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Preface

The study of Kihler immersions of a given real analytic Kdhler manifold into a
finite- or infinite-dimensional complex space form originates from the pioneering
work of Eugenio Calabi [10]. With a stroke of genius, Calabi defined a powerful
tool, a special (local) potential called the diastasis function, which allowed him
to obtain necessary and sufficient conditions for a neighbourhood of a point
to be locally Kiahler immersed into a finite- or infinite-dimensional complex
space form. As an application of this criterion, he also provided a classification
of (finite-dimensional) complex space forms admitting a Kihler immersion into
another. However, a complete classification of Kéhler manifolds admitting a Kahler
immersion into complex space forms is not known, not even when the Kihler
manifolds involved are of great interest, e.g. when they are Einstein or homogeneous
spaces. In fact, the diastasis function is not always explicitly given, and most of
the time Calabi’s criterion, although theoretically impeccable, is difficult to apply.
Nevertheless, throughout the last 60 years many mathematicians have worked on
the subject and many interesting results have been obtained.

The aim of this book is to describe Calabi’s original work, to provide a detailed
account of what is known today on the subject and to point out some open problems.

Each chapter begins with a brief summary of the topics discussed and ends with
a list of exercises to test the reader’s understanding.

Apart from the topics discussed in Sect. 3.1 of Chap. 3, which could be skipped
without compromising the understanding of the rest of the book, the prerequisites
for this book are a basic knowledge of complex and Kéhler geometry (treated, e.g.
in Moroianu’s book [61]).

The authors are grateful to Claudio Arezzo and Fabio Zuddas for their careful
reading of the text and for their valuable comments, which have greatly improved
the book’s exposition.

Cagliari, Italy Andrea Loi

Parma, Italy Michela Zedda
June 2018
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Chapter 1 )
The Diastasis Function Check for

Abstract In this chapter we describe the diastasis function, a basic tool introduced
by Calabi (Ann Math 58:1-23, 1953) which is fundamental to study Kéhler
immersions of Kéhler manifolds into complex space forms. In Sect. 1.1 we define
the diastasis function and summarize its basic properties, while in Sect. 1.2 we
describe the diastasis functions of complex space forms, which represent the basic
examples of Kéhler manifolds. Finally, in Sect. 1.3 we give the formal definition of
what a Kdhler immersion is and prove that the indefinite Hilbert space constitutes a
universal Kidhler manifold, in the sense that it is a space in which every real analytic
Kéhler manifold can be locally Kidhler immersed.

1.1 Calabi’s Diastasis Function

Let M be an n-dimensional complex manifold endowed with a real analytic Kéhler
metric g. Recall that the Kahler metric g is real analytic if fixed a local coordinate
system z = (z1,...,2,) on a neighbourhood U of any point p € M, it can be
described on U by a real analytic Kéhler potential @ : U — R. In that case the
potential @ (z) can be analytically continued to an open neighbourhood W C U x U
of the diagonal. Denote this extension by @ (z, w).

Definition 1.1 The diastasis function D(z, w) on W is defined by:
D, w)=®(z,2)+® (w,w) - P (z,w) —P (w,2). (1.1)

The following proposition describes the basic properties of D(z, w).

Proposition 1.1 (Calabi [10]) The diastasis function D(z, w) given by (1.1)
satisfies the following properties:

(i) it is uniquely determined by the Kdhler metric g and it does not depend on the
choice of the local coordinate system;
(ii) it is real valued in its domain of (real) analyticity;
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2 1 The Diastasis Function

(iii) it is symmetric in z and w and D(z, z) = 0;
(iv) once fixed one of its two entries, it is a Kdhler potential for g.

Proof

(i) By the 33-Lemma a Kihler potential is defined up to the addition of the real

part of a holomorphic function, namely, given two Kéhler potentials ¢ and
@ onU C M, then ® = & + f + f for some holomorphic function f.
Conclusions follow again by (1.1).

(i) Since @(z,z) = P (z) is real valued, then from @(z,z) = P(z,7) and by
uniqueness of the extension it follows @ (z, w) = @ (w, 7).

(iii) It follows directly from (1.1).

(iv) Fix w (the case of z fixed is totally similar). Then:

2 82 82
_ D(z,w) = _P(z,2) = _ P (2).
0707k @ w) 0707k @2 0707k ®
O
The last property justifies the following second definition.
Definition 1.2 If w = (wy, ..., w,) are local coordinates for a fixed point p € M,

the diastasis function centered at p is given by:
D, (2) = D(z, w).

In particular, if p is the origin of the coordinate system chosen, we write Dg(z).

The importance of the diastasis function for our purposes is expressed by the
following:

Proposition 1.2 (Calabi [10]) Let (M, g) and (S, G) be Kdihler manifolds and
assume G to be real analytic. Denote by w and 2 the Kdhler forms associated to
g and G respectively. If there exists a holomorphic map f: (M, g) — (S, G) such
that {*§2 = w, then the metric g is real analytic. Further, denoted by Dﬁ‘,’l :U—-> R

and D‘;.(p) : V. — R the diastasis functions of (M, g) and (S, G) around p and

f(p) respectively, we have fo(p) of = Dg” on f~H(V)NU.

Proof Observe first that the metric g on M is real analytic being the pull-back
through a holomorphic map of the real analytic metric G. In order to prove the
second part, fix a coordinate system {z} around p € M. From f*Glynrw) =
8lr-1ovynus if @S and @M are Kihler potential for G and g around f(p) and p
respectively, we get:

PP5(f(2), f2) _ *dM(z,2)
37,07k o 9zj0%

ie. @5(f(2), f(z)) = ®M(z,7) + h + h and conclusion follows by (1.1). O



