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Preface

Developing mobile apps is an interesting yet challenging task. Different
mobile platforms have their own ecosystems. There are new programming
languages, frameworks, libraries, and tools to learn. Building complicated
mobile apps or games requires a lot of experience. But not all mobile apps
are complicated. There are still many mobile apps that are content-centric.
This kind of apps focuses on content presentations and doesn’t use many
native features. For these kinds of apps, PhoneGap and its successor
Apache Cordova offer a different way to build them.

Mobile platforms usually have a component to render web pages. Cordova
uses this component to create a wrapper for running web pages. Cordova
provides different wrappers for different platforms. The web pages become
the mobile apps to develop. After using Cordova, developers can use front-
end skills to create cross-platform mobile apps. This empowers front-end
developers to create good enough content-centric mobile apps. Many other
frameworks build on top of Cordova to provide out-of-box components to
make building mobile apps much easier.

This book focuses on the latest version 2 of the popular lonic framework.
The best way to learn a new framework is using it in real product
development. This book is not a manual for lonic 2, but a field guide of

how to use it. We'll build a Hacker News client app using lonic 2 and use
this as the example to discuss different aspects of lonic 2. This book not
only covers the implementation of the Hacker News client app, but also

the whole development life cycle, including unit tests, end-to-end tests,
continuous integration, and app publish. After reading this book, you should
get a whole picture of building mobile apps using lonic 2.

Most of the nontrivial mobile apps need back-end service to work with them.
Using mobile apps back-end services is a new trend that eliminates the
heavy burden to write extra code and maintain the back-end infrastructure.
Google Firebase is a popular choice of mobile apps back-end services. The
Hacker News client app uses Firebase to handle user authentication and
user favorites data storage. After reading this book, you should be able to
integrate Firebase in your own apps.

Xix



XX Preface

Prerequisites

lonic 2 builds on top of Angular 2 and uses TypeScript instead of JavaScript.
Basic knowledge of Angular 2 and TypeScript is required to understand the
code in this book. This book provides the basic introduction to Angular 2
and TypeScript, but it’s still recommended to refer to other materials for
more details.

To build lonic 2 apps running on iOS platform, macOS is required to run
the emulator and Xcode. You may also need real physical iOS or Android
devices to test the apps.
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the world. Thank you to my technical reviewer Massimo Nardone for your
time and insightful feedback.

Many thanks to my whole family for the support during the writing of this
book.



Chapter

Getting Started

Mobile apps development is a hot topic for both companies and individual
developers. You can use various kinds of frameworks and tools to build
mobile apps for different platforms. In this book, we use lonic 2 to build
so-called hybrid mobile apps. As the first chapter, this chapter provides the
basic introduction of hybrid mobile apps and helps you to set up the local
environment for development, debugging, and testing.

Mobile Apps Refresher

With the prevalence of mobile devices, more and more mobile apps have
been created to meet all kinds of requirements. Each mobile platform has
its own ecosystem. Developers use SDKs provided by the mobile platform
to create mobile apps and sell them on the app store. Revenue is shared
between the developers and the platform. Table 1-1 shows the statistics of
major app stores at the time of writing.

Table 1-1. Statistics of major app stores

App Store Number of available apps Downloads to date
App Store (i0S) 2.2 million 140 billion
Google Play 2.6 million 65 billion
Windows Store 669,000+ -

BlackBerry World 240,000+ 4 billion

Amazon Appstore 334,000+ --

© Fu Cheng 2017
F. Cheng, Build Mobile Apps with lonic 2 and Firebase,
DOI 10.1007/978-1-4842-2737-4_1



2 CHAPTER 1: Getting Started

The prevalence of mobile apps also creates a great opportunity for application
developers and software companies. A lot of individuals and companies make
big money on the mobile apps markets. A classic example is the phenomenal
mobile game Flappy Bird. Flappy Bird was developed by Vietham-based
developer Dong Nguyen. The developer claimed that Flappy Bird was earning
$50,000 a day from in-app advertisements as well as sales. Those successful
stories encourage developers to create more high-quality mobile apps.

Let’s now take a look at some key components of mobile app development.

Hybrid Mobile Apps

Developing mobile apps is not an easy task. If you only want to target a
single mobile platform, then the effort may be relatively smaller. However,
most of the times we want to distribute apps on many app stores to
maximize the revenue. To build that kind of apps which can be distributed
to various app stores, developers need to use different programming
languages, SDKs, and tools, for example, Objective-C/Swift for iOS and
Java for Android. We also need to manage different code bases with similar
functionalities but implemented using different programming languages. It’s
hard to maximize the code reusability and reduce code duplications across
different code bases, even for the biggest players in the market. That’s why
cross-platform mobile apps solutions, like Xamarin (https://www.xamarin.
com/), React Native (https://facebook.github.io/react-native/), and
RubyMotion (http://www.rubymotion.com/) also gain a lot of attention. All
these solutions have a high learning curve for their programming languages
and SDKs, which creates a burden for ordinary developers.

Comparing to Objective-C/Swift, Java, C# or Ruby, web development skills,
for example, HTML, JavaScript, and CSS are much easier to learn. Building
mobile apps with web development skills is made possible by HTML5. This
new type of mobile apps is called hybrid mobile apps. In hybrid mobile apps,
HTML, JavaScript, and CSS code run in an internal browser (WebView) that
is wrapped in a native app. JavaScript code can access native APIs through
the wrapper. Apache Cordova (https://cordova.apache.org/) is the most
popular open source library to develop hybrid mobile apps.

Compared to native apps, hybrid apps have their benefits and drawbacks.
The major benefit is that developers can use existing web development skills
to create hybrid apps and use only one code base for different platforms.

By leveraging responsive web design techniques, hybrid apps can

easily adapt to different screen resolutions. The major drawback is the
performance issues with hybrid apps. As the hybrid app is running inside

of an internal browser, the performance of hybrid apps cannot compete

with native apps. Certain types of apps, such as games or apps that rely on
complicated native functionalities, cannot be built as hybrid apps. But many
other apps can be built as hybrid apps.


https://www.xamarin.com/
https://www.xamarin.com/
https://facebook.github.io/react-native/
http://www.rubymotion.com/
https://cordova.apache.org/
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Before making the decision of whether to go with native apps or hybrid
apps, the development team needs to understand the nature of the apps

to build. Hybrid apps are suitable for content-centric apps, such as news
readers, online forums, or showcasing products. Another important factor
to consider is the development team’s skill sets. Most apps companies may
need to hire both iOS and Android developers to support these two major
platforms for native apps. But for hybrid apps, only front-end developers are
enough. It’s generally easier to hire front-end developers than Java or Swift/
Objective-C developers.

Apache Cordova

Apache Cordova is a popular open source framework to develop hybrid
mobile apps. It originates from PhoneGap (http://phonegap.com/) created
by Nitobi. Adobe acquired Nitobi in 2011 and started to provide commercial
services for it. The PhoneGap source code was contributed to the Apache
Software Foundation and the new project Apache Cordova was started from
its code base.

An Apache Cordova application is implemented as a web page. This web
page can reference JavaScript, CSS, images, and other resources. The key
component of understanding how Cordova works is the WebView. WebView

is the component provided by native platforms to load and run web pages.
Cordova applications run inside the WebViews. A powerful feature of Cordova
is its plugin interface which allows JavaScript code running in a web page
to communicate with native components. With the help of plugins, Cordova
apps can access a device’s accelerometer, camera, compass, contacts, and
more. There are already many plugins available in Cordova’s plugin registry
(http://cordova.apache.org/plugins/).

Apache Cordova is just a runtime environment for web apps on native
platforms. It can support any kind of web pages. To create mobile apps that
look like native apps, we need other Ul frameworks to develop hybrid mobile
apps. Popular choices of hybrid mobile apps Ul frameworks include lonic
framework (http://ionicframework.com/), Sencha Touch (https://www.
sencha.com/products/touch/), Kendo Ul (http://www.telerik.com/kendo-ui),
and Framework? (http://framework7.io/). lonic framework is the one we are
going to cover in this book.

lonic Framework

lonic framework is a powerful tool to build hybrid mobile apps. It’s open
source (https://github.com/driftyco/ionic) and has over 28,500 stars on
GitHub, the popular social coding platform. lonic framework is not the only
player in hybrid mobile apps development, but it’s the one that draws a lot


http://phonegap.com/
http://cordova.apache.org/plugins/
http://ionicframework.com/
https://www.sencha.com/products/touch/
https://www.sencha.com/products/touch/
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of attention and is recommended as the first choice by many developers.
lonic is popular for the following reasons:

Use Angular (https://angular.io/) as the JavaScript
framework. Since Angular is a popular JavaScript
framework, the large number of Angular developers find
it quite easy when moving to use lonic for mobile apps
development.

Provide beautifully designed out-of-box Ul components
that work across different platforms. Common
components include lists, cards, modals, menus, and
pop-ups. These components are designed to have a
similar look and feel as native apps. With these built-in
components, developers can quickly create prototypes
with good enough user interfaces and continue to
improve them.

Leverage Apache Cordova as the runtime to
communicate with native platforms. lonic apps can
use all the Cordova plugins to interact with the native
platform. lonic Native further simplifies the use of
Cordova plugins in lonic apps.

Performs great on mobile devices. The lonic team
devotes great effort to make it perform great on different
platforms.

lonic 2 (http://ionic.i0/2) is a completely rewritten version of lonic
framework based on Angular 2. It dramatically improves performance and
reduces the complexity of the code. It’s recommended to use this new
version of lonic framework to build hybrid mobile apps. This book uses the
2.0.1 version of lonic 2.

Firebase

Mobile apps usually need back-end services to work with the front-end Ul.
This means that there should be back-end code and servers to work with
mobile apps. Firebase (https://firebase.google.com/) is a cloud service to
power apps’ back-end. Firebase can provide support for data storage and
user authentication. After integrating mobile apps with Firebase, we don’t
need to write back-end code or manage the infrastructure.

Firebase works very well with lonic to eliminate the pain of maintaining back-
end code. This is especially helpful for hybrid mobile apps developers with
only front-end development skills. Front-end developers can use JavaScript
code to interact with Firebase.


https://angular.io/
http://ionic.io/2
https://firebase.google.com/
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Prepare Your Local Development Environment

Before we can build lonic apps, we need to set up the local development
environment first. We’'ll need various tools to develop, test, and debug
lonic apps.

Node.js

Node.js is the runtime platform for lonic CLI. To use lonic CLI, we need to
install Node.js (https://nodejs.org/) on the local machine first. Node.js is
a JavaScript runtime built on Chrome’s V8 JavaScript engine. It provides a
way to run JavaScript on the desktop machines and servers. lonic CLI itself
is written in JavaScript and executed using Node.js. There are two types of
release versions of Node.js — the stable LTS versions and current versions
with the latest features. It's recommended to use Node.js version 6 or
greater, especially the latest LTS version (6.9.4 at the time of writing).

Installing Node.js also installs the package management tool npm. npm is
used to manage Node.js packages used in projects. Thousands of open
source packages can be found in the npmjs registry (https://www.npmjs.com/).
If you have a background with other programming languages, you may find
npm is similar to Apache Maven (https://maven.apache.org/) for Java libraries
or Bundler (http://bundler.io/) for Ruby gems.

lonic GLI

After Node.js is installed, we can use npm to install lonic command-line
tools and Apache Cordova.

$ npm install -g cordova ionic

Note You may need to have system administrator privileges to install these
two packages. For Linux and macQS, you can use sudo. For Windows, you can
start a command-line window as the administrator. However, it's recommended
to avoid using sudo when possible, as it may cause permission errors when
installing native packages. Treat this as the last resort. The permission errors
usually can be resolved by updating the file permissions of the Node.js
installation directory.

After finishing installation of lonic CLI and Cordova, we can use the
command ionic to start developing lonic apps.


https://nodejs.org/
https://www.npmjs.com/
https://maven.apache.org/
http://bundler.io/
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You are free to use Windows, Linux, or macOS to develop lonic 2 apps.
Node.js is supported across different operating systems. One major
limitation of Windows or Linux is that you cannot test iOS apps using the
emulator or real devices. Some open source Node.js packages may not
have the same test coverage on Windows as Linux or macOS. So they are
more likely to have issues when running on Windows. But this should only
affect the CLI or other tools, not lonic 2 itself.

Yarn

Yarn (https://yarnpkg.com/) is a fast, reliable, and secure dependency
management tool. After Facebook open sourced it, it quickly became
popular in the Node.js community as a better alternative to npm. If you want
to use yarn, follow the official instructions (https://yarnpkg.com/en/docs/
install) to install it. After installing yarn, we can use the following command
to install lonic CLI and Cordova.

$ yarn global add cordova ionic

This book uses yarn instead of npm. If you didn’t know about yarn before,
read this guide (https://yarnpkg.com/en/docs/migrating-from-npm) about
how to migrate from npm to yarn. Common yarn commands are listed
below:

yarn add [package] — Add packages as the project’s
dependencies. You can provide multiple packages to
install. Version requirement can be specified following
the Semantic Versioning spec (http://semver.org/).

yarn upgrade [package] — Upgrade or downgrade
versions of packages.

yarn remove [package] — Remove packages.
yarn global — Manage global dependencies.

The file yarn.lock contains the extract version of all resolved dependencies.
This file is to make sure that builds are consistent across different machines.
This file should be managed in the source code repository.

After lonic CLlI is installed, we can run ionic info to print out current
runtime environment information and check for any warnings in the output;
see Listing 1-1. The output also provides details information about how to
fix those warnings.


https://yarnpkg.com/
https://yarnpkg.com/en/docs/install
https://yarnpkg.com/en/docs/install
https://yarnpkg.com/en/docs/migrating-from-npm
http://semver.org/
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Listing 1-1. Output of ionic info

Your system information:

Cordova CLI: 6.4.0

Ionic Framework Version: 2.0.1

Ionic CLI Version: 2.2.1

Ionic App Lib Version: 2.1.7

Ionic App Scripts Version: 1.0.0

ios-deploy version: 1.9.0

ios-sim version: 5.0.11

0S: mac0S Sierra

Node Version: v6.9.4

Xcode version: Xcode 8.2.1 Build version 8C1002

i10S
Developing iOS apps with lonic requires macOS and Xcode. You need to
install Xcode and Xcode command-line tools on macQOS. After installing

Xcode, you can open a terminal window and type the command shown
below.

$ xcode-select -p

If you see output like below, then command-line tools have already been
installed.

/Applications/Xcode.app/Contents/Developer
Otherwise, you need to use the following command to install it.
$ xcode-select --install

After the installation is finished, you can use xcode-select -p to verify.

To run lonic apps on the iOS simulator using lonic CLI, package ios-sim
is required. Another package ios-deploy is also required for deploying to
install and debug apps. You can install both packages using the following
command.

$ yarn global add ios-sim ios-deploy

Android

To develop lonic apps for Android, Android SDK must be installed. Before
installing Android SDK, you should have JDK installed first. Read this guide
(https://docs.oracle.com/javase/8/docs/technotes/guides/install/)
about how to install JDK 8 on different platforms. It’s recommended to install


https://docs.oracle.com/javase/8/docs/technotes/guides/install/
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Android Studio (https://developer.android.com/studio/index.html) that
provides a nice IDE and bundled Android SDK tools. If you don’t want to use
Android Studio, you can install stand-alone SDK tools.

Note Android API level 22 is required to run lonic apps. Make sure that the
required SDK platform is installed.

Stand-alone SDK tools is just a ZIP file; unpack this file into a directory

and it’s ready to use. The downloaded SDK only contains basic SDK tools
without any Android platform or third-party libraries. You need to install the
platform tools and at least one version of the Android platform. Run android
in tools directory to start Android SDK Manager to install platform tools
and other required libraries.

After installing Android SDK, you need to add SDK’s tools and platform-
tools directories into your PATH environment variable, so that SDK’s
commands can be found by lonic. Suppose that the SDK tools is unpacked
into /Development/android-sdk, then add /Development/android-sdk/tools
and /Development/android-sdk/platform-tools to PATH environment
variable. For Android Studio, the Android SDK is installed into directory /
Users/<username>/Library/Android/sdk.

To modify PATH environment variable on Linux and macOS, you can edit
~/.bash_profile file to update PATH as shown below.

export PATH=${PATH}:/Development/android-sdk/platform-tools \
:/Development/android-sdk/tools

To modify PATH environment variable on Windows, you can follow the steps
below.

1. Click Start menu, then right-click Computer and
select Properties.

2. Click Advanced System Settings to open a dialog.

3. Click Environment Variables in the dialog and find
PATH variable in the list, then click Edit.

4. Append the path of tools and platform-tools
directories to the end of PATH variable.

It is highly recommended to use Android Studio instead of stand-alone SDK
tools. Stand-alone SDK tools are more likely to have configuration issues.


https://developer.android.com/studio/index.html
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Genymotion

Genymotion (https://www.genymotion.com/) is a fast Android emulator.
It’s recommended to use Genymotion for Android emulation instead of the
standard emulators.

IDEs and Editors

You are free to use your favorite IDEs and editors when developing lonic
apps. IDEs and editors should have good support for editing HTML,
TypeScript, and Sass files. For commercial IDEs, WebStorm (https://www.
jetbrains.com/webstorm/) is recommended for its excellent support of
various programming languages and tools. For open source alternatives,
Visual Studio Code (https://code.visualstudio.com/) and Atom
(https://atom.io/) are both popular choices.

Create an App Skeleton

After the local development environment is set up successfully, it’s time to
create new lonic apps. lonic 2 provides four different types of application
templates. We can choose a proper template to create the skeleton code

of the app. Apps are created using the command ionic start. The first
argument of ionic start is the name of the new app, while the second
argument is the template name. The --v2 flag is also required when creating
lonic 2 apps; otherwise, lonic 1 apps will be created instead.

The source code of these templates can be found on GitHub (https://
github.com/driftyco?query=ionic2-starter-). All these templates follow
the same naming convention. The template names all start with ionic2-
starter-. After removing the prefix ionic2-starter-, we can get the
template name to be used in the command ionic start. For example,
ionic2-starter-blank is the name of the template for blank apps.

Blank App

The template blank (https://github.com/driftyco/ionic2-starter-blank)
only generates basic code for the app. This template should be used when
you want to start from a clean code base; see Figure 1-1.

$ ionic start blankApp blank --v2


https://www.genymotion.com/
https://www.jetbrains.com/webstorm/
https://www.jetbrains.com/webstorm/
https://code.visualstudio.com/
https://atom.io/
https://github.com/driftyco?query=ionic2-starter
https://github.com/driftyco?query=ionic2-starter
https://github.com/driftyco/ionic2-starter-blank

