of a coin-tossing problem given by 
the British nobleman and amateur scientist Sir Francis Galton (about whom 
you will learn more in chapters to come) in 1894 to illustrate the dangers of 
sloppy thinking. Use our first sample space to discover the error, and argue 
that the correct probability is 1 /4. 

Let us next consider an old gambling problem that goes along the same 
lines. I have three dice and offer you even odds to play the following game: 
The dice are rolled, and their sum is computed. If the sum is nine, you win. 
If it is ten, I win. If it is neither, I roll again. Is this game fair? 

There are six ways in which the sum can be nine: 

1 + 2 + 6 ,  1 + 3 + S ,  1 + 4 + - 4 ,  2 + 2 + S ,  2 + 3 + 4 ,  3 + 3 + 3  

and likewise there are six ways to get sum ten: 
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[ @ * @ ]  I:: 
I a= I I: :I 

Figure 1.3 Three ways to get sum ten from two 3s and a 4 (left), but only one way 
to get sum nine from three 3s (right). 

1 + 3 + 6 ,  1 + 4 + 5 ,  2 + 2 + 6 ,  2 + 3 + 5 ,  2 + 4 + 4 ,  3 + 3 + 4  

It sure looks like the game is fair, but beware, in the long run, I would slowly 
but surely win your money. But why? 

Before you decide to play, you need to first identify the equally likely 
outcomes. And just like in the case of the two dice earlier, it is helpful to 
imagine that the three dice have three different colors, for example, red, green, 
and blue. If we list the dice in this order, the equally likely outcomes are 
( l , l , l ) ,  (1,1,2), (1,2,1), (2,1,1), (2,2,1), and so on until (6,6,6); a moment’s 
thought reveals that there are 6 x 6 x 6 = 216 of them. Let us look at one 
of the ways to get sum nine, 1 t 4 + 4. This sum corresponds to three of the 
equally likely outcomes: (1,4,4), (4,1,4), and (4,4,1). If we instead consider 
1 + 2 + 6, this corresponds to six outcomes: (1,2,6), (1,6,2), (2,1,6), (2,6,1), 
(6,1,2), and (6,2,1). In general, if all three dice show different numbers, this 
can occur in six ways; if two show the same number, this can occur in three 
ways; and if all three are the same, this can only occur in one way. 

Now count above to realize that 27 outcomes give sum ten and only 25 
give sum nine. The tie-breaker is the last outcome: There is only one way to 
combine 3 + 3 + 3 but three ways to combine 3 + 3 + 4; see Figure 1.3 for an 
illustration. Thus, out of the 52 outcomes that give a winner, I win in 27, or 
about 5296, and you win in the remaining 25, or 48%. Not a big difference, 
but it would be enough to make a living (some venture capital needed). 

I mentioned that this problem is an old one. It was in fact solved almost 400 
years ago by the great astronomer and telescope builder Galileo after being 
approached by a group of gambling Florentine noblemen. It is amusing to 
imagine how the world’s most brilliant scientist of his time spent time helping 
people with their gambling problems. Good thing for Einstein that there were 
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no casinos in Atlantic City in the 1930s; his Princeton office might have been 
flooded by gamblers having spent the last of their money on a bus ticket, 
desperate for help from the genius. 

We are often interested in more than one event. For example, suppose that 
people are chosen for an opinion poll and asked about their smoking habits 
and political sympathies. Consider one selected person. Let us denote the 
event that she is a smoker by S and the event that she is a Republican by 
R. We can then make up new events. The event that she is a smoker and a 
Republican is a new event, which we write as “S and R.” The event that she 
is a smoker or a Republican is another new event, written as “S or R.” It is 
important to know that we by “ S  or K” mean “smoker or Republican or both.” 
This definition of “or” is typical in mathematics, logic, and computer science. 
In daily language, it is often emphasized by using the expression “andor’‘ to 
distinguish from what math people call the exclusive or, which only permits 
one of the two, like in the phrase “You want fries or onion rings with that?” 

The event that the selected individual is not a Republican is simply written 
as “not R.” The event that she is neither a Republican nor a smoker can be 
expressed in two different ways. One way is to negate that she is either, which 
gives “not (R or S) .”  The other way is to negate each separately and put them 
together: “(not R)  and (not S).” We have argued for the following equality 
between events: 

not (R or S) = (not R)  and (not S) 

The parentheses are there to make it clear to what “not” refers. In a similar way, 

not (R and S) = (not R) or (not S) 

Make sure that you understand these little exercises in logic; we will make 
use of them later. 

THE PROBABILIST’S RULE BOOK 

Probabilities can be expressed as fractions, as decimal numbers, or as percent- 
ages. If you toss a coin, the probability to get heads is 1/2, which is the same 
as 0.5, which is the same as 50%. There are no rules for when to use which 
notation, and you will see examples of all three in this book. In daily language, 
proper fractions are often used and often expressed, for example, as “one in 
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ten” instead of 1/10 (“one tenth”). This is also natural when you deal with 
equally likely outcomes. Decimal numbers are more common in technical 
and scientific reporting when probabilities are calculated from data. Percent- 
ages are also common in daily language and often with “chance” replacing 
“probability.” Meteorologists, for example, typically say things like “there is 
a 20% chance of rain.” The phrase “the probability of rain is 0.2” means the 
same thing. When we deal with probabilities from a theoretical viewpoint, 
we always think of them as numbers between 0 and 1, not as percentages. 

Regardless of how probabilities are expressed, they must follow certain 
rules. One such rule that is easy to understand is that a probability can never 
be a negative number. The lowest possible probability is 0, meaning that we 
are dealing with something that just does not happen. There is no point in 
trying to emphasize this further by letting the probability be -0.3 or -5.* A 
related rule is that a probability can never be more than 1 (or 100%). If the 
probability is 1 (or loo%), we are describing something that we are absolutely 
certain about. Of course you can still say that you are 200% certain that the 
Texas Rangers will win the World Series, but nobody outside Dallas will take 
you seriously. 

The next rule is that the probability that something does not occur can be 
computed as one minus the probability that it does occur. In a formula, 

P(not A) = 1 - P(A) 

Also easy to accept. The probability not to get 6 when you roll a die is 5 / 6 ,  
which is also equal to 1-1/6. If the chance of rain is 2070, then the chance 
that it does not rain is 80%. In all its simplicity, this rule turns out to be 
surprisingly useful. In fact, in his excellent book Taking Chances: Winning 
with Probability, British probabilist John Haigh names it probability’s Trick 
Number One. 

In the world of gambling, probabilities are often expressed by odds. To say 
that the odds are 4: 1 against the event A means that it is four times as likely that 
A does not occur than that it occurs. We get the equation P(not A) = 4 x P(A), 

’I do not know how familiar you are with negative numbers, but to mathematicians they are as 
natural as air and water. Here is the world’s funniest math joke: A biologist, a physicist, and a 
mathematician are sitting at a sidewalk cafe watching a house across the street. After a while 
two people enter the house. A little later, three people exit. ‘Reproduction,”says the biologist. 
‘Measurement error,” says the physicist. ‘Hmm,” says the mathematician, ‘If a person enters 
the house it will be empty again.” 
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which has the solution P(A) = 1/5 and P(not A) = 4/5. As bookmakers are 
in the business to make a living, offering odds of 4: 1 in reality means that they 
think that the probability of A is less than 1/5. 

Another rule. Let A and B be events such that whenever A occurs, B must 
also occur. Then P(A) is less than (or equal to) P(B), and the mathematical 
notation for this is P(A) 5 P(B). For an example, let A be the event to roll 
a 6 and B the event to roll an even number. Whenever A occurs, B must 
also occur. However, B can occur without A occurring if you roll 2 or 4. In 
particular, the composition of two events is always less probable than each 
individual event. What I mean is that P(A and B) is always less than both 
P(A) and P(B), regardless of what A and B are. 

As an example of the rule from the last paragraph, let us consider Mrs. 
Boudreaux and Mrs. Thibodeaux who are chatting over their fence when the 
new neighbor walks by. He is a man in his sixties with shabby clothes and 
a distinct smell of cheap whiskey. Mrs.B, who has seen him before, tells 
Mrs. T that he is a former Louisiana state senator. Mrs. T finds this very hard 
to believe. “Yes,” says Mrs.B, “he is a former state senator who got into a 
scandal long ago, had to resign, and started drinking.’’ “Oh,” says Mrs. T, “that 
sounds more likely.” “No,” says Mrs. B, “I think you mean less likely.” 

Strictly speaking, Mrs. B is right. Consider the following two statements 
about the shabby man: “He is a former state senator” and “He is a former state 
senator who got into a scandal long ago, had to resign, and started drinlung.” 
It is tempting to think that the second is more likely because it gives a more 
exhaustive explanation of the situation at hand. However, this reason is pre- 
cisely why it is a less likely statement. Note that whenever somebody satisfies 
the second description, he must also satisfy the first but not vice versa. Thus, 
the second statement has a lower probability (from Mrs. T’s subjective point 
of view; Mrs. B of course knows who the man is). This example is a variant of 
examples presented in the book Judgment under Uncertainty by Economics 
Nobel laureate3 Daniel Kahneman and co-authors Paul Slovic and Amos Tver- 
sky. They show empirically how people often make similar mistakes when 
they are asked to choose the most probable among a set of statements. It 
certainly helps to know the rules of probability. A more discomforting aspect 

‘But I want to point out that the Economics prize is not a ‘true”Nobe1 prize in the sense that it 
was not mentioned in Alfred Nobel’s will. ‘The prize was fi rst awarded in 1969, and its offi cia1 
name is ‘The Bank of Sweden Prize in Economic Sciences in Memory of Alfred Nobel.” Just 
so that you know. 
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is that the more you explain something in detail, the more likely you are to be 
wrong. If you want to be credible, be vague. 

The final rule is the addition rule. It says that in order to get the probability 
that either of two events occur, you add the probabilities of the two individual 
events. This rule, however, only applies if the two events in question cannot 
occur at the same time (the technical term for such events is that they are 
mutually exclusive). In a formula: 

P(A or B) = P(A) + P(B) 

For example, roll a die and consider the events A: to get 6 and B: to get an odd 
number. These events qualify as mutually exclusive because you cannot get 
both 6 and an odd number in the same roll. It is “same roll” that is important 
here; of course you can get 6 in one roll and an odd number in the next. By 
the formula above, the probability to get 6 or an odd number in the same roll 
is 116 + 316 = 416. 

In his bestseller Innumeracy, John Allen Paulos tells the story of how he 
once heard a local weatherman claim that there was a 50% chance of rain on 
Saturday and a 50% chance of rain on Sunday and thus a 100% chance of rain 
during the weekend. Clearly absurd, but what is the error? Faulty use of the 
addition rule! As a rainy Saturday does not exclude a rainy Sunday, we here 
have two events that can both occur the same weekend. In cases like this one, 
there is a modified version of the addition rule that says that you first add the 
two probabilities as before and then subtract the probability that both events 
occur. In a formula, it looks as follows: 

P(A or B) = P(A) + P(B) - P(A and B) 

Note that if A and B cannot occur at the same time, then P(A and B) = 0 and 
we have the first addition rule as a special case. If we let A denote the event 
that it rains on Saturday and B the event that it rains on Sunday, the event “A 
and B” describes the case in which it rains both days. To get the probability of 
rain over the weekend, we now add 50% and 50’3, which gives loo%, but we 
must then subtract the probability that it rains both days. Whatever this is, it 
is certainly more than 0 so we end up with something less than loo%, just like 
common sense tells us that we should. I just wonder what the weatherman 
would have said if the chances of rain had been 75% each day. 
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A 

1 2 3 4 5 6  

Figure 1.4 The sample space of 36 equally likely outcomes for rolling two dice. 
The events ‘a on fi rst die”and ‘4 on second die”are marked, and you may note that 
there are 6 outcomes in each event, 11 outcomes that are in at least one event, and 1 
outcome that is in both. 

Let us also check the formula in a dice example. If you roll two dice, what 
is the probability to get at least one 4? Here. the relevant events are A: 4 on 
the first die and B: 4 on the second die. The event to get at least one 4 is then 
the event “A or B,” and in Figure 1.4, you can check directly that this equals 
11/36. Also, P(A) = 6/36, P(B) = 6/36, and P(A and B) = 1/36 because 
there is only one outcome that gives 4 on both dice. As 6 + 6 - 1 = 11, the 
formula is valid. 

Whenever probabilities are assigned, this must be done in a way such that 
none of the rules are violated. Ask a friend how likely he thinks it is that it will 
rain Saturday, Sunday, both days, and at least one of the days, respectively. You 
will then get four probabilities that must satisfy the rules that we have discussed 
above. For example, somebody may think that rain on Saturday is pretty likely, 
say 7096, and the same for Sunday. Rain both days? Well, maybe 50%. For 
the last probability, let’s say 80%. But this assignment of probabilities violates 
the addition rule because 80 is not equal to 70 + 70 - 50 = 90. Somebody 
else might come up with the following probabilities (same order): 7096, 60%, 
80%, and 50%. These do satisfy the addition rule but suffer from another 
problem. Can you tell which? (Hint: Mrs. Boudreaux could.) 

Let us keep thinking about weekend weather. Suppose that both Saturday 
and Sunday each have probability 0.5 to get rain and that the probability is p 
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that it rains both days (we now think of probabilities as numbers between 0 
and 1, not percentages). What is the range of possible values of p? How does 
the probability of rain during the weekend depend on p?  

If we let A and B be the events “rain on Saturday” and “rain on Sun- 
day” respectively, then a rainy weekend is the event “A or B,” and because 
p = P(A and B), we get the equation 

P(A or B) = P(A) + P(B) - P(A and B) = 1 - p 

Aspmustbeless thanbothP(A) andP(B), itcannotbemorethan0.5. IfpisO, 
then P(A or B) = 1 and the rainy weekend is a fact. Asp ranges from 0 to 0.5, 
the probability of a rainy weekend decreases from 1 to 0.5. Why? It has to do 
with how likely rainy Saturdays and Sundays are to come in pairs. Think of a 
year, which has 52 weekends. On average, we expect to get rain 26 Saturdays 
and 26 Sundays. If p is 0, this means that if it rains on a Saturday, it never 
rains on the following Sunday and if it does not rain on Saturday, it always 
rains on Sunday. Thus, the 26 rainy Saturdays and 26 rainy Sundays must be 
spread over the year so that they never come in pairs. The only way to do this 
is to let every weekend have exactly one rainy day. As p gets bigger, rainy 
days are more likely to come in pairs, and the extreme case is when p = 0.5. 
Then all rainy days come in pairs and the year has half of its weekends rainy 
and the other half dry. 

Here is an exercise for you. Change the probabilities a little, and let P(A) = 

0.6 and P(B) = 0.7, and let p again denote P(A and B). Explain why p must 
be between 0.3 and 0.6. 

INDEPENDENCE, AIRPLANES, AND RUSSIAN PEASANTS 

Plenty of random things happen in the world all the time, most of which have 
nothing to do with one another. If you toss a coin and I roll a die, the proba- 
bility that you get heads is 1/2 regardless of the outcome of my die. If there 
is a 20% chance of rain tomorrow, this does not change if a flu outbreak in 
Asia is reported. Changes in the U.S. stock market indexes have nothing to 
do with who wins the Wimbledon tennis tournament. Events that in this way 
are unrelated to each other are called independent. It is easy to compute the 
probability that two independent events both occur; simply multiply the prob- 
abilities of the two events. We call this computation the multiplication rule 
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for probabilities, described in a formula as 

P(A and B) = P(A) x P(B) 

It works in two directions. If we can argue that two events are independent, 
then we can use the multiplication rule to compute the probability that both 
occur at the same time. Conversely, if we can show that the multiplication 
rule holds, then we can conclude that the events are independent. It can be 
argued at some length why this is true and we will just look at some simple 
examples to convince ourselves that formula and intuition agree. Let us do 
the first example above, that you toss a coin and I roll a die. There are 12 
equally likely outcomes: (H,l) ,  ..., (H,6), (T,l), ..., (T,6) in the obvious 
notation. What is now the probability that you toss heads and I roll a 6? 
Obviously 1 / 12. The individual probabilities of heads and 6 are 1 /2 and 1 /6, 
respectively, and 1 /2 x 1 /6 equals I / 12 indeed. 

For another example, take a deck of cards, draw one card, and consider the 
two events, A: to get an ace, and H: to get hearts. Are these independent? Let 
us check whether the multiplication rule holds. The individual probabilities are 

P(A) = 4/52 = 1/13 

P(H) = 13/52 = 1/4 

and the probability to get both A and H is the probability to get the ace of 
hearts, which is 1/52, which is the product of 1/13 and 1/4. We have 

P(A and H) = P(A) x P(H) 

which means that A and H are independent. Now remove the two of spades 
from the deck, reshuffle, and consider the same two events as above. Are 
they still independent? They must be, right? After all, the two of spades has 
nothing to do with either aces or hearts. Let us compute the probabilities. 
There are now 51 cards, and we get 

P(A) = 4/51 

P(H) = 13/51 

and P(A and H) = 1/51. As P(A and H) is not equal to P(A) x P(H), we 
must conclude that the events are not independent anymore. What happened? 
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Removing the two of spades changes the proportions of aces in the deck 
from 4/52 to 44/51, but not within the suit of hearts where it remains at 
1/13 = 4/52. Here is how you should think about independent events: If 
one event has occurred, the probability of the other does not change. In the 
card example, the probability of A is 4/5 1 but changes to 1 / 13 if the event H 
occurs. 

Here is a question I often ask my students after I have introduced indepen- 
dence: If two events cannot occur at the same time, are they independent? At 
first you might think so. After all, they have nothing to do with each other, 
right? Wrong! They have a lot to do with each other. If one has occurred, we 
know for certain that the other cannot occur. The probability to roll a 6 is 1 /6, 
but if I tell you that the outcome is an odd number, the probability of a 6 drops 
down to 0. Think this through. It is important to understand independence. 

There is a story that is sometimes told about the great Russian mathemati- 
cian Andrey Nikolaevich Kolmogorov, among many other things the founder 
of the modern theory of probability. In Stalin’s Soviet Union in the 1930s, 
the concept of independence did not fit well with the historical determinism 
of Marxist ideology. When questioned by a panel of ideologues about this 
possible heresy, Kolmogorov countered, “If the peasants pray for rain and it 
actually starts to rain, were their prayers answered?” The atheist ideologues 
had to confess that this must indeed be a case of independent events and Kol- 
mogorov lived a long and productive life until his death in 1987 at the age of 
84. 

In December 1992, a small passenger airplane crashed in a residential neigh- 
borhood near Bromma airport outside Stockholm in Sweden, causing no death 
or injury to any of the residents. Already disturbed by increasing traffic and 
expansion plans for the airport, the residents now got more reasons to worry. 
In an effort to calm people, the airport manager said in an interview on TV 
that statistically people should now feel safer because the probability to have 
another accident had become so much smaller than before. I was at the time 
a graduate student in Sweden, studying probability and statistics, and thought 
that it was amusing to hear both “statistically” and “probability” used in the 
same sentence in such a careless way. In youthful vigor, I immediately wrote 
a letter that was published in some leading Swedish newspapers, where I ex- 
plained why the airport manager’s statement was incorrect. I also encouraged 
him to contact me so that I could recommend a good probability textbook. I 
never heard from him. 


