Learn Computer
Science with Swift

Computation Concepts, Programming
Paradigms, Data Management, and
Modern Component Architectures
with Swift and Playgrounds

Jesse Feiler

ApPress’

Learn Computer
Science with Swift
Computation Concepts,
Programming Paradigms, Data
Management, and Modern

Component Architectures with
Swift and Playgrounds

Jesse Feiler

Apress’

Learn Computer Science with Swift: Computation Concepts, Programming
Paradigms, Data Management, and Modern Component Architectures
with Swift and Playgrounds

Jesse Feiler
Plattsburgh, New York, USA

ISBN-13 (pbk): 978-1-4842-3065-7 ISBN-13 (electronic): 978-1-4842-3066-4
https://doi.org/10.1007/978-1-4842-3066-4

Library of Congress Control Number: 2017962300
Copyright © 2018 by Jesse Feiler

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Technical Reviewer: Aaron Crabtree
Coordinating Editor: Jessica Vakili
Copy Editor: Karen Jameson
Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/978-1-
4842-3065-7. For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3066-4

Table of Contents

About the AUhOFcccmmmnmmmmsensssssss s xi
About the Technical ReVIEWErcusssssmssssnsssassssasssassssassssnsssassssannsns Xiii
INtroductioncccccumsemmmsssmmmsssnnmssssnmsssnsssssnssssas s snn s nnnnns Xv
Chapter 1: Thinking Computationallycccccussemmmnssssnnnnmnsssnsnmnssssssnnns 1
Computer SCIENCE TOAAY.......evrererrererrererrerserersesersesessessssessessesasssssessessessssessesseses 2
Using SWift Playgrounds...........cccoccerrennnncrnieninesesse s sese e s ssssesenns 3
Basic Concepts and Practices of Computer Science Todayccecvrervvenierennen 5
Recognizing Patterns........ccocrnnnnnn s 6
USing ADSTracCtions.......c.ccoeverrninienn s 8
Combining Patterns and Abstractions for Development...........c.ccccvivvvcnicnnens 9
Fundamental Tasks for DEVEIOPErS.........ccccvvrenrrnine s 9
Formulating a Computational Problem............coccvvevnnennenennsesessenesesenennes 10
Modeling the Problem Or ProCESSc.cccevererrenerensesessesesesesessesessesessesesennes 14
Practicing DEeCOMPOSItION........cccvovrerrererererrnese s sennes 14
Rearranging and Recomposing the Project Piecesccovverrrcnerenernnnes 15
Validating ADStractions..........ccoeeceererereneresernese e 15

Here Comes the GOccvvererenereserseses s s 16
Chapter 2: Writing Code and Using Swift Playgrounds.........cccssseessanes 19
The Basics of Writing COUEcccvevvierrrierienirsirsere s sese e sses e sessessesseens 19
Actions and DAtaccceernerrnnnsns s 20
Combining Actions and Data..........cccevevverrerierenessensesesss s e ssssessessessessssessesees 22
What Happens Behind the Code........c.ccccumrninnnininnennsenssesesesesssesessesesseens 23

iii

TABLE OF CONTENTS

Compiling and Interpreting Code ... 25
Using SWift Playgroundsccooeerenrnnenenensesesssesesese s sessesenns 26
Moving On 0 Paradigms........ccccorenernsernsenessenmsese s sessssessese e sessesenns 35
Chapter 3: Exploring Programming Paradigms..........ccciunsssnnnnnssssnnnnns 37
Structured Programmingcoeevnesnenesnsesnsesessse s sessessssssessssessnns 38
Object-Oriented Programmingcccccveververerenessensesessssessessessessssessessesssssssessesses 4
Imperative Programming (Procedural Programming)ccccueeverreriersenseesersennas 46
Declarative Programmingccccviniininiennnsnsne s sessesessessssessesnens 46
Concurrent Programming..........ococeeereresersesesessesesssessssesessesessssesessessssesessssesenns 47
Chapter 4: Using Algorithms...........ouseeemmmmmmnmmmmssssssssnnsmmsssssssssssssnnns 49
Considering the Purpose of Algorithms..........cccueeeresrnsnnesese s 50
Creating a Numerology Algorithm ... 51
Looking Carefully at Algorithmsc.ccoevvrvrierinneniersene e sressssessessens 52
FUNCHIONS ...t 53
03T o £ 53
DEeSIgN PALtErNScccciiiriirerc s 53
Implementing the Numerology Algorithm in Swift.........cccoovvvvvvnivnsniennen 54
Implementing the Number Table ... 56
Implementing the Additioncccocvvninnnnrn 62
SUMMAIY.c.ueiterterereresee s s e s s ss e e s e s saese e e saesaesae e e e saesaese e e naesaesaenensenaenaes 67
Chapter 5: Managing Control Flow: Repetition...........cccevnnsnennnrnsssnnnnn 69
Getting Ready for a Multi-Step Control Flow Project with Random Numbers.....70
Creating a Random Number Playgroundccceevvnininennsnscnenssensensenns 72
Writing the Playground COde..........cccoeeererereenerererinesssese e sssesesenens 77
Creating Many Random NUMDETScccovrerrnererenerrsese e 83
Create a Repetition LOOP.......ccvvrvrenninini s se s snes 85

iv

TABLE OF CONTENTS

Creating the Code t0 Repeat.........ccccvcririnninininn e 85
Creating the Repetition Control (Limit)ccocveeerierrnrnnienniesers e 86
SUMIMANY.....eieeercereee e e e se e e re e e e e 89
Chapter 6: Working with Data: Collections.........cccccemmrrrrssssssssssnnnnnsnnas 91
USING TYPES ..eereerrrreerrese s s s se e se s s sn s s e se s se s sensssenns 92
SCAIAr DALAcovveeerreerire e ———————————— 93
Moving On to Collected Data...........ccocevvvrverierinnensersene e ssessssessesnens 93
L T N 1TSS 9
BasiC TErminologyc.ccoverervrsennenersirsss s s s s sse e s s 96
Indexing Array EIements.........cccvvinnininnnnnsnses e 97
SWift Arrays and TYPES ...vevvvverrerereerersereressssessesessessssessessesssssssessessessssessessens 98
Declaring and Creating ArraysS........coovcveerereeressersesesessessesessssessessessesessessesaes 98
MOdIfYiNG @ VAT @ITAY .v.evvevrererrererrerenserersessssesessessesessessesssssssessessessessssessens 101
Multi-DimenSional ATTAYScecevrerererrerseressssersesessesessessessessssessessessesessessens 104
Finding Array EIEMENtS.........ccveriererenieriereresserere s sessessessesessessessessssessessens 105
Adding and Deleting Array EIEMENTSccveriernrnsenienienensensesesesessessessens 109
Looping TRrough @n ArTay.......cccoeverreriesensssessessesessssessessesssssssessesssssssessesses 111
USING SBLS .uvirtitrrererertsrerese s sss e s e ssssesse s ssssessessesassss e ssesaesassessesaesssssssesseses 112
Basic Set Terminologycccvverrerererserseressssensesessssessessessessssessessessssessessens 113
Identifying and Finding Set EIEMents..........cccvrvevnrnienrennsenseseseesessenenees 113
Adding and Deleting Set EIeMentscccccvverievvrnsenienesessessessesesessessensens 115
WOrking With SEIScccvcvvririnrrrrr e snens 116
USiNg DiCtIONANIESccecvrcreresir s 116
Basic Dictionary Terminologyccccvverreereriersenseesesessesssesessessesseessessessens 117
Declaring and Creating a DIiCtionary..........cocveevverrereserserersnessesseressssessensens 117
Adding and Deleting Dictionary Elements...........cccccceevvrinnincnvnienenienienns 120
SUMMANY..c ettt e s e s e s r e e s ae s r e e e nne s 120

TABLE OF CONTENTS

Chapter 7: Working with Data: TYPesSccccrrmsssmmnsrsssssnnsssssssnsnssssnnns 123
Why Types Mater........cccincr s 124
Looking at Stacks and Heaps........c.cccevvvrvriennnnsnnennsnsessese s sessessesss s 126

Storing Data at RUntime ... 126
Stacks and QUEUES.......coceeeereererere e 128
HEAPS ..ot e ne 129
BASIC TYPES ...ecveeeerreeriee s 131
NUMEKIC STOTAQE.....ccerrecrereerrereresseresese e s e s srs e se s e sensesensenens 131
USING INTBOEIS ... s 131
Using Floating Point NUMDEISccoverrrenresersserenese s 132
Storing Strings and Charactersccoooreerrsrrrese e 134
Creating NEeW TYPES ...ccvveerrrrerrresereeressesesssse s e se s sessssessssessssesessesenns 134
Working With TUPIES.......covererecerresrrese e 138
SUMMAIY . veitetrerere st re e s s e s s e e s e s s sae e e e s aeeaesae e s e e aesae e e e naenaees 14

Chapter 8: Managing Control Flow: Conditionals, Switches, and

Enumerations..........ccccnnmmmmmsmmmmssssmsssssmsssssssssssssssssssssnns 143

WhEE'S NEXT? ... s 143
Using Go To Statements...0r NOt ... 146
USing Conditionals..........cccvveererrererenernsesessesere s seenes 150
SWiItChing CONErOL........ccvvveecrcrres e 158
Comparing Swift Switches to Other Languages..........ccocvvveernserensesesrenerennes 159
Exploring the Swift Switch Syntaxccccovvvninniesnsssrs s 160
Using Advanced Switch Case Elements: Ranges...........ccvnnninennnnnnes 161
Using Advanced Switch Case Elements: Where Clauses..........ccuoeerenerene. 163
Using Enumerated TYPES......ccvvvernnernenmnese s s s ssnnes 165
Swift’s Approach to Enumerated TYPesScccvveervvernnennniesesssesesesesssessnns 166
Using Swift Enums with Switch Statements............ccccrivninincnncncncennn, 167

TABLE OF CONTENTS

Exploring Repetitions and Strides........ccccvirnvninininnnsnsc s 171
While and Repeat-While LOOPS......c.ccocvvrnnnieniennsinsene s sessesessssessessessens 172
FOr-iN LOOPS.....ciiiieiesircne e s n s s sn e nnen 173
LS T 1 [177

SUMIMANY.....oeeeerercreree e e s e re e ne e e 178

Chapter 9: Storing Data and Sharing Data..........cccccenrrrrnssssnnnnnnnnnnnas 179

What IS the Data?..........ccoveererrnnsner s 181

Where Is the Data StOred?c.cuceveenenennsesnessnesess e sesesesseens 183
Storing Data in Nonpersistent App Storage........ccccvvrererrenernserssesessesensnnes 185
Storing Data in Persistent App StOragecoceevvvevnnenenesesnsesssesesesessnns 185
Storing Persistent Data Outside of App Storage on a Devicecccccenne. 187
Storing Data in Shared Storage Locations..........couevnnenerssernsesessessnenensnns 187

Who Is in Charge of the Data?...........cccvvrirnnnininiennsrrere s sesseenes 189
Ownership 0f DAta.......c.ccocvvrverierienrrrer e 189
Data INTEGIILY...ccceverrrierrere e e 190
USING ChECKSUMScverueriesersere e sessese s e sssses e ssessesessessessesssssssessesassessessesaes 191
Using Timestamps and Other Data Markers.........ccocvvvverevnnnsensenenensensenas 192
Version CONtrolcccveeerninnnesnsse s 193

How Is the Data Managed...........ccocvvernininneninsnsie e 194
Managing EXternal Dataccocevivvenverieriennsensenesn e sessessessessssessensens 194
Formatting and Structuring Data............cccoevvririennsninrnenrsere e 195

Handling Data That Is Not There: Swift Optionalscccvverivrvrnrerienesensenens 201

310111117 o OSSR S 206

Chapter 10: Building Components........cccccueemmsssssssssssssssssssssssssssnssnnes 207

Why Build COMPONENTSccerrierirerircseree s sessssnsssnens 207
Advantages of Components: Reusabilitycouevrrerernssnneseniesennsenenns 209
Advantages of Components: Manageabilityc.ccovrerereserensenessenerensenenns 209

vii

TABLE OF CONTENTS

The Basic Components of Development Projectsc.cccvivvnvnvniennnensenennes 210
Subroutines, Functions, Procedures, and Methodscccovvveecncrernnnen 210
ClASSEScueuerererrsseeseseressssee e e a s e se s 214

Larger Building BIOCKSc.ccovvrvrierininsinc s ses s 215

Looking at BIoCkS @and RECUISION..........ccevrerrenesessesesesesessesesseses e sessesessesessnnes 216
Terminology: BIOCKS @and ClOSUIES..........ccovenerrenerensmsesesesese s e sensesenns 216
USING @ CIOSUTE......cccerererierirene it 217
RECUISION ... e 219

Building a FUnction in SWift........c.ccccovreiniennnsnnesr s 219

SUMMAIY.c.ueitiirerere e s s e s s a e e s e s s b s b e e s e aesae e e e naenne e 231

Chapter 11: Using Events to Guide Actionsccccussseensrssssnnnsnsssanns 233

Where BIOCKS Fit IN ..o 234

Using Actions and Messaging for Managing Flow Control Summary 235

Passing a Button Press/Tap/Click On to... Somewhere.........cccccvvririrriernenn 236
Implement a Button with Known Action ..o, 236
Implement a Button with a Notification...........c.cceeininirininininnnecnccnennn, 241

SUMMANY....ceiveerereresese s se e e s s s se e nensenenns 248

Chapter 12: Getting into Xcode.........cccrumssummmmmmssssnnnmssssnnnsssssssnsnssssnnns 249

How t0 Write SOFEWATEccceerierrerinesere e 250

Developing an App With XCOUE........cvrvrerrrierierinsenseress s ssssesessessssessessenes 255
Setting Up the Project........ccvvevrinieni s sesessessssessesse s 255
Testing the Project (without Modifications)cccvevverienensnseriennesensensennens 259
Adding the Code and INterface.........ccvvverrrierierssnsensese s sessessesnens 261
Testing the Project (with Modifications)c.cuuennnnnnnsssennsseesenens 268

Debugging an App With XCOdeccuvvrrvrirnerrr e 268

LT 1§14 7 270

viii

https://doi.org/10.1007/978-1-4842-3066-4_11#Sec121

TABLE OF CONTENTS

Chapter 13: Bringing in People........ccccvnssmmmmmsssssnnsmsssssnssssssssssssssssnns 271
Computability for PEOPIE........ccoveeerecerrcerre et 271
The Development QUESTIONS ... s 273

What Are YOU DOINQ?ocvcererirrsre s se e se s s e ssesnens 274

Who Will Be INVOIVEA? ... 274

Why Will People Be INVOIVEd?..........cccvivnininierssnenese s sessesnens 275

When Will [t HAPPEN?.......ooccrcrcrse e ssssessesnens 275

Where Will the Project RUN? ... sessesnens 277

How Will You Know the RESUIS? ... 278

SUMMANY....eieeereeereree e e s se s s s e re e nen e s 279
Chapter 14: Graphics and Visualization Techniques

and Problems.........ccocmmmmmmmsnmmssmsssssssnmn. 281

Introducing ULility SMart..........cccvvrirnnin e ssssesesse s 282

Beginning the App (Utility Smart 1) ... 282

Refining the App (Utility Smart 2).........ccccvcrirninvnnrcrsnn s 288

COAE SNIPPELScreiirir i e 291

Creating @ POPOVEr: COUEc.vveerrererreerererere s 292

Creating a Popover: Storyboard.........c.ccccvvenrereresennnesesesers s 293

SUMMANY....ceiiierirerrrese e e e s ne e e 294

INA@X.iiiiisssnnnmnnnnnnnnssssssssnnnnnnnnsssssssnsnnnnnnnnssssssssnnnnnnnnnessssssnsnnnnnnnnnssssnnn 295

ix

About the Author

Jesse Feiler is an author and developer focusing on nonprofits and
small businesses using innovative tools and technologies. Active in the
community, he has served on the boards of Mid-Hudson Library System
(including three years as president), Philmont Main Street Committee,
Philmont and Plattsburgh Public Libraries, HB Studio and Playwrights
Foundation, Plattsburgh Planning Board, Friends of Saranac River Trail,
Saranac River Trail Greenway, and Spectra Arts.

His apps include NP Risk — The Nonprofit Risk App (with Gail
B. Nayowith), Saranac River Trail, Minutes Machine, and Utility Smart.
They are available through Champlain Arts on the App Store at http://bit.
ly/ChamplainArts.

His large-scale projects have included contingency planning and
support for open market monetary policy and bank supervision operations
for the Federal Reserve Bank of New York’s Systems Development and
Data Processing functions as chief of the Special Projects Staff and the
System Components Division; implementation of the Natural Sales
Projection Model at Young & Rubicam (the first computer-based new
product projection model); development of the Mac client for Prodigy to
implement their first web browser; management information systems and
interfaces for legal offices, Apple, and The Johnson Company; as well as
consulting, writing, and speaking about the Year 2000 problem.

Smaller-scale projects for businesses and nonprofits have included
design and development of the first digital version of Josef Albers’s
Interaction of Color (for Josef and Anni Albers Foundation and Yale
University Press), database and website development for Archipenko
Foundation, along with rescue missions for individuals and organizations

http://bit.ly/ChamplainArts
http://bit.ly/ChamplainArts

ABOUT THE AUTHOR

who found out about contingency planning when they least expected to
learn about it. Together with Curt Gervich, Associate Professor at State
University of New York College at Plattsburgh, he created Utility Smart, an
app to help people monitor their use of shared natural resources.

Jesse is founder of Friends of Saranac River Trail and of Philmont
Main Street Committee. He is heard regularly on The Roundtable from
WAMC Public Radio for the Northeast where he discusses the intersection
of society and technology. He is a speaker and guest lecturer as well as a
teacher and trainer specializing in the business and technology of iOS app
development. He also provides consulting services for organizations that
need help focusing on their objectives and the means to achieve them
with modern technology. He is co-author with Gail B. Nayowith of The
Nonprofit Risk Book as well as The Nonprofit Risk App — NP Risk).

xii

About the Technical Reviewer

A passionate developer and experience enthusiast, Aaron Crabtree has
been involved in mobile development since the dawn of the mobile device.
He has written and provided technical editing for a variety of books on the
topic, as well as taken the lead on some very cool, cutting-edge projects
over the years. His latest endeavor, building apps for augmented reality
devices, has flung him back where he wants to be: as an early adopter in an
environment that changes day by day as new innovation hits the market.
Hit him up on Twitter where he tweets about all things mobile and AR: @
aaron_crabtree

xiii

Introduction

Computer Science is the study of computers and their operations. It
includes concepts of computability and how software is designed that are
now being taught to students as young as six years old. It also includes
complex concepts of the largest, latest, and most advanced computers and
systems. This book provides an introduction to people who want to learn
the basics for practical reasons: they want to understand the principles

of computer science that will help them to become developers (or better
developers). The focus is on practical applications of computer science.
Along those lines, Swift, the modern language developed originally at
Apple, is used for many examples that are shown in Swift playgrounds. You
will find practical discussions of issues as varied as debugging techniques
and user-interface design that are essential to know in order to build apps
today. Note that Swift playgrounds are used to demonstrate a number of
computer science concepts, but this is not a book solely about Swift. Not
all of the language constructs are demonstrated in the book.

There is one critical piece of advice I give to people who want to learn
how to develop apps, and that is to use them. Download and try to use
every app that you possibly can. Read reviews of apps. Talk to people about
their experiences. Too often, people jump into trying to write apps without
knowing what the state of the art (and of the marketplace) is today.

Many people have helped in the development of this book. Carole
Jelen of Waterside Productions has once again been instrumental in
bringing the book into being. At Apress, Jessica Valiki and Aaron Black
have been essential guides and partners in helping to shape the book and

its content.

INTRODUCTION

In the course of writing this book, I've been lucky enough to be
involved in several app development projects that have provided case
studies and examples of the process of app development. Thanks are due
particularly to Curt Gervich, Maeve Sherry, and Michael Otton at Center
for Earth and Environmental Science at State University of New York
College at Plattsburgh as well as Sonal Patel-Dame of Plattsburgh High
School.

Downloading Playgrounds for the Book

You can download playgrounds from the book from the author’s website at
champlainarts.com.

CHAPTER 1

Thinking
Computationally

Computer science is the term that applies to the basic principles involved in
developing computer software and systems that incorporate that software. It
is abstract and theoretical in the sense that it typically is considered outside
the syntax and structure of specific computer languages and hardware.

That is the definition that we use in this book. If you explore other
books and articles on the Web (including descriptions of computer science
courses at all levels and types of education), you will find a wide array of
other definitions.

This chapter provides an overview of the topic and focuses on key
elements of computer science. This book provides a practical approach
to computer science, so you'll see how the elements can fit into your work
rather than looking at a theoretical view of computer science. The focus is
on how you will use the concepts and principles of computer science in
building real apps.

The key elements of computer science are divided into two groups in
this book. The first is the pair of concepts that developers use as part of
their work every day:

e Recognizing patterns

e Using abstractions

© Jesse Feiler 2018
J. Feiler, Learn Computer Science with Swift, https://doi.org/10.1007/978-1-4842-3066-4_1

CHAPTER 1 THINKING COMPUTATIONALLY

Then you'll see the four tasks that are used in every aspect of software
development from the largest system to the smallest component of a tiny
system. These tasks are the following:

e Formulating a computational problem
e Modeling the problem or process

e Practicing decomposition

e Validating abstractions

In the remaining chapters, you'll find descriptions of syntax elements
and structures, but in this chapter, the focus is on the concepts you use to
carry out the basic software development tasks that are over and above
syntax and structure.

Computer Science Today

Computer science principles and techniques are implemented in
computer hardware and software using various programming languages
and devices. Even users get into the picture as they learn to enter data,
share it with others, convert data from one format to another (think
spreadsheet to email) and a host of other tasks that demonstrate computer
science in action.

One of the challenges in teaching and learning computer science is
that in order to learn the principles, you have to have enough knowledge
and experience of computer hardware and software to understand how
they interact with computer science principles.

This has been a tremendous challenge for decades. If you want to
learn how to be a builder, you can start by building a doll house or a bird
house. Your materials might consist of paper and (if you want a permanent
structure) some glue or even staples. The basic principles of home
construction can be simply demonstrated and described.

CHAPTER 1 THINKING COMPUTATIONALLY

The challenge with computer science is that to build a small project,
you may be able to write a single line of code, but, in order for it to run and
do something - anything - you need a computer, and it needs an operating
system. (This was true going back to the earliest days of computers.)

The computer today will consist of electronic components, and the
operating system today of even the most minimal computer is incredibly
complex. The steps you take to get to a “simple” computer science app are
enormous.

Using Swift Playgrounds

If you have an iPad or Mac, you have access to Apple’s free Swift
Playgrounds tool. Together with the device itself, you have all of the
components you need to start to build simple apps with even a single line
of code.

Swift Playgrounds provides a massive infrastructure on top of which
you can write a few lines of code to start to explore computer science as
well as specific languages and techniques. You can run this code in the
playground and watch the results. (You can also modify the results and the
code as it is running if you want to experiment).

For your own use or for others, you can easily annotate the code.
Figure 1-1 shows a playground with annotations. It is running, and you can
see the result of the print statements at the bottom of the window. At the
right, you see a sidebar that monitors the code as it runs.

CHAPTER 1 THINKING COMPUTATIONALLY

LI] Bnady | Tedry w TS M ED«s D2 0O

Swift Playground for Jesse Feiler's
Computer Science Book
Store data in arrays

Here's an array of arrays using JSON syntax

| 7 var myArray = [[I"Windows': 50, "Trash™: 50, "Layers™; 50, "Rec... &
L o

"Date®:513968111.567585,
"Layers":50,

"Recycling” :@.3567828407287643,
"Seore” 1158,

"Thermostat™:60,

"Trash":5@,

“windows " : 568

1,

[
"Date”:513948122.893972,

"Layers":50,
"Recyeling® 199.97700000000001,
"Score” 1168,
"Thermostat®:5@,
rash® 160
Wi ndows 1 58

EREUNEUBSEIERF

Create a variable to store data

® let valuesMap = myArray.map {$8["Score"]} [3 times) =
Print it out

= print, (* valuesMap: \(valuesMap)*®} * valueshiap: [Optional(150.0], Ootioral(1500/ &

b=

Do it for another variable

¥ let sortedMap = myhrray.sorted(by: {(sl, e2) in return sl["Score"]! < s2["Scora"]i}) (2 times) =
% print, [* sortedMap: \(sortedMap.map{$el=Score®]})") (2 times) =
| =
Bl

Figure 1-1. Swift Playgrounds in action

If you see Figure 1-1 in color, you can see that the elements of code
syntax are colored automatically to help you understand what is going
on in the code. This coloring and indentation happens automatically as
you type.

In this book, you will find a number of examples of computer science
principles that are demonstrated with Swift Playgrounds. You can
download them as described in the Introduction.

One very important point to know about Swift Playgrounds is that
the code you are writing is real. It is real in the sense that it is actual code

CHAPTER 1 THINKING COMPUTATIONALLY

written in the Swift programming language (the language for most iOS,
tvOS, and watchOS apps today as well as a number of macOS apps). You
can copy some code from an app you're working on and paste it into a
playground so you can experiment with it. (There are some details on how
to do this in Chapter 7).

Note The playground shown in Figure 1-1 is a real-life example

of using production code in a playground. This code is part of an

app that was not doing exactly what it should. It was isolated into

a playground where we could fiddle with the syntax until it worked
properly. Once that was done, the revised code was pasted back

into the app, and it’s now part of Utility Smart that you can download
for free in the App Store. If some of the code in Figure 1-1 seems
complex, you are right. It was line 35 that caused the confusion. You'll
find out about the map function in Chapter 3.

Basic Concepts and Practices of Computer
Science Today

These are the basic concepts and practices that developers use in their
everyday work whether it is designing complex systems or writing very
simple apps. They apply to software that is used for games, for accounting,
for managing assets (real estate or digital media), or just about anything
else people want their computers to do. If you want details of the history
of computer science and the major steps to today’s world, you can find a
great deal of information on the Web and in your local library. This section
is based on actual developers’ work.

You can learn these over time as you develop apps, and you can find
them in many books and articles. These concepts and practices are not

CHAPTER 1 THINKING COMPUTATIONALLY

specific to computer science: they are part and parcel of many design and
development disciplines. (Don’t worry, the following section is devoted
specifically to software development).

Both of these concepts and practices stem from a very basic truth:
writing code is a complex and expensive process. Not only does the code
have to be written, but it also needs to be tested and revised over time.
Computer code can have a very long life. (When the Year 2000 problem
was addressed in the late 1990s, code from the 1950s and 1960s was found
in many production systems. The authors of the code in many cases were
retired or deceased, and what documentation that might have existed was
lost. Much of the cost of mitigating the Year 2000 problems derived from
rewriting existing code).

Because writing code is expensive, it is wise to minimize the amount
of code to be written and rewritten and tested. Both of these concepts help
to minimize the amount of code to be written. The overall theme is that to
write the best code possible (that is, well-written, well-tested, and well-
documented code) as quickly as possible, follow one simple rule: Don’t
Write Code. Failing that, write as little code as possible. And, to putitin a
more traditional way, use as much existing code as possible.

Recognizing Patterns

If you recognize patterns, you may be able to reduce the amount of work
you have to do by seeing a pattern and realizing that you can implement
the pattern itself rather than each particular variation of it from scratch.

A classic example of patterns is shown in Figure 1-2, the west front of
Notre Dame in Paris. Your first reaction may be personal (perhaps you
have been to Paris) or it may be general - along the lines of how beautiful
the facade is. An architect, designer, or software developer might go
beyond the personal and the general to notice that this facade consists of
three doorways at the street level and two towers at the top level.

THINKING COMPUTATIONALLY

CHAPTER 1

e, Paris

Figure 1-2. West front of Notre Dam

CHAPTER 1 THINKING COMPUTATIONALLY

The west front of Notre Dame presents a multitude of patterns that
repeat with slight variations. The three doorways at the first level are
similar in overall width and height, but if you look closely, they are
not copies of one another. Likewise, the two towers are fundamentally
the same, but they, too, have variations. Almost every other element
of the facade is part of a repeating pattern of one sort or another. (The
most obvious exception to this is the large rose window in the center
of the second level: it is unique, and its uniqueness reflects its religious
importance).

The importance of recognizing patterns is that once you do so, your
job in describing or implementing a concept (be it an app or a cathedral)
may be made easier. You no longer have to describe or build each detail or
component: you can describe the pattern that is replicated.

Using Abstractions

Often, as is the case on the west front of Notre Dame, patterns are repeated
with variations. (The dimensions of the doorways are the same but the
decoration and meaning of the statues differ.) The part of the pattern that
repeats can be considered an abstraction - the essence of the pattern. In
computer terms, the abstraction can be what you need to implement to
support multiple uses of the pattern.

For example, if you need code to ask the user of an app for an address, that
can become part of a pattern that also allows you to ask the user for a name.
(The term design pattern is sometimes used to describe the reusable code).

CHAPTER 1 THINKING COMPUTATIONALLY

Combining Patterns and Abstractions for
Development

In practice, developers often work with patterns and abstractions at the
same time because they are really two sides of the same coin. In designing
an app (or a part of an app), developers look to patterns that they can
implement with the same basic code. This reduces the amount of code that
needs to be written.

As the design process continues, developers also look for near-patterns.
If parts of the project can be modified slightly, a pattern may emerge. This
is an iterative, creative, and judgmental process. Frequently, the extreme of
pattern-building may make the app more complex for people to use. As a
project evolves with input from users and developers, refinements can be
made on both sides (user and developer) so that a good balance is made
between repetitive patterns and customization for the user.

As part of this process, you frequently find yourself looking at the
suggested process to see not only if there is some pattern to reuse but also
if there is an abstraction that can be created so that the user sees extreme
customization (that is, ease of use) and the developer works on a generic
abstraction).

A lot of the coding techniques you'll find in modern software
development help you to implement patterns and abstractions.

Fundamental Tasks for Developers

Building on the basic principles of patterns and abstractions, you can
actually start to plan your project. There are four basic tasks for developers.
Once you're familiar with them, the rest of the book explores specifics of
implementation.

e Formulating a computational problem

e Modeling the problem or process

CHAPTER 1 THINKING COMPUTATIONALLY

e Practicing decomposition

o Validating abstractions

Formulating a Computational Problem

The first step is formulating your project as a computational problem. This
is more than just saying, “Let’s build an app.” It means deciding not only
what your goal is but also why it is amenable to computation (that is, why
computer science comes into play). Computer science isn’t the answer

to everything: if you want to paint the dining room, it’s not going to be of
much help.

In theoretical computer science, there are at least five types of
computational problems. In deciding whether or not a specific project is
amenable to computerization, classic computer science suggests that you
find if it falls into one of these categories:

e Choice or decision. Find a yes/no answer to a specific
question. Typically, the question is phrased in terms of
numbers and values (is person X greater than 21 years
of age?, is value x odd or even?)

e Search. In this problem, a body of data is searched and
the choice/decision true values are returned. (Of all
students enrolled in a school, how many will be eligible
to vote in the next election?)

e Count. This variation asks merely how many values
would be returned from a search. Note that the
operations involved in a search can be more complex
than in a count - you don’t care who the students are
in this case so you don’t need to find out names or
addresses.

10

CHAPTER 1 THINKING COMPUTATIONALLY

e Optimization. Of all results of a search, which is the
best? If the search is for all eligible voters near a specific
address, you can use the results to optimize the result
to find the voters near a specific address who voted in
the last election and have a car (so might be willing to
provide a ride to the polling place).

e Function. In effect, this is a search problem (which
in turn is built on a choice problem). It is further
refined with the optimizable results that can be further
narrowed down. A simplified description of a function
problem is one that returns a more complicated
answer than yes/no or a count. (Remember, this is a
simplification.)

If a problem is not one of these five, it is not computational. This may
sound bizarre because it’s hard to see where something like Pages or
Excel or even Swift Playgrounds fits into this list. Never fear: a project can
be broken down into computational pieces. In fact, if you really want to
delve deeply into the project, you'll find that each line of code can often be
considered to consist of a number (often many) of computational pieces.

Recognizing and Describing the Problem

Once you have formulated the problem, your task isn’t over. There are still
two very important aspects involved in formulating an idea for an app. In
fact, these are steps that you take at the beginning and, repeatedly, at many
stages through the development process. You may be chomping at the bit
wanting to get into code and technology, but you have to start with the
idea: what is the purpose of your project? If it’s to build an app, what does
the app do?

11

CHAPTER 1 THINKING COMPUTATIONALLY

Perhaps the best guidance in formulating what your app does can be
found on websites like Kickstarter or any other resource that helps people
describe a not-yet-built project. You can answer any number of specific
questions, but you must somehow know what your project or app will
accomplish.

Many developers are happy to leave the marketing to other people,
but you must be able to describe the project in clear and specific terms for
many purposes beyond marketing. In the case of an app, one critical step
in the development process is getting an icon for the app. Icon design is a
very special area of design and graphic arts. Few developers produce final
icons (many provide rough sketches for development). You are likely to
need to sit with a graphic designer to discuss what the icon will look like.
That conversation starts out with the designer’s question: what does this

app do?

Tip The conversation between app developer and designer can be
particularly useful in the development process because it can clarify
the project. This applies to any discussion with a non-developer.
Describing the app to a friend or relative can be very productive: they
tend to ask basic questions that can help you refine your design.

Defining a Project and Goal

With a computational problem that you want to focus on and a description
of the problem in hand, you can move to defining a project and your goal.
The project in general is to refine the computational problem at the core
of your project and to make sure you can define it in appropriate terms

for anyone who needs to know about it (friends, relatives, colleagues,
investors, potential users, and the like).

12

CHAPTER 1 THINKING COMPUTATIONALLY

Specifically, you need to start thinking about the scope of your project.
Part of computer science is learning to define projects and split them into
component parts if necessary. For a specific project, you may want to think
about how to break it into manageable components even if you intend to
do it in one process. Knowing how to split it apart if necessary can be a
helpful backup plan in case you need to do it in the future.

What Isn’t a Computational Problem

The most common non-computational problems you run across tend to
involve people and data. (Note that this is an entirely subjective point of
view based on personal experiences. But it is shared by many developers).
Sometimes an app is envisioned as something almost magical - it will
provide the answer to a question posed by the user. If you cannot break
down the problem into computational components, you can’t answer
the question. In thinking and talking about a problem, you may want
to pose the question: how will we do this? You don’t need to look for an
answer in code at this point; rather, you need to know how the problem
under discussion can be resolved. If it involves a person’s judgment
and that judgment cannot be quantified, it’s hard to see how it can be
computational. If it involves referring to data and the data is not available,
you also have a non-computational problem. You may be able to break a
judgment down into computational components, but, ultimately, if you are
left with judgment that cannot be computed (“gut feeling” is a term some
people use for this), you need some tool other than computer science.

Tip Although not all problems are computational, you can frequently
use a computational formulation to crunch numbers and display data
so that a judgmental kernel is left. Users can use your app to clear
away every computational issue and then use their own judgment on
that non-computational kernel.

13

CHAPTER 1 THINKING COMPUTATIONALLY

Modeling the Problem or Process

As soon as you can formulate the problem and the part(s) of the problem
that your project encompasses, you can start to model the problem. At
this stage you can use any tools that you want to - pencil and paper, smart
board, iPad, or anything else. You might want to draw boxes that perform
parts of the task you want to build. Don’t worry about code - just think
about something (whatever it turns out to be) that, for example, computes
a person’s telephone number (yes, that is a computational problem - a
search).

This model might turn out to be how your app is structured, but at
this stage, it is just how parts of your app will do things that together make
up the entire app. What you want to do at this point is to decide if this
collection of tasks or operations (the terms are interchangeable in this
context) can produce the results you need. Once you have a rough model,
try to break it. What happens if the phone number lookup fails or returns
the wrong number? What other components will be impacted?

Don’t worry about every loose end in a high-level model, but many
people keep a list of these loose ends and assumptions. It’s very easy to
start assuming that they are all dealt with later on and, without that list
of assumptions, you can wind up with an almost-ready app that misses a
critical component. (Any developer can recount many examples of this).

Practicing Decomposition

Once you have a conceptual model, it’s time to drill down into it: take each
component apart and look at its components. (This process is known as
decomposition.) As you decompose the entire project into smaller and
smaller parts, you are often going to be specifying components that will be
implemented in code.

14

CHAPTER 1 THINKING COMPUTATIONALLY

As you decompose the model, you may start to realize that this or that
component is something that you know how to implement already or that
can be implemented using known resources. If you are very lucky, your
decomposed project can be implemented with very little additional work.

Rearranging and Recomposing the
Project Pieces

But “lucky” doesn’t happen very often. In the real world, what developers
often find is that if they make some adjustments to the model, the
decomposed pieces may become easier to implement. Perhaps the most
important point to make about the entire design process is that until it is
actually being implemented, everything should be considered changeable.

Take the project apart and put it back together again as you rethink
each component. The goal is to make a project that does what you want
it to do and to gradually refine the components into manageable and
implementable pieces.

There’s not a word about code yet. All of the modeling and
decomposition is theoretical. Many developers (including the author)
think that the longer you work hypothetically, the more robust your
implementation will be. Somehow, moving into the code implementation
can be a distraction from the design and planning process. Not everyone
agrees with this, but many developers do agree.

Validating Abstractions

One of the most important aspects of computer science is that it gives

us a way to talk about the development process and about not-yet-built
software. Concepts such as decomposition are formalized ways of working
in this realm of not-yet-built software. Of course, when a project is actually
implemented, the proof of the pudding is revealed: either it works or it
doesn’t.

15

