Build Mobile Apps
with lonic 2 and
Firebase

Hybrid Maobile App Development
Fu Cheng

ApPress’

Build Mobile Apps
with lonic 2 and
Firebase

Fu Cheng

Apress’

Build Mobile Apps with Ionic 2 and Firebase: Hybrid Mobile App Development

Fu Cheng
Sandringham, Auckland
New Zealand

ISBN-13 (pbk): 978-1-4842-2736-7 ISBN-13 (electronic): 978-1-4842-2737-4
DOI10.1007/978-1-4842-2737-4

Library of Congress Control Number: 2017941053
Copyright © 2017 by Fu Cheng

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole

or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even
if they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the

date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Technical Reviewer: Massimo Nardone
Coordinating Editor: Jessica Vakili
Copy Editor: Karen Jameson
Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover image designed by Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit waw.springeronline.com. Apress Media, LLC is
a California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.
apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference
our Print and eBook Bulk Sales web page athttp://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at waw. apress.com/
978-1-4842-2736-7. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/978-1-4842-2736-7
www.apress.com/978-1-4842-2736-7
http://www.apress.com/source-code
http://www.apress.com/source-code

To my wife Andrea and my daughter Olivia

Contents at a
Glance

About the AUthor ... —————— XV
About the Technical REVIEWETccuussesssssnsssssnsssssnsssssanssssnsssssnnssssns Xvii
- O Xix
Chapter 1: Getting Started.........ccoccccmnninnemnmmnnsennnnmnssssnmnssssnmnnnn. 1
Chapter 2: Languages, Frameworks, Libraries, and Tools............ 19
Chapter 3: Basic App Structureccoueemmmmsssssnmmssssssnssssssssssssssnns 47
Chapter 4: List Stories........ccccmmmmmmmmmmmmmmmmmmmmsssssssnnsssssssssssssnns 57
Chapter 5: View Story......cc.cccimmnnsmmmmmmsssnsnmmssssssnmsssssssssssssssssnsns 117
Chapter 6: View Commentsccccnmmnnemmnmmsssssssmsssssssssssssssssnns 127
Chapter 7: User Management..........ccccuseemmmmssssnnnnsssssssnssssssnsnsnsns 139
Chapter 8: Manage Favorites..........ccccuunsemmmmnssssnnnmsssssssnssssssssnnnsns 177
Chapter 9: Share STOries......ccumrurmrmsssnsmssssnssssnssssssnsssssnssssanssssas 195
Chapter 10: Common Componentscccunmeemmsnnnnnmmmmssssssssnnns 203

vi Contents at a Glance

Chapter 11: Advanced TOPICScuieerrsssmsesssnsssssnsssssnnssssnsssssnnssssas 215
Chapter 12: End-to-End Test and Build..........ccccerrrrnnssssssnnnnnnnnnnas 227
Chapter 13: Publish..........cccocccmmnninsemmmmnnssssmnmmnssssnmnssssnmssssssns 239

Contents

About the AUthOrcccciisemmmmmisssssmmssssssn s ——————— XV
About the Technical ReVIEWETccussesrsssssssssssssssnsssssanssssanssssnnssssns Xvii
() - - Xix
Chapter 1: Getting Started.........ccoccccmmninemnnnnssesnnnnsssssnmnssssnnnnn. 1
Mobile Apps RefreSher ... 1
Hybrid Mobile APPScoviverierirerer st se s se e sne e 2
APACNE COTAOVA........eeereeereeereerersererereesersesessesessesesaessssessssessesesassssassassessssesssesasnenaes 3

10NIC FraAMEBWOIK.......c.ceeececccreeceeee e s 3
=] - 4
Prepare Your Local Development Environmentcccoeverercerieniennnnns 5
NOUE.JS et e e a e e e b e s r e e nenrsnenrnnenn 5

103 T3 X OO 5

I0S w.vevveeeeesseessessssesssssesssessssses s s R R R R e R s 7
ANAPOIU ...t r e R n e e ne e nnn 7

IDES @nd EQITOrScccoverriicrreserresssesssesss e sse e ssssessssesse e sssssssessssessssessssesssssssssssnens 9
Create an App SKeleton ... 9

L5 T Y o TS 9

BE: 1] 2o AT o] TS TT 10

vii

viii Contents

SIABMENU ... 11
LT 0] TSP 12
Local Development..........ccoceveirrcernierrrerrer s s sse s ee s ssse e s e e ssnessneenns 13
Use Chrome for DeVelOPMENL..........ccveeercerrrere e e reeserse e sesaesassesaesenes 14
Use Chrome DevTools for Android Remote Debugging..........ccovevurrrresessssssesesssnnns 15
Test on EMUIALOrS........cccoiernircinc s 15
T0S coeeeeeeeeseesesse s st b e R 15
ANAFOI ... 16
SUMMANY ...t sn e e sr s r s sr s n s sn e sn e sr e snesn e nnnnnenan 17
Chapter 2: Languages, Frameworks, Libraries, and Tools............ 19
TYPESCHIPL ...t 20
WHY TYPESCIIPL? ...t 20
BaSIC TYPESecueerereeeeresreecrisrs et e 21
FUNCLIONS ...t 25
Interfaces and CIASSES ... 27
DL TeT0] £ (0] PSP 31
ANQUIAE 2 ...t e 34
RXUS oot 41
ODSErVaDIe.......coccr i ———————— 41
ODSEIVELS ..uessicssss bbb 42
T4 42
00T (0] £ 43
3 17 43
VariabIes........cceeccr e 43
NESHING e saenae 44
IMIXINS <o 44
Jasmine and Karma ... ssssnsnens 45

11T 11] 1P SRS 45

Contents ix

Chapter 3: Basic App Structure.........cccunmmnmimismmsnmsmssnsssssmsmn 47
Understanding the Basic App STructureccceeeevverveerieenrevseesessensaens 48
0] 1T N S 48
PACKAGE.JSOMN......ceveereerereererersrersesersesersessssersssessssessssssssssssessssessesessessssssessssassesssneres 48
(04T 111 49
LG0T 0 49
10 T { o 1 T 0 o 50
1053 L1 T 50
LUAIEOICONTIG covcvercrrecir i ————————— 50
Cordova Files.......cccorirmrinniii s 50
NOOKS ...ttt s 50
PIALFOIMS ... e 50
PIUGINS .ttt p e e ne s n e n e 51
L 51
ADPP FIlBS .t ss e sn e n e sa e n e sn e n e n e 51
XML s 51
deClarationS.d.iS ... —————————— 51
manifest.json and SErviCe-WOIKEL|Sc.ovocecrerererererrseesesesssseseses s sesessessesessns 51
ASSELS .urriricsi s —————————————————— 51
TNBIME .o s 52
1] 52
COMPONENTS......couiercreserresersssessssesesessssss e ss e s e sssss s sss e sas e sas e sansss e sassesassesnssssnens 52
02T 52
SKeleton Code ... 52
APP.MOAUIBES ... sr e e r e s r e n e saenn 52
APP.COMPONENELES...eeieireciecere e sa e e sa e s e sa e sr e sn e saenas 53

APPNEMLL.cc e ——————————— 54

X

Contents
MAINES.c.cii e ——————————— 55
1] S 55
Page 1 and Page 2 Files ... 55
11T 11] 11PN 55
Chapter 4: List Stories........ccccnmmmmmmmmmmmmmmmmsmsssssssnsmsssssssssssssnnnns 57
Define the MOdel ... 57
List COMPONENTcoecireeercre e 58
4]] (=8 I O 58
Header and SEParators........cccccveevererrererseressersesessssessesesessssessssessssesssssssessssessesenes 59
Grouping Of HEMSccerereccrerere st re s ra e sa e ae e n e sesae e s nae e s 59
JCONS .. —————————————————— 60
AVALAIS......coiiiiiis i ———————————————————— 61
TAUMDBNAIIS ... —————————————— 61
Display a List of Rems.........ccccvvrcrcrcrrrr s 62
eM COMPONENL ... 63
eMS COMPONENTcovieeecerececrte e e 65
1001 ST 65
Test List COMPONENT........cccccvveeririeererree e s seesse s e ssessaessessasssessnesnes 66
TOOIS ..ot —————————————————— 66
Testing Configuration...........cecceeeererrerrcerreree e res e sae e res e saesesassenans 67
Testing ltems COMPONENT.......ccoceeeererrerer et ra e ae e e senaes 4l
RUNTESES ..ttt 75
Items Loading SErviCe........ccourrererrerenniersse e sns e enes 76
TOP STOrES PAQE......cccvcererirerir s 78
TOST e —————————————————————————— 79
FIrebDase BaSICS........cccrurererermrerirssens s s sasssnens 82
Database SIrUCTUNE.........cccuiinnii s ————— 82
Firebase JavaSCript SDKcccoeorerrererererrererereesersererseses e reesessesessssessesassesssnenns 83

L1 (=1 D 86

Contents xi

QUETY DaL.....c.oveeecerrrrirercessssese st s st ses 87
NAVIGALION. ...t 89
Hacker NEWS AP ... 89
Y410 T T -2 90
APL ..o 91
Implement HEMSEIVICEcoveveerererere et se e sa e sae s 92
Manage the CRANGES........ccccvrrereerererererereresrereesesseseraesessesesessesessssessssessesassesssseres 93
FUPhEr IMPIOVEMENTSceueueecrerseesressessesseessessessssseessessss s ssesssssssssssssssssssases 95
Pagination and Refresh ...t 98
ADVANCE LIStccirirririisrrisissssiissss s 102
CUSTOMIZATION......cccririccr s —————— 105
L3 11 o 107
(0 Lo LT o UL N =) 108
0T Lo 11 S SSSS 108
Error Handling.........coevevininene s sse s s sss s e sssssssssssssssses s 112
SUMMANY ...t n e sr e n s sn e sn e n e nn e sn e nn e n s 116
Chapter 5: View Story......cc.ccccmmmmnsemnmmsssssnmsssssssssssssssssssssssssssnss 117
INADPP BrOWSET ...t cne s sne s s snesnesnesn e sne e snesnennenas 117
INSTANALON ... s 118
0PN @URL ... 118
1] o (OO 121
A Better SOIULION.......cccoveeeeecerececsere e 122
B3 4T[O 125
L] o OO 126
111 1] 1P S 126
Chapter 6: View COmMMENtSccccummssmnmsssnsmsssnsssssanssssssssssnnsnssas 127
LV T0 P2 [0 o S 127
5T (o - T - 127

Page NaVIgation...........ccceevererierrrere s e sereresesassersesessesessesessesassesasesassesasnenaes 128

xii

Contents
10T 128
Refactoring......cccucvvrrrsrsrsersr s 129
SBIVICES ...uticct s bbb 129
o 1oL O 131
View COMMENTS ..o s 133
CommeNtCOMPONENT..........cccorereererirneseres s s 133
CommentSCOMPONENT ... s 134
BBIMS...c s 135
VIieW COMMENTS........cocveiereririririrerie e 135
COMMENTSPAGE ... 136
1111 1P 138
Chapter 7: User Management...........couumemmsmmsssmssmsssmssssssssasnsanns 139
10NiC Ul CONEIOIS ... 139
INPUES .. e e e p e r s 140
01T T 140
Radio BULLONS ..o 141
SEIBCTS ...t —————————————— 142
TOGUIES ..ttt r e r e nr s 144
RANQES....e it e e r e e p e nr s 144
LADBIS ..o ———————— 146
MOGAL.......cii i ———————————————— 146
TOOIDAL ... 147
MEBNU....ciiiiii s ————————————— 148
Email and Password LOgincccecvercernessessssesses s s sessnnnnas 150
MO L. ———————————— 150
AULNSEIVICE ... 150
SIgN-UP FOMM ...t s r e 154
L0l o T O 158

Contents xiii

Third-Party LOGiN........c.ccvvrverreriersensersensessessessessessessessessesssssesssssssssssnnns 163

67070 T I T 164

s (o1 010 0 o] 168

) 3 101 00T 170
TOSE e —————————————— 174
SUMMAIY ...t sn s resn s nnn e nnas 175
Chapter 8: Manage Favorites........cccccrmmrrmmssssssssnnnnnsnsssssssssssnnsnnnas 177
FaVOriteS SEIVICE.......ccceeiverrrrierisse s 177
FaVvoriteS Page........ccccevvirrmrierre s sne s 180
Favorites HEMS.........cocceicerrcrrr s 184
TESHNG....coviereeerrer et s 187
1111 1P S 193
Chapter 9: Share Stories........cccininemmmmmsssennnmnssssnnmmssssssnmesssssns 195
(072 (0 I 1 | OO 195
G LAYOUL....cceeeeeeeeeecreee e snesn e snesnesr e sne e sn e snennennennennas 196
B3] 1T L1 o SRR 198

More About the PIUGINc.corerriiererereccr e enes 200
1111 1P 201
Chapter 10: Common Componentsccccrvnmsssmnnmmssssssnsssssssssssns 203
ACHION ShEEL ... s 203
POPOVEN ...t nnnn s 206
B3] 10 T TSR 209
TADS ... ———————————————— 212

xiv Contents

Chapter 11: Advanced TOPICScuieerrsssmsesssnsssssnsssssnnssssnsssssnnssssas 215
PIatfOrm......cccccecce e 215
LI L0101 T 216
010] (0] 218
00] 1o PSSR 219
RS 0] 72T 219
Push NOtIficationsccconiicnninenncr s 221
SUMMAIY ... s sn s nnn s 225
Chapter 12: End-to-End Test and Build.........ccccccmrrrrnssssnnnnnnnnnnas 227
End-to-End Test with Protractorccoeevceeniniensscnssssesssesesenens 227

Protractor Configccovreeererereeserisse s s 228

Top Stories Page TeSt........ccocerrecrerreeserere e 230

Page ODbjects and SUITES.........covecererernercrrne e 231

User Management TEST ... s 233

Favorites Page TES........cveeceerereccrer e 234
11 o TP 236

PhantomJsS for UNIt TESTS.......ccceceererererererereresesese e 236

GIIAD Cl cevvvverseeeeeessseessssseeeesssssssesses 236
SUMMAIY ...t n s e sn s 237
Chapter 13: PubliShccccciivnnnmmmsessmnnnmmmmsssssssssnsssssssssssssssnns 239
Icons and Splash SCreens.........cccovercrernrcre s 239
Deploy 10 DEVICES.....c.cvcererrererser st sn e 240
View and Share with [0niC VIEW ..o 241
10NIC DEPIOY......eeceeeeeeeeerecrerre e sr e sr e sn e r e sn e snenn e nn e nnenan 242
Cloud CHENL ... 242
DEPIOY SEIVICE ...coerererererrer sttt sa e sn e sa e n e 243
SUMMANY ...t snssn s sn s n s sn s sn e n e nn e nnnnnnn s 246

About the Author

Fu Cheng is a full-stack software developer working in a healthcare start-up
in Auckland, New Zealand. During his many years of experience, he worked
in different companies to build large-scale enterprise systems, government
projects, and SaaS products. He is an experienced JavaScript and Java
developer and always wants to learn new things. He enjoys sharing
knowledge by writing blog posts, technical articles, and books.

About the Technical
Reviewer

Massimo Nardone has more than 22 years of experience in Security, Web/
Mobile development, Cloud, and IT Architecture. His true IT passions are
Security and Android.

He has been programming and teaching how to program with Android, Perl,
PHP, Java, VB, Python, C/C++, and MySQL for more than 20 years.

He holds a Master of Science degree in Computing Science from the
University of Salerno, ltaly.

He has worked as a Project Manager, Software Engineer, Research Engineer,
Chief Security Architect, Information Security Manager, PCI/SCADA Auditor,
and Senior Lead IT Security/Cloud/SCADA Architect for many years.

Technical skills include the following: Security, Android, Cloud, Java,
MySQL, Drupal, Cobol, Perl, Web and Mobile development, MongoDB, D3,
Joomla, Couchbase, C/C++, WebGL, Python, Pro Rails, Django CMS, Jekyll,
Scratch, etc.

He currently works as Chief Information Security Officer (CISO) for
Cargotec Oyj;j.

He worked as visiting lecturer and supervisor for exercises at the Networking
Laboratory of the Helsinki University of Technology (Aalto University). He
holds four international patents (PKI, SIP, SAML, and Proxy areas).

Massimo has reviewed more than 40 IT books for different publishing
companies, and he is the coauthor of Pro Android Games (Apress, 2015).

This book is dedicated to Antti Jalonen and his family who are always there
when | need them.

xvii

Preface

Developing mobile apps is an interesting yet challenging task. Different
mobile platforms have their own ecosystems. There are new programming
languages, frameworks, libraries, and tools to learn. Building complicated
mobile apps or games requires a lot of experience. But not all mobile apps
are complicated. There are still many mobile apps that are content-centric.
This kind of apps focuses on content presentations and doesn’t use many
native features. For these kinds of apps, PhoneGap and its successor
Apache Cordova offer a different way to build them.

Mobile platforms usually have a component to render web pages. Cordova
uses this component to create a wrapper for running web pages. Cordova
provides different wrappers for different platforms. The web pages become
the mobile apps to develop. After using Cordova, developers can use front-
end skills to create cross-platform mobile apps. This empowers front-end
developers to create good enough content-centric mobile apps. Many other
frameworks build on top of Cordova to provide out-of-box components to
make building mobile apps much easier.

This book focuses on the latest version 2 of the popular lonic framework.
The best way to learn a new framework is using it in real product
development. This book is not a manual for lonic 2, but a field guide of

how to use it. We'll build a Hacker News client app using lonic 2 and use
this as the example to discuss different aspects of lonic 2. This book not
only covers the implementation of the Hacker News client app, but also

the whole development life cycle, including unit tests, end-to-end tests,
continuous integration, and app publish. After reading this book, you should
get a whole picture of building mobile apps using lonic 2.

Most of the nontrivial mobile apps need back-end service to work with them.
Using mobile apps back-end services is a new trend that eliminates the
heavy burden to write extra code and maintain the back-end infrastructure.
Google Firebase is a popular choice of mobile apps back-end services. The
Hacker News client app uses Firebase to handle user authentication and
user favorites data storage. After reading this book, you should be able to
integrate Firebase in your own apps.

Xix

XX Preface

Prerequisites

lonic 2 builds on top of Angular 2 and uses TypeScript instead of JavaScript.
Basic knowledge of Angular 2 and TypeScript is required to understand the
code in this book. This book provides the basic introduction to Angular 2
and TypeScript, but it’s still recommended to refer to other materials for
more details.

To build lonic 2 apps running on iOS platform, macOS is required to run
the emulator and Xcode. You may also need real physical iOS or Android
devices to test the apps.

Acknowledgments

This book would not have been possible without the help and support of
many others. Thank you to my editors, Aaron Black, Jessica Vakili, and
James Markham; and the rest of the Apress team, for bringing this book into
the world. Thank you to my technical reviewer Massimo Nardone for your
time and insightful feedback.

Many thanks to my whole family for the support during the writing of this
book.

Chapter

Getting Started

Mobile apps development is a hot topic for both companies and individual
developers. You can use various kinds of frameworks and tools to build
mobile apps for different platforms. In this book, we use lonic 2 to build
so-called hybrid mobile apps. As the first chapter, this chapter provides the
basic introduction of hybrid mobile apps and helps you to set up the local
environment for development, debugging, and testing.

Mobile Apps Refresher

With the prevalence of mobile devices, more and more mobile apps have
been created to meet all kinds of requirements. Each mobile platform has
its own ecosystem. Developers use SDKs provided by the mobile platform
to create mobile apps and sell them on the app store. Revenue is shared
between the developers and the platform. Table 1-1 shows the statistics of
major app stores at the time of writing.

Table 1-1. Statistics of major app stores

App Store Number of available apps Downloads to date
App Store (i0S) 2.2 million 140 billion
Google Play 2.6 million 65 billion
Windows Store 669,000+ -

BlackBerry World 240,000+ 4 billion

Amazon Appstore 334,000+ --

© Fu Cheng 2017
F. Cheng, Build Mobile Apps with lonic 2 and Firebase,
DOI 10.1007/978-1-4842-2737-4_1

2 CHAPTER 1: Getting Started

The prevalence of mobile apps also creates a great opportunity for application
developers and software companies. A lot of individuals and companies make
big money on the mobile apps markets. A classic example is the phenomenal
mobile game Flappy Bird. Flappy Bird was developed by Vietham-based
developer Dong Nguyen. The developer claimed that Flappy Bird was earning
$50,000 a day from in-app advertisements as well as sales. Those successful
stories encourage developers to create more high-quality mobile apps.

Let’s now take a look at some key components of mobile app development.

Hybrid Mobile Apps

Developing mobile apps is not an easy task. If you only want to target a
single mobile platform, then the effort may be relatively smaller. However,
most of the times we want to distribute apps on many app stores to
maximize the revenue. To build that kind of apps which can be distributed
to various app stores, developers need to use different programming
languages, SDKs, and tools, for example, Objective-C/Swift for iOS and
Java for Android. We also need to manage different code bases with similar
functionalities but implemented using different programming languages. It’s
hard to maximize the code reusability and reduce code duplications across
different code bases, even for the biggest players in the market. That’s why
cross-platform mobile apps solutions, like Xamarin (https://www.xamarin.
com/), React Native (https://facebook.github.io/react-native/), and
RubyMotion (http://www.rubymotion.com/) also gain a lot of attention. All
these solutions have a high learning curve for their programming languages
and SDKs, which creates a burden for ordinary developers.

Comparing to Objective-C/Swift, Java, C# or Ruby, web development skills,
for example, HTML, JavaScript, and CSS are much easier to learn. Building
mobile apps with web development skills is made possible by HTML5. This
new type of mobile apps is called hybrid mobile apps. In hybrid mobile apps,
HTML, JavaScript, and CSS code run in an internal browser (WebView) that
is wrapped in a native app. JavaScript code can access native APIs through
the wrapper. Apache Cordova (https://cordova.apache.org/) is the most
popular open source library to develop hybrid mobile apps.

Compared to native apps, hybrid apps have their benefits and drawbacks.
The major benefit is that developers can use existing web development skills
to create hybrid apps and use only one code base for different platforms.

By leveraging responsive web design techniques, hybrid apps can

easily adapt to different screen resolutions. The major drawback is the
performance issues with hybrid apps. As the hybrid app is running inside

of an internal browser, the performance of hybrid apps cannot compete

with native apps. Certain types of apps, such as games or apps that rely on
complicated native functionalities, cannot be built as hybrid apps. But many
other apps can be built as hybrid apps.

https://www.xamarin.com/
https://www.xamarin.com/
https://facebook.github.io/react-native/
http://www.rubymotion.com/
https://cordova.apache.org/

CHAPTER 1: Getting Started 3

Before making the decision of whether to go with native apps or hybrid
apps, the development team needs to understand the nature of the apps

to build. Hybrid apps are suitable for content-centric apps, such as news
readers, online forums, or showcasing products. Another important factor
to consider is the development team’s skill sets. Most apps companies may
need to hire both iOS and Android developers to support these two major
platforms for native apps. But for hybrid apps, only front-end developers are
enough. It’s generally easier to hire front-end developers than Java or Swift/
Objective-C developers.

Apache Cordova

Apache Cordova is a popular open source framework to develop hybrid
mobile apps. It originates from PhoneGap (http://phonegap.com/) created
by Nitobi. Adobe acquired Nitobi in 2011 and started to provide commercial
services for it. The PhoneGap source code was contributed to the Apache
Software Foundation and the new project Apache Cordova was started from
its code base.

An Apache Cordova application is implemented as a web page. This web
page can reference JavaScript, CSS, images, and other resources. The key
component of understanding how Cordova works is the WebView. WebView

is the component provided by native platforms to load and run web pages.
Cordova applications run inside the WebViews. A powerful feature of Cordova
is its plugin interface which allows JavaScript code running in a web page
to communicate with native components. With the help of plugins, Cordova
apps can access a device’s accelerometer, camera, compass, contacts, and
more. There are already many plugins available in Cordova’s plugin registry
(http://cordova.apache.org/plugins/).

Apache Cordova is just a runtime environment for web apps on native
platforms. It can support any kind of web pages. To create mobile apps that
look like native apps, we need other Ul frameworks to develop hybrid mobile
apps. Popular choices of hybrid mobile apps Ul frameworks include lonic
framework (http://ionicframework.com/), Sencha Touch (https://www.
sencha.com/products/touch/), Kendo Ul (http://www.telerik.com/kendo-ui),
and Framework? (http://framework7.io/). lonic framework is the one we are
going to cover in this book.

lonic Framework

lonic framework is a powerful tool to build hybrid mobile apps. It’s open
source (https://github.com/driftyco/ionic) and has over 28,500 stars on
GitHub, the popular social coding platform. lonic framework is not the only
player in hybrid mobile apps development, but it’s the one that draws a lot

http://phonegap.com/
http://cordova.apache.org/plugins/
http://ionicframework.com/
https://www.sencha.com/products/touch/
https://www.sencha.com/products/touch/
http://www.telerik.com/kendo-ui
http://framework7.io/
https://github.com/driftyco/ionic

4 CHAPTER 1: Getting Started

of attention and is recommended as the first choice by many developers.
lonic is popular for the following reasons:

Use Angular (https://angular.io/) as the JavaScript
framework. Since Angular is a popular JavaScript
framework, the large number of Angular developers find
it quite easy when moving to use lonic for mobile apps
development.

Provide beautifully designed out-of-box Ul components
that work across different platforms. Common
components include lists, cards, modals, menus, and
pop-ups. These components are designed to have a
similar look and feel as native apps. With these built-in
components, developers can quickly create prototypes
with good enough user interfaces and continue to
improve them.

Leverage Apache Cordova as the runtime to
communicate with native platforms. lonic apps can
use all the Cordova plugins to interact with the native
platform. lonic Native further simplifies the use of
Cordova plugins in lonic apps.

Performs great on mobile devices. The lonic team
devotes great effort to make it perform great on different
platforms.

lonic 2 (http://ionic.i0/2) is a completely rewritten version of lonic
framework based on Angular 2. It dramatically improves performance and
reduces the complexity of the code. It’s recommended to use this new
version of lonic framework to build hybrid mobile apps. This book uses the
2.0.1 version of lonic 2.

Firebase

Mobile apps usually need back-end services to work with the front-end Ul.
This means that there should be back-end code and servers to work with
mobile apps. Firebase (https://firebase.google.com/) is a cloud service to
power apps’ back-end. Firebase can provide support for data storage and
user authentication. After integrating mobile apps with Firebase, we don’t
need to write back-end code or manage the infrastructure.

Firebase works very well with lonic to eliminate the pain of maintaining back-
end code. This is especially helpful for hybrid mobile apps developers with
only front-end development skills. Front-end developers can use JavaScript
code to interact with Firebase.

https://angular.io/
http://ionic.io/2
https://firebase.google.com/

CHAPTER 1: Getting Started 5

Prepare Your Local Development Environment

Before we can build lonic apps, we need to set up the local development
environment first. We’'ll need various tools to develop, test, and debug
lonic apps.

Node.js

Node.js is the runtime platform for lonic CLI. To use lonic CLI, we need to
install Node.js (https://nodejs.org/) on the local machine first. Node.js is
a JavaScript runtime built on Chrome’s V8 JavaScript engine. It provides a
way to run JavaScript on the desktop machines and servers. lonic CLI itself
is written in JavaScript and executed using Node.js. There are two types of
release versions of Node.js — the stable LTS versions and current versions
with the latest features. It's recommended to use Node.js version 6 or
greater, especially the latest LTS version (6.9.4 at the time of writing).

Installing Node.js also installs the package management tool npm. npm is
used to manage Node.js packages used in projects. Thousands of open
source packages can be found in the npmjs registry (https://www.npmjs.com/).
If you have a background with other programming languages, you may find
npm is similar to Apache Maven (https://maven.apache.org/) for Java libraries
or Bundler (http://bundler.io/) for Ruby gems.

lonic GLI

After Node.js is installed, we can use npm to install lonic command-line
tools and Apache Cordova.

$ npm install -g cordova ionic

Note You may need to have system administrator privileges to install these
two packages. For Linux and macQS, you can use sudo. For Windows, you can
start a command-line window as the administrator. However, it's recommended
to avoid using sudo when possible, as it may cause permission errors when
installing native packages. Treat this as the last resort. The permission errors
usually can be resolved by updating the file permissions of the Node.js
installation directory.

After finishing installation of lonic CLI and Cordova, we can use the
command ionic to start developing lonic apps.

https://nodejs.org/
https://www.npmjs.com/
https://maven.apache.org/
http://bundler.io/

6 CHAPTER 1: Getting Started

You are free to use Windows, Linux, or macOS to develop lonic 2 apps.
Node.js is supported across different operating systems. One major
limitation of Windows or Linux is that you cannot test iOS apps using the
emulator or real devices. Some open source Node.js packages may not
have the same test coverage on Windows as Linux or macOS. So they are
more likely to have issues when running on Windows. But this should only
affect the CLI or other tools, not lonic 2 itself.

Yarn

Yarn (https://yarnpkg.com/) is a fast, reliable, and secure dependency
management tool. After Facebook open sourced it, it quickly became
popular in the Node.js community as a better alternative to npm. If you want
to use yarn, follow the official instructions (https://yarnpkg.com/en/docs/
install) to install it. After installing yarn, we can use the following command
to install lonic CLI and Cordova.

$ yarn global add cordova ionic

This book uses yarn instead of npm. If you didn’t know about yarn before,
read this guide (https://yarnpkg.com/en/docs/migrating-from-npm) about
how to migrate from npm to yarn. Common yarn commands are listed
below:

yarn add [package] — Add packages as the project’s
dependencies. You can provide multiple packages to
install. Version requirement can be specified following
the Semantic Versioning spec (http://semver.org/).

yarn upgrade [package] — Upgrade or downgrade
versions of packages.

yarn remove [package] — Remove packages.
yarn global — Manage global dependencies.

The file yarn.lock contains the extract version of all resolved dependencies.
This file is to make sure that builds are consistent across different machines.
This file should be managed in the source code repository.

After lonic CLlI is installed, we can run ionic info to print out current
runtime environment information and check for any warnings in the output;
see Listing 1-1. The output also provides details information about how to
fix those warnings.

https://yarnpkg.com/
https://yarnpkg.com/en/docs/install
https://yarnpkg.com/en/docs/install
https://yarnpkg.com/en/docs/migrating-from-npm
http://semver.org/

CHAPTER 1: Getting Started 7

Listing 1-1. Output of ionic info

Your system information:

Cordova CLI: 6.4.0

Ionic Framework Version: 2.0.1

Ionic CLI Version: 2.2.1

Ionic App Lib Version: 2.1.7

Ionic App Scripts Version: 1.0.0

ios-deploy version: 1.9.0

ios-sim version: 5.0.11

0S: mac0S Sierra

Node Version: v6.9.4

Xcode version: Xcode 8.2.1 Build version 8C1002

i10S
Developing iOS apps with lonic requires macOS and Xcode. You need to
install Xcode and Xcode command-line tools on macQOS. After installing

Xcode, you can open a terminal window and type the command shown
below.

$ xcode-select -p

If you see output like below, then command-line tools have already been
installed.

/Applications/Xcode.app/Contents/Developer
Otherwise, you need to use the following command to install it.
$ xcode-select --install

After the installation is finished, you can use xcode-select -p to verify.

To run lonic apps on the iOS simulator using lonic CLI, package ios-sim
is required. Another package ios-deploy is also required for deploying to
install and debug apps. You can install both packages using the following
command.

$ yarn global add ios-sim ios-deploy

Android

To develop lonic apps for Android, Android SDK must be installed. Before
installing Android SDK, you should have JDK installed first. Read this guide
(https://docs.oracle.com/javase/8/docs/technotes/guides/install/)
about how to install JDK 8 on different platforms. It’s recommended to install

https://docs.oracle.com/javase/8/docs/technotes/guides/install/

8 CHAPTER 1: Getting Started

Android Studio (https://developer.android.com/studio/index.html) that
provides a nice IDE and bundled Android SDK tools. If you don’t want to use
Android Studio, you can install stand-alone SDK tools.

Note Android API level 22 is required to run lonic apps. Make sure that the
required SDK platform is installed.

Stand-alone SDK tools is just a ZIP file; unpack this file into a directory

and it’s ready to use. The downloaded SDK only contains basic SDK tools
without any Android platform or third-party libraries. You need to install the
platform tools and at least one version of the Android platform. Run android
in tools directory to start Android SDK Manager to install platform tools
and other required libraries.

After installing Android SDK, you need to add SDK’s tools and platform-
tools directories into your PATH environment variable, so that SDK’s
commands can be found by lonic. Suppose that the SDK tools is unpacked
into /Development/android-sdk, then add /Development/android-sdk/tools
and /Development/android-sdk/platform-tools to PATH environment
variable. For Android Studio, the Android SDK is installed into directory /
Users/<username>/Library/Android/sdk.

To modify PATH environment variable on Linux and macOS, you can edit
~/.bash_profile file to update PATH as shown below.

export PATH=${PATH}:/Development/android-sdk/platform-tools \
:/Development/android-sdk/tools

To modify PATH environment variable on Windows, you can follow the steps
below.

1. Click Start menu, then right-click Computer and
select Properties.

2. Click Advanced System Settings to open a dialog.

3. Click Environment Variables in the dialog and find
PATH variable in the list, then click Edit.

4. Append the path of tools and platform-tools
directories to the end of PATH variable.

It is highly recommended to use Android Studio instead of stand-alone SDK
tools. Stand-alone SDK tools are more likely to have configuration issues.

https://developer.android.com/studio/index.html

CHAPTER 1: Getting Started 9

Genymotion

Genymotion (https://www.genymotion.com/) is a fast Android emulator.
It’s recommended to use Genymotion for Android emulation instead of the
standard emulators.

IDEs and Editors

You are free to use your favorite IDEs and editors when developing lonic
apps. IDEs and editors should have good support for editing HTML,
TypeScript, and Sass files. For commercial IDEs, WebStorm (https://www.
jetbrains.com/webstorm/) is recommended for its excellent support of
various programming languages and tools. For open source alternatives,
Visual Studio Code (https://code.visualstudio.com/) and Atom
(https://atom.io/) are both popular choices.

Create an App Skeleton

After the local development environment is set up successfully, it’s time to
create new lonic apps. lonic 2 provides four different types of application
templates. We can choose a proper template to create the skeleton code

of the app. Apps are created using the command ionic start. The first
argument of ionic start is the name of the new app, while the second
argument is the template name. The --v2 flag is also required when creating
lonic 2 apps; otherwise, lonic 1 apps will be created instead.

The source code of these templates can be found on GitHub (https://
github.com/driftyco?query=ionic2-starter-). All these templates follow
the same naming convention. The template names all start with ionic2-
starter-. After removing the prefix ionic2-starter-, we can get the
template name to be used in the command ionic start. For example,
ionic2-starter-blank is the name of the template for blank apps.

Blank App

The template blank (https://github.com/driftyco/ionic2-starter-blank)
only generates basic code for the app. This template should be used when
you want to start from a clean code base; see Figure 1-1.

$ ionic start blankApp blank --v2

https://www.genymotion.com/
https://www.jetbrains.com/webstorm/
https://www.jetbrains.com/webstorm/
https://code.visualstudio.com/
https://atom.io/
https://github.com/driftyco?query=ionic2-starter
https://github.com/driftyco?query=ionic2-starter
https://github.com/driftyco/ionic2-starter-blank

