Introducción a la dinámica computacional de fluidos (CFD) en Ingeniería Química

Introducción a la dinámica computacional de fluidos (CFD) en Ingeniería Química

Nicolás Ríos Ratkovich
Juan Pablo Valdés
Hugo Pineda
Miguel Daza
Andrés Pinilla
Deisy Becerra
Edwar Pérez
Luis Ramírez
Adriana Echeverri
Jéssica Gómez
Daniela Bobadilla
Isabel Cuervo
Alejandro Sierra

Universidad de los Andes Facultad de Ingeniería Departamento de Ingeniería Química Nombres: Ríos Ratkovich, Nicolás, autor. | Valdés Ujueta, Juan Pablo, autor. | Pineda Pérez, Hugo Alejandro, autor. | Daza Gómez, Miguel Andrés Mauricio, autor. | Pinilla Angarita, Jorge Andrés, autor. | Becerra Tuta, Deisy Steffania, autora. | Pérez García, Edwar Leonardo, autor. | Ramírez Cerquera, Luis Alfonso, autor. | Echeverri Romero, Adriana, autora. | Gómez Hernández, Jéssica María, autora. | Bobadilla Romero, Daniela, autora. | Cuervo Páez, Isabel Tatiana, autora. | Sierra Castañeda, Alejandro, autor.

Título: Introducción a la dinámica computacional de fluidos (CFD) en Ingeniería Química.

Descripción: Bogotá: Universidad de los Andes, Facultad de Ingeniería, Departamento de Ingeniería Química, Ediciones Uniandes, 2020. | 1 recurso en línea (xviii, 205 páginas)

Identificadores: ISBN 978-958-774-931-1 (electrónico)

Materias: Dinámica de fluidos computacional | Ingeniería química

Clasificación: CDD 620.1064-dc23

SBUA

Primera edición: agosto del 2020

© Nicolás Ríos Ratkovich, Juan Pablo Valdés Ujueta, Hugo Alejandro Pineda Pérez, Miguel Andrés Mauricio Daza Gómez, Jorge Andrés Pinilla Angarita, Deisy Steffania Becerra Tuta, Edwar Leonardo Pérez García, Luis Alfonso Ramírez Cerquera, Adriana Echeverri Romero, Jéssica María Gómez Hernández, Daniela Bobadilla Romero, Isabel Tatiana Cuervo Páez y Alejandro Sierra Castañeda

©Universidad de los Andes, Facultad de Ingeniería, Departamento de Ingeniería Química Ediciones Uniandes
Calle 19 n.º 3-10, oficina 1401
Bogotá, D. C., Colombia
Teléfono: 3394949, ext. 2133
http://ediciones.uniandes.edu.co
infeduni@uniandes.edu.co

ISBN e-book: 978-958-774-931-1

Corrección de estilo: Andrea del Pilar Sierra Diagramación interna: Precolombi EU, David Reyes Diagramación de cubierta: Neftalí Vanegas

Imagen cubierta: CFD_metodologia_bomba, elaboración propia de los autores

Imágenes internas: elaboración propia de los autores

Todos los derechos reservados. Esta publicación no puede ser reproducida ni en su todo ni en sus partes, ni registrada en o transmitida por un sistema de recuperación de información, en ninguna forma ni por ningún medio, sea mecánico, fotoquímico, electrónico, magnético, electro-óptico, por fotocopia o cualquier otro, sin el permiso previo por escrito de la editorial.

Universidad de los Andes | Vigilada Mineducación.

Reconocimiento como universidad: Decreto 1297 del 30 de mayo de 1964.

Reconocimiento de personería jurídica: Resolución 28 del 23 de febrero de 1949, Minjusticia.

Acreditación institucional de alta calidad, 10 años: Resolución 582 del 9 de enero del 2015, Mineducación.

Contenido

Lista de recursos gráficos	IX
Introducción	XVII
1. Dinámica computacional de fluidos	1
Tipos de flujos	3
Pasos para modelar un sistema	6
Ecuaciones que modelan un sistema	8
Condiciones de frontera	15
Solución numérica de las ecuaciones	21
Algoritmo de Gauss-Seidel	29
Medición de la convergencia	37
Esquemas de discretización	38
Resolviendo el campo de velocidad	47
Flujos en estado no estacionario	50
Mallado	54
Física de turbulencia de los fluidos	56
Modelamiento de la turbulencia	58
Modelamiento de la región cercana a la pared	74
Condiciones de frontera de entrada y de salida	91

¿Qué es el <i>wall y</i> +?	93
Referencias	99
2. Guía bomba centrífuga STAR-CCM+	101
Preparación de la geometría	102
Generación del mallado	112
Procedimiento de la simulación	117
Posprocesamiento	121
3. Análisis de un agitador tipo Rushton	129
Preparación de la geometría	130
Procedimiento de la simulación	147
Posprocesamiento	157
Anexo. Cambio de propiedades del fluido	166
4. Guía turbina Kaplan STAR-CCM+	169
Preparación de la geometría	170
Generación del mallado	183
Procedimiento de la simulación	192
Posprocesamiento	196

Lista de recursos gráficos

1. Dinámica computacional de fluidos

Figuras		
Figura 1.	Modelamiento de flujo turbulento, estado	
	estacionario y unifásico en un intercambiador de	
	calor (perfil de velocidad)	4
Figura 2.	Pasos para modelar un sistema en CFD	7
Figura 3.	Distorsión en un elemento fluido por esfuerzo $dU_{\scriptscriptstyle 1}/dx_{\scriptscriptstyle 1}$	10
Figura 4.	Ejemplo de contraflujo a la salida de una bomba	18
Figura 5.	Malla con partes rotatoria y estacionaria	19
Figura 6.	Volúmenes de control que usan los algoritmos	
	centrados en nodos y en celdas respectivamente	23
Figura 7.	Celdas de la solución	28
Figura 8.	Ejemplo de difusión de masa en un flujo de gas	31
Figura 9.	Celdas vecinas y caras de las celdas	32
Figura 10.	Procedimiento de resolución de un problema	
	mediante diferenciación central	36
Figura 11.	Ilustración del problema a resolver	41
Figura 12.	Esquema de mallado con celdas de tamaño variable	55
Figura 13.	Transporte causado por convección turbulenta	65
Figura 14.	Flux de energía de mayor a menor escala	66

Figura 15.	Aplicación de las funciones de pared en simulaciones de CFD	81
Figura 16.	(a) Separación de flujo con una zona de recirculación	
	y un punto de reconexión. (b) Flujo incipiente	86
Figura 17.	Diferentes aproximaciones para el tratamiento	
	de la región cercana a la pared	90
Figura 18.	Caso 2: no aplican las funciones de pared	99
Fotografía		
Fotografía 1	. Ludwig Prandtl, ingeniero alemán	75
Gráficas		
Gráfica 1.	Traslación, rotación y distorsión de un elemento fluido	11
Gráfica 2.	Balance de masa sobre un elemento fluido	12
Gráfica 3.	Caras que componen el volumen de control de una celda	24
Gráfica 4.	Valor que toma cada celda a medida que aumentan	
	las iteraciones	35
Gráfica 5.	Perfil de concentración molar a medida que	
	aumentan las iteraciones	36
Gráfica 6.	Celdas paralelas a un flujo de especies no difusivas	56
Gráfica 7.	Celdas no paralelas a un flujo de especies no difusivas	56
Gráfica 8.	Tasa de descomposición de velocidad instantánea	59
Gráfica 9.	Representación de escalas turbulentas resueltas	65
Gráfica 10.	•	78
Gráfica 11.	1 0	79
Gráfica 12.	Esfuerzos de la zona cercana a la pared en la región	
_	interna de la capa límite turbulenta	80
	Ley de la pared	83
	Ley de la pared y subcapas de flujo	84
Gráfica 15.	Propiedades de velocidad y turbulencia	
	en la sección transversal de una tubería a un valor	
	de Re = 200 000	92
	Solución para la subcapa viscosa	94
	Solución con las funciones de pared logarítmicas	95
Gráfica 18.	Perfil de contribución viscosa y turbulenta	96
Tablas		
Tabla 1.	Simulaciones posibles con la CFD	3

Tabla 2.	Resumen de parámetros otorgados por	
	el enunciado del problema	31
Tabla 3.	Resumen de resultados para la primera iteración	34
Tabla 4.	Resumen de resultados para la iteración número 50	35
Tabla 5.	Perfil de concentración molar en la iteración 50	
	y parámetros de cálculo	39
Tabla 6.	Parámetros de cálculo para esquema diferencias	
	hacia adelante de primer orden	42
Tabla 7.	Resultados para cada celda haciendo uso	
	de esquema diferencias hacia adelante de primer orden	42
Tabla 8.	Resumen de esquemas de discretización	46
Tabla 9.	Definicion de diferentes propiedades escalares	71
Tabla 10.	Valor de los coeficientes del modelo $k-\varepsilon$	74
Tabla 11.	Ventajas y dificultades de los diversos modelos	
	empleados en CDF	75
Tabla 12.	Representación de y+ a diferentes valores de Re	90
Tabla 13.	Nivel de física para diferentes Re y sus	
	implicaciones con los modelos empleados	91
2. Guía bo	mba centrífuga STAR-CCM+	
Figuras		
Figura 1.	Barra superior del programa star-ccm+	102
Figura 2.	Ventana de selección para crear una nueva simulación	103
Figura 3.	Árbol de selección en la pestaña "properties"	103
Figura 4.	Ventana de 3D-CAD	104
Figura 5.	Geometría importada a 3D-CAD Model	104
Figura 6.	Separación de geometrías	105
Figura 7.	Operación unite	106
Figura 8.	Selección de la operación defeature	107
Figura 9.	Operación defeature	107
Figura 10.	Operación extract internal volume	108
Figura 11.	Proceso para extraer el volumen interno	108
Figura 12.	Nuevo cuerpo: fluido dentro de la bomba	109
Figura 13.	Operación slice	109
Figura 14.	Operación slice by face	110
Figura 15.	Nuevos cuerpos "upstream", "volute" y "rotating"	110

Figura 16.	Operación imprint	111
Figura 17.	Operación new geometry part	111
Figura 18.	Operación assign parts to regions	112
Figura 19.	Generación de un mallado tipo automated mesh	113
Figura 20.	Selección de las partes a mallar	114
Figura 21.	Carpetas y controles del automated mesh	114
Figura 22.	Crear un surface control	115
Figura 23.	Botón generate volume mesh	116
Figura 24.	Generación de un surface extruder	116
Figura 25.	Generación de un volume extruder	117
Figura 26.	Selección de modelos físicos	118
Figura 27.	Marco de referencia de rotación	119
Figura 28.	Lab frame reference	119
Figura 29.	Establecer flujo másico de entrada	120
Figura 30.	Establecer nuevo punto de referencia	120
Figura 31.	Ingresar valores de "presión" y "velocidad inicial"	121
Figura 32.	Crear una nueva field function escalar	122
Figura 33.	Report: mass flow para el outlet	122
Figura 34.	Report: maximum value para la región rotating	123
Figura 35.	Partes para el moment report del torque	123
Figura 36.	Report: moment	124
Figura 37.	Report: mass flow average	124
Gráfica		
Gráfica 1.	Curvas características de la bomba	127
Tabla		
Tabla 1.	Resumen de reportes	126
3. Análisis	de un agitador tipo Rushton	
Figuras		
Figura 1.	Agitador Rushton	130
Figura 2.	Nueva simulación en la plataforma STAR-CCM+	130
Figura 3.	Crear nueva simulación en la plataforma STAR-CCM+	131
Figura 4.	Licencia y número de núcleos deseados	131
Figura 5.	Árbol de opciones en la pestaña de propiedades	132

Figura 6.	Importar geometría	133
Figura 7.	Configuración predeterminada de CAD	133
Figura 8.	Sólido en la carpeta "geometría"	134
Figura 9.	Carpeta "geometría"	134
Figura 10.	Agitador y fluido interno importado	135
Figura 11.	Selección de partes	136
Figura 12.	Zonas del fluido	136
Figura 13.	Nuevas secciones en "parts"	137
Figura 14.	Separar partes del sólido	137
Figura 15.	Sólidos "vol rot" y "tanque"	138
Figura 16.	Caras en el fluido "vol rot"	138
Figura 17.	Caras en el "vol rot"	138
Figura 18.	Caras en el "tanque"	139
Figura 19.	Caras en el fluido "vol rot"	140
Figura 20.	Interfaces entre los dos sólidos	140
Figura 21.	Contactos entre los dos sólidos	141
Figura 22.	Asignar partes a "regiones"	141
Figura 23.	Definir los sólidos que se importan de "partes" a "regiones"	142
Figura 24.	Selección en la carpeta continua	143
Figura 25.	Mallado de superficie y volumétrico	143
Figura 26.	Propiedades de la capa prismática. Tamaño de su superficie	144
Figura 27.	Propiedades de la capa prismática. Número de capas	145
Figura 28.	Propiedades de la capa prismática	145
Figura 29.	Crear el mallado	146
Figura 30.	Malla sobre el sólido "tanque"	146
Figura 31.	Malla sobre el sólido "vol rot"	146
Figura 32.	Malla interna (volume mesh) sobre los planos	
	del sólido "vol rot"	147
Figura 33.	Parámetros de condiciones físicas	148
Figura 34.	Elección de parámetros físicos	148
Figura 35.	Condiciones físicas	149
Figura 36.	Selección de la zona de rotación	150
Figura 37.	Propiedades de la zona de rotación	150
Figura 38.	Define la condición física de rotación	151
Figura 39.	Especificación de la condición de esfuerzo	
	cortante en las paredes	152
Figura 40.	Tiempo de solución	152

Figura 41.	Creación del reporte de taza de cizalla	153
Figura 42.	Visualización de un reporte en el menú principal	154
Figura 43.	Búsqueda del reporte para taza de cizalla	154
Figura 44.	Reporte volumétrico de taza de cizalla	154
Figura 45.	Búsqueda del reporte para taza de cizalla	155
Figura 46.	Recorrido para crear el reporte de "momento"	155
Figura 47.	Propiedades del reporte de "momento"	156
Figura 48.	Propiedades requeridas en el movimiento rotatorio	156
Figura 49.	Partes sobre las que se creará el monitor de	
_	momentum para el respectivo reporte	157
Figura 50.	Creación de un plano (pasos)	158
Figura 51.	Visualización de un plano en el menú principal	158
Figura 52.	Creación de una escena escalar	158
Figura 53.	Plano creado transversal al agitador	159
Figura 54.	Ruta de un plano para crear escenas de	
	visualización de las propiedades	159
Figura 55.	Selección de la manera en que se mostrará la	
	propiedad específica de la escena	160
Figura 56.	Editar un plano para crear escenas de visualización	
_	de las propiedades	160
Figura 57.	Partes sobre las que se visualiza la escena	161
Figura 58.	Parámetros del plano a crear para una vista	
	adecuada del agitador	161
Figura 59.	Plano resultante de los parámetros introducidos	162
Figura 60.	Pasos finales creación plano	162
Figura 61.	Selección de la manera en que se mostrará la	
	propiedad específica de la escena	163
Figura 62.	En esta escena se desea observar la región rotatoria	
	junto con el plano transversal creado	163
Figura 63.	Partes de la escena. Agitador y plano que lo atraviesan	163
Figura 64.	Creación de la escena para observar la magnitud	
	de la velocidad	164
Figura 65.	Escena de magnitud de la velocidad creada	164
Figura 66.	Creación de la escena para observar la magnitud de	
	la velocidad en un plano transversal del agitador	165
Figura 67.	Camino para cambiar las propiedades del fluido trabajado	166
Figura 68.	Caracterización del fluido, cambio de propiedades	167

Gráfica Gráfica 1.	Resumen de reportes	168
Tabla Tabla 1.	Resumen de reportes	167
4. Guía tur	bina Kaplan STAR-CCM+	
Figura 1.	Barra superior del programa STAR-CCM+	170
Figura 2.	Ventana de selección para crear una nueva simulación	170
Figura 3.	Árbol de selección en la pestaña "properties"	171
Figura 4.	Ventana de 3D-CAD	171
Figura 5.	Geometría importada a 3D-CAD model	172
Figura 6.	Selección de la operación defeature	173
Figura 7.	Operación defeature	174
Figura 8.	Operación rename	174
Figura 9.	Operación unite	175
Figura 10.	Operación unite	175
Figura 11.	Operación hide	176
Figura 12.	Selección de caras entrada y salida "carcasa"	177
Figura 13.	Proceso para extraer el volumen interno "fluido entrada"	177
Figura 14.	Nuevo cuerpo: fluido de entrada a la turbina	178
Figura 15.	Selección de caras entrada y salida en "tubo aspiración"	178
Figura 16.	Proceso para extraer el volumen interno "fluido salida"	179
Figura 17.	Nuevo cuerpo: fluido de salida de la turbina	179
Figura 18.	Operación slice	180
Figura 19.	Operación slice by face	180
Figura 20.	Nuevos cuerpos "fluido rotación" y "fluido salida"	181
Figura 21.	Operación imprint	181
Figura 22.	Operación new geometry part	182
Figura 23.	Operación assign parts to regions	182
Figura 24.	Generación de un mallado tipo automated mesh	183
Figura 25.	Selección de las partes a mallar	184
Figura 26.	Carpetas y controles del automated mesh	185
Figura 27.	Operación split by part curves	186
Figura 28.	Operación combine	186
Figura 29.	Crear un surface control	187

Figura 30.	Selección superficies en surface control	188
Figura 31.	Opción disable prism layers	188
Figura 32.	Opción custom prism layers	189
Figura 33.	Botón generate volume mesh	190
Figura 34.	Generación de un surface extruder	190
Figura 35.	Detalles surface extruder	190
Figura 36.	Generación de volume extruder	191
Figura 37.	Selección de modelos físicos	192
Figura 38.	Selección de modelos físicos	192
Figura 39.	Modelos físicos para turbina Kaplan	193
Figura 40.	Creación "marco rotación"	193
Figura 41.	Detalles "marco rotación"	194
Figura 42.	Marco de referencia de rotación	194
Figura 43.	Condiciones de frontera	195
Figura 44.	Flujo másico turbina	195
Figura 45.	Establecer nuevo punto de referencia	196
Figura 46.	Ingresar valores de "presión" y "velocidad inicial"	196
Figura 47.	Crear una nueva field function scalar	197
Figura 48.	Definición función "cabeza total"	197
Figura 49.	Report: mass flow	198
Figura 50.	Report: maximum value	198
Figura 51.	Report: moment	199
Figura 52.	Report: mass flow average	200
Figura 53.	Creación derived part section	202
Figura 54.	Sección "plano alabes"	203
Figura 55.	Sección "plano salida"	203
Figura 56.	Creación nueva scene	204
Figura 57.	Partes perfil de velocidad	204
Figura 58.	Partes perfil de velocidad	205
Figura 59.	Perfiles velocidad y presión turbina Kaplan	205
Gráfica		
Gráfica 1.	Curvas características de turbina Kaplan	202

Introducción

La dinámica de fluidos computacional (CFD, por sus siglas en inglés) se ha convertido en una herramienta indispensable para el desarrollo de la ingeniería. Esta proporciona información sobre cómo funcionan diferentes productos y procesos, permitiendo resolver problemas, evaluar nuevos diseños e incluso la optimización de sistemas. Hoy en día, el tiempo requerido para llevar a cabo un análisis de CFD se está reduciendo considerablemente, debido a que cada vez hay hardware más potente y el software utiliza algoritmos de solución más rápidos y eficientes. Además del bajo costo asociado, la precisión de los resultados y la validación experimental permiten a la CFD competir contra la construcción y el estudio de prototipos físicos, por medio de la generación de prototipos de carácter virtual. Es importante resaltar que hay múltiples programas comerciales disponibles que se han vuelto fáciles de usar, con una interfaz amigable y con muchos ajustes predeterminados, por lo que incluso un usuario inexperto puede obtener resultados confiables para problemas simples. Sin embargo, la mayoría de las aplicaciones requieren una comprensión más profunda de la CFD. Dado que ningún modelo es universal, los ingenieros que trabajan con ella tienen que seleccionar los más apropiados para el sistema estudiado. Debido a esto, este libro da las bases para entender qué sucede detrás de esta herramienta y poder tomar con criterio ingenieril las decisiones correctas para llevar a cabo este tipo de análisis. Adicionalmente, es imperativo que el ingeniero tenga la capacidad

de juzgar críticamente los resultados obtenidos de un análisis CFD. Esto es importante debido a que los resultados obtenidos se utilizan a menudo para tomar decisiones fundamentales sobre el diseño de productos y procesos. El objetivo de este libro es proporcionar las bases para que los ingenieros resuelvan problemas más avanzados que implican modelado de operaciones unitarias (flujo en tuberías, intercambiadores de calor, turbomáquinas, sistemas de mezclado, etc.).

Para entender este libro se requiere un conocimiento previo de fenómenos de transporte (mecánica de fluidos y transferencia de calor y de masa). Se presentan las ecuaciones que gobiernan estos fenómenos, mostrando la física esencial de los modelos, al tiempo que se discuten sus limitaciones. Cabe mencionar que este libro no se centra en escribir código de CFD, sino en que los ingenieros entiendan cómo realizar un análisis de CFD correctamente. Además, indica las ventajas y desventajas de las simulaciones de CFD. Este libro incluye tres tutoriales que está diseñados principalmente para estudiantes de Ingeniería Química y Mecánica mediante el uso del programa de CFD STAR-CCM+.

En el primer capítulo, la primera sección presenta lo que se puede resolver con un programa de CFD. La siguiente sección muestra las principales ecuaciones fenomenológicas que se resuelven con el *software* de CFD. Luego, se presentan los métodos numéricos más comunes usando los volúmenes finitos, los conceptos de estabilidad, precisión y convergencia. La siguiente sección presenta una introducción a la turbulencia y cómo esta se modela.

Los autores agradecen a Paula Pico y José David Chavarro por sus aportes en los tutoriales de la bomba centrífuga y la turbina hidráulica, respectivamente.

1. Dinámica computacional de fluidos

Propósitos

- Entender el tipo de problemas que pueden ser resueltos mediante la dinámica computacional de fluidos (Computational Fluid Dynamics
 CFD—) y comprender la dificultad de los casos, reconociendo aquellos en los que esta herramienta puede tener mayor utilidad. Lo anterior, teniendo en cuenta su alcance y limitaciones.
- Presentar las ecuaciones que modelan los fenómenos de transporte de los fluidos (*momentum*, calor y masa) y la turbulencia. Además, indicar las bases de métodos numéricos aptos para resolver dichas ecuaciones.
- Señalar la importancia de la adecuada escogencia de las condiciones de frontera del modelo, así como los criterios de estabilidad, precisión y convergencia en la solución.

- Adicionalmente, dar luz sobre las diferentes técnicas y esquemas numéricos para la resolución de problemas mediante el uso de la CFD, entendiendo su funcionamiento básico y limitaciones, entre otros aspectos. Estos esquemas luego se acoplan al concepto clave del mallado y a sus características e implicaciones en modelos de la CFD.
- Por último, se da cuenta de los modelos de turbulencia y el análisis de la incertidumbre numérica.

El modelamiento tradicional en ingeniería se basa en modelos empíricos, o al menos semiempíricos, para comprender los fenómenos que gobiernan cada operación unitaria. Sin embargo, con el surgir de nuevos procesos o condiciones se requieren también nuevas ecuaciones de diseño o parámetros que gobiernen el sistema. Dado su bajo costo comparado con la experimentación tradicional, en la actualidad se utiliza la CFD como herramienta para el análisis de flujo (junto con estudios de transporte de calor y masa). Adicionalmente, la CFD es útil para simular el transporte de especies químicas, reacciones, procesos de cambio de fase (entre gas y líquido) y cristalización; en la tabla 1 es posible observar los fenómenos que se pueden modelar mediante la dinámica computacional de fluidos. De esta manera, se pueden crear prototipos virtuales para el diseño de procesos. Existen casos en los que la CFD no provee soluciones fieles, aunque sí otorga soluciones base que se pueden calibrar mediante validación experimental.

Régimen de flujoTransporte de masaTransporte de calorLaminarConvecciónConvecciónTurbulentoDifusiónConducciónUnifásicoReacciónRadiaciónMultifásicoCambio de fase

Tabla 1. Simulaciones posibles con la CFD

Una de las mayores ventajas de esta herramienta es que provee información local detallada del sistema estudiado, lo cual permite un entendimiento cualitativo profundo. Sin embargo, es de suma importancia poseer conocimiento previo acerca del sistema con el fin de escoger los modelos lógicamente y modelar de forma adecuada la realidad. Luego, se deben analizar críticamente las soluciones encontradas, de lo contrario la herramienta pierde fidelidad.

Tipos de flujos

Para definir de manera adecuada las propiedades del sistema que se trabaje, es necesario conocer los tipos de flujo que se pueden modelar en la CFD. A continuación, se listan las categorías en las que es posible separar el flujo:

- Laminar-turbulento
- Estado estacionario-estado transiente
- Unifásico-multifásico

Laminar

Las ecuaciones de Navier-Stokes describen el transporte de *momentum*, dominado por las fuerzas viscosas. Con la CFD se predice fácilmente y de manera precisa el comportamiento del flujo en el caso de que este sea unifásico. Adicionalmente, el transporte de calor se modela con precisión, lo que permite la fácil obtención de aproximaciones de temperatura en la geometría.

El transporte de masa se modela de forma adecuada solo en gases, dado que la baja difusividad de los líquidos causa que las distancias recorridas por las partículas sean muy pequeñas y por lo tanto se hace necesario el uso de una malla demasiado fina para producir una solución óptima.

Turbulento

Resolver las ecuaciones de Navier-Stokes con el fin de modelar la turbulencia es un proceso imposible, incluso con súpercomputadoras para sistemas de tamaño real. Esta aproximación (conocida como Direct Numerical Simulation —DNS—) solo es considerada en sistemas de baja escala para entender el desarrollo de este tipo de flujo. A partir de esto, se emplea un método menos robusto (Large Eddy Simulation, LES por su sigla en inglés) que resuelve únicamente la turbulencia a gran escala, mientras que solo modela la turbulencia a pequeña escala como parte de la viscosidad efectiva del flujo. Sin embargo, las simulaciones solucionadas por este medio necesitan alto poder —y tiempo— computacional para sistemas simples, y son imposibles de resolver en sistemas complejos (figura 1).

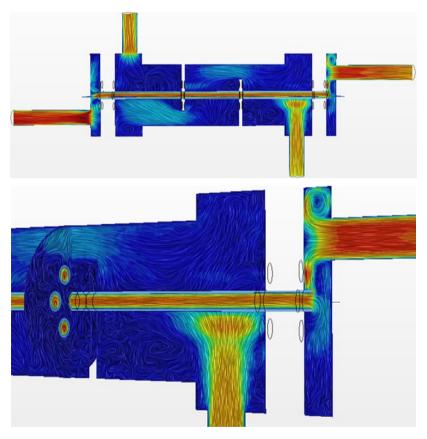


Figura 1. Modelamiento de flujo turbulento, estado estacionario y unifásico en un intercambiador de calor (perfil de velocidad)

Por esto la mayoría de las simulaciones en ingeniería se realizan mediante métodos de Reynolds-Averaged Navier-Stokes (RANS), en los que las fluctuaciones turbulentas son promediadas con respecto al tiempo. No obstante, los cambios que ocurren a una escala más pequeña que las celdas no se solucionan; para ello es necesario agregar modelos adicionales en los que se incluyan estos comportamientos.

Modelar el estado de transición del flujo (de turbulento a laminar o de manera opuesta) es de alta complejidad, por tanto, requiere una combinación de modelos adecuada con alto poder y tiempo computacional.

Estado estacionario

Las variables estudiadas en el sistema de flujo no son en función del tiempo.

Estado transiente

El flujo posee propiedades dependientes del tiempo.

Unifásico

Todo el fluido modelado se comporta de manera uniforme. La resolución de este tipo de flujo produce resultados fieles para flujo laminar y en la mayoría de los casos de flujo turbulento.

La combustión en fase gaseosa y las reacciones ion-ion en fase líquida se modelan también con flujo unifásico.

Multifásico

Se evidencia el flujo interactivo de dos o más fases con interacciones mediante interfaces. Cada fase posee propiedades, velocidad y temperatura específicas, además se pueden componer de:

- Fluidos en diferentes estados (líquido-gas).
- Fluidos con distintas propiedades químicas en el mismo estado (agua líquida-aceite).