Implementing
I0S and mac0S
Documents with
the Files App

Managing Files and Ensuring
Compatibility

Jesse Feiler

Apress’

Implementing iOS and
macOS Documents
with the Files App

Jesse Feiler

Apress’

Implementing iOS and macOS Documents with the Files App: Managing
Files and Ensuring Compatibility

Jesse Feiler
Plattsburgh, NY, USA

ISBN-13 (pbk): 978-1-4842-4491-3 ISBN-13 (electronic): 978-1-4842-4492-0
https://doi.org/10.1007/978-1-4842-4492-0

Copyright © 2019 by Jesse Feiler

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media, New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-4491-3. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-4492-0

Table of Contents

About the AUhOFccccmmiemmmsssmnmsssssssss s nnn s vii
About the Technical ReVIEWETccususssassssmssssnsssasssssssssssssassssnssssnsssans ix
Chapter 1: Using DOCUMENTSccovssmmmmmmnmmessssssssssssnnssssssssssssssnnssssssssnns 1
Describing @ DOCUMENL........cccveerrierercser s 1
Keeping Track of a Document and Its Data............ccocvevniennnresesnscsnsesesssessssesens 2
Structuring @ DOCUMENL.........covcrcerererr e s 2
Handling Document VErSioNS ... sses s sessessssssessessenns 3
Comparing Documents and FileSccccvvvierevnrenseriennnessenesessssessesessessssesessees 3
Structuring a Document and an App ... ———— 3
SUMMANY.....eieerircrerese e e s s e s e s e e r e se e e e nnnnens 4
Chapter 2: Looking Inside a Document............cccciunnssnmmnmnssssnnnmnssssnnnsnns 5
USiNg JSON ENCOING......coveverrierinesrnenesese s sesse s sr e s ssssesenns 5
INTrOdUCING JSON ...t sa e s s r e e 6
JSON AN SWifL.....covriiiccr e 7
USING SWIt STTUCTES.....ccvereerirrerere et se e enens 7
ENCOUING JSON ..o s 9
DECOdING JSON.......ccvoervererrerrrrerere s sere s e e se s e s sae s e e s saesae e s e saesaes 10
Putting the Encoding and Decoding Together........ccocvcvvrievvvensenienenensenenens 11
SUMMAIY.c.veiveitererereseesere s rae s s s rsese s e ssesaese s e ssesaesasse e e saesaessesensessesaessnsensesaes 12

iii

TABLE OF CONTENTS

Chapter 3: Matching a Document to a Document Format................... 13
Preparing fOr iCIOUcvvererererreriereseesessesesssssssessessessssessessessssessessessessssensessens 13
Setting Up Your Document in YOUF APPcccvveevnenencscrnsesene e ses e e e ssssesenns 15
Managing Document TYPES.......ccvcviririnnsnien s ssesnens 17
LooKing at info.pliSt........ccoveerrererererec e 20
SUMMANY....eieeererere e n e nr e e 23

Chapter 4: Securing and Protecting Datacoccemmmmmnnnnsssssssssssnnnnnnas 25
Security and Privacy OVEIVIEWccovererrnserensesesessssssessssssessssssesssssssssessssesenns 25
Case Study: Using Cocoa Location SErviCescccuvrvrnsnierensnsessessesesessensenes 26
SUMMANY....eitieirestre e r e e s e p e e 33

Chapter 5: Implementing Documents on mac0S: NSDocument.......... 35
Differences Between i0S UIDocuments and macOS NSDocuments.............c..... 36
Creating a Document-Based App 0n Mac0S..........ccoovvvrvrienennsensenresesessenenes 36

Adding Code to Your macOS APPccvrrrmmmmnmsemmmsssssssesssssssssssssesssssssssesens 40
APPDEIBGALE.......ccvcerrrcirci e ————————————— 40
VIEWCONTIOHIET........ e 42
DT 0 o1 T T 43
STOFYDOAI ... —————— 46
Overview of macOS and i0S Development ... 47
SUMMANY..c..eitiii i s s s bbb e e aenns 48

Chapter 6: Implementing Documents on i0S........ccccccviirnnsssssensennnnns 49
Using Files and the i0S File SyStem ..o 49
Choosing Document Storage LOCAtioNScocveeeererernnerenenesenesessesesesesesesenns 51
Browsing DOCUMENTS........ccvvererenmrneresese s sesse s s se s sessesenns 52
Looking at Recent DOCUMENTScccveevnerenenmnsse e 55
Viewing Files and Folders for an App........coucvvennenennsesnessnssessssesesesesssessnnes 58
1] 4= O 60

iv

TABLE OF CONTENTS

Chapter 7: Implementing Documents on i0S: UlIDocument and

UlDocumentBrowser ViewGontroller...........ccucussssanssssansns 61

Creating a Document-Based APP ... e sees 62
Introducing UIDOCUMENL.........ccceeerreeereereeresesese e 68
Working with UIDOCUMENT..........ccoveeererererernenerese e sensenens 68
Working with UIDocumentViewControllercvevvenenesernsessnesesssessssesesseens 71
Opening the DOCUMENT ... s 72
Closing the DOCUMENTcccoeveeernirrreer s 74
Working with UIDocumentBrowserView Controller..........ccccvvvvvnvnierenensensenens 74
Loading the UIDocumentBrowserViewController...........ccovvevrerernsesensenernnne 74
Creating @ DOCUMENT..........cccucereiernereresessse s 76
Picking (Opening) @ DOCUMENTccvverrneneresernsesssesese e sese e sessnnes 79
HandliNg ErTOrS......ccvicevierinesinese s s ss s ssssessssessssssessnns 82
1T304 O 82
Chapter 8: Sharing Documents with Share Buttonsccccrvrssannnnns 83
Using Share Buttons (AS @ USEI)cccccvreverenerinscrn e sesse e sessesens 83
Creating a Sharing EXample........c.ccocevvnvnnnnnnnness s sessessesnes 84
Sharing the Data ... 95
SUMMANY....ceirieerrcserre s r e e nr e e 98
Chapter 9: Using User Defaults, Settings, and Preferences..........ccc... 99
Looking at the Data STrUCIUIEScccevvvrverierr s 100
Exploring User Defaults, Preferences, and Settings..........ccovvvvvrevrerierensenserenns 102
Understanding User Defaults..........ccccovvvnnnininsnnnsncn e 102
EXPIOring SEHINGS ...veoevere et se e nnens 103
USING PrEfErENCESevvereerrererierereserseressessssessessessessssessessesssssssessessssessensesaes 103

TABLE OF CONTENTS

Preferences and Settings: A Case StUAYccecvvrierernrerierenessensesesessessessenes 104
Creating the PreferenCeSAPP.......ivvrrrrerersserseressesessesessessssessessessssessessesses 104
Adding a Settings BUNdIEccecvverererensnerereesessesse s ssssessesessessssessessens 107
Accessing the Settings Bundle from Your Codeccvvvvevrerverierenensersennens 116
Adding a Settings INTErfacecccvverrerererrrierierrser e ssesnens 119

SUMMAIY.c.veitetrerereseesere s e sesesse e ss e e s e ssesaesessesaesaess e e ssessesassensesaesasssssensessens 121

Chapter 10: Working with File Wrappers and Packagescccusueeuas 123

USING PACKAGES......cueereeerereereeriecre s 123

Considering BUNAIESccoveerrererenernsessssse s s sessesenns 128

USINg File WIaPPEIS ..ccvecerererierirsere st ese st se e ss s sae e e ssesnesessessesaenns 128

SUMMAIY . .eitetrierere et e st s s s s e e s e s saese et e aesaesae e e e eaesae e e e nannnens 131

Chapter 11: Using File Archives........cccccusssemmmmsssssnnnmssssssssssssssssnsssssnns 133

Using Swift Unified LOGQING.......cccvrerrererrerreriersssessessesssssssessessessssessessessssessessenes 134

Using Log and a Breakpoint to Archive Data..........c.ccooovvvnininncncnnscncennen 136

Selecting the Iltem 10 ArChiVe ... 140

Creating the Object t0 ArChIVEccvvcerccere s 142

D0ING the ArCHIVE ... s 146
Making the Class Conform to NSCOding.........ccoovrererssernsessnsesnsnsessnsesensenens 146
Implementing the EXample........cccovrvniniinnnnsn e 149
Moving Archiving into DOCUMENTSccceeervvernneneneserssesese e 151

1111 P2 2 152

1T - 153

About the Author

Jesse Feiler is a developer, consultant, and author specializing in database
technologies and location-based apps. Jesse’s apps include NP Risk,
Minutes Machine, Utility Smart, Cyber Continuity, and Saranac River Trail.
He has worked for organizations as varied as the Federal Reserve Bank

of New York (Chief, Special Projects Staff in Systems Development), the
Albers and Archipenko foundations (data management), and a number of
database projects typically using FileMaker. His apps are available in the
App Store and are published by Champlain Arts Corp (champlainarts.com).
Jesse is heard regularly on WAMC Public Radio for the Northeast’s The
Roundtable. He is a founder of Friends of Saranac River Trail, Inc. A native
of Washington DC, he has lived in New York City and currently lives in
Plattsburgh, NY.

vii

About the Technical Reviewer

Charles Cruz is a mobile application developer for the iOS,

Windows Phone, and Android platforms. He graduated from

Stanford University with B.S. and M.S. degrees in engineering. He lives
in Southern California and runs a photography business with his wife
(www.bellalentestudios.com) and enjoys backpacking. Charles can be
reached at codingandpicking@gmail.com.

ix

http://www.bellalentestudios.com/
http://codingandpicking@gmail.com

CHAPTER 1

Using Documents

We use documents to store and organize data in the apps that we use.

This is a simple description of how and why we use documents with
mobile apps built with macOS and iOS. There’s much more than this
simple description to consider when you start working with documents,
and this chapter goes into the basic details you need to consider. You can
find many books and articles dealing with documents, but the key points
are described here.

Describing a Document

When you use an app, you sometimes need to store data for the app (that’s
the basic description just mentioned). Storing data turns out to be far from
simple because when we talk about storing data, we almost always mean
storing and retrieving data on demand. For that store-and-retrieve process
to be useful to developers and users, you need to be able to identify the
data to be stored and retrieved, such as the current temperature.

Just to make things a little more complex, you need to be able to store
and retrieve data that you can identify in two different ways:

* Youneed to be able to identify the physical location of
the data to be stored and retrieved.

e Youneed to be able to identify the logical
characteristics of the data to be stored and retrieved.

© Jesse Feiler 2019 1
J. Feiler, Implementing iOS and macOS Documents with the Files App,
https://doi.org/10.1007/978-1-4842-4492-0_1

CHAPTER 1 USING DOCUMENTS

Putting this together means that you need to be able to store, retrieve,
and identify data by its location and characteristics (such as a name).

Keeping Track of a Document and Its Data

We are accustomed to thinking of documents as static objects: once a
document is written or printed, it doesn’t appear to change. You can make
changes or edits to documents, but those changes are typically visible in
one way or another so that the initial document is modified. In the digital
world, changes can be continual, and thinking of a document as a static
object is misleading, to say the least.

When you use word processing tools, you can often track changes to
documents so that instead of a static document you may have a multitude
of changed documents. This multitude of changed documents can
proliferate quickly not only with word processing documents but also
with changes using tools such as Git or GitHub.

Structuring a Document

Documents can be structured in any way that the developer chooses. As
you will see in Chapter 2, you can use structures that you create or common
structures that are defined by others. The structure of a document provides a
structure (or format) for the data that the document will contain. When you
know a document’s structure, you can read or write its data.

At least that is the idea. Document structures can change over time so
in practice you need to know not only the structure of a document but the
specific variation of the structure in use.

Note The variation of a document’s structure is often referred to as
a version.

CHAPTER 1 USING DOCUMENTS

Handling Document Versions

A common way of handling the issue of document versions is to create a
document structure that has at least two components: one is the version
identifier and the second is everything else. For example, a document can
start with the version identifier, which might be something as simple as a
string or even an integer. In that way, your app will know to read a single
integer or a string of X characters from the beginning of a document’s data.
That integer or string lets your app identify the version; having done that,
your app can read the data for that version. This strategy is commonly used
in macOS and iOS using a file manager (described in Chapter 2).

Comparing Documents and Files

Documents store data for an app in a known location from which it can be
retrieved (or to which it can be stored). This location is typically a file—an
object that is managed by the operating system. Like documents themselves,
files can also have versions. A significant difference between a file and

a document is that in many cases, the operating system manages a file’s
opening, closing, and storage. A document in many cases is inside a file.

Note This is a simplification and generalization.

Structuring a Document and an App

Apps that are based on data are easy to build or convert to document-
based apps. There are two common ways of building such apps. In the first
way, developers start from a data structure and add functionality to it. In
the other way, developers start from functionality and add data to it.

CHAPTER 1 USING DOCUMENTS

Summary

In this chapter, you saw an overview of documents, versions, and the
differences between documents and files. From here you will move onto
the details of documents and how to use them effectively.

Today, JSON (JavaScript Object Notation) and the Codable protocols
are commonly used for managing app data. Previously, a technology
referred to as coding was commonly used to store and manage data
that is internal to an app. The basic process was to convert data that is
identified by keys to and from NSData objects. The operating systems
support NSData, and you don’t have to worry about the implementation:
it is fast and efficient. The only limitation is that not every type of data
can be archived.

If you are building an app that needs to manage persistent data,
chances are that Codable is the way to go. If you are modifying an existing
app, you may want to continue using the archiving code that already
exists. (Using both is perfectly feasibly, but it can become a maintenance
nightmare.)

CHAPTER 2

Looking Inside a
Document

In Chapter 1, you learned how to describe and structure a document.
You now know that you, as the designer and developer of an app and its
documents, control what data is stored, where and how it is stored, and
how to identify and reference it.

You can decide that the data will be stored as a sequence of integers or
as a single long string, whatever matters to you and the data you will use.
In practice, it makes sense to structure the data inside a document if only
to be able to access it easily. This chapter shows how to structure the data
within a document using JSON encoding. This structure and encoding
provides an easy-to-use format for data that relies on Unicode strings that
can represent basic types recognized by JSON.

Using JSON Encoding

What matters most for JSON is the fact that the format is text-based (as
opposed, for example, to a binary or digital representation) and the

fact that each element can be named (as opposed to being identified by
location or sequence).

© Jesse Feiler 2019 5
J. Feiler, Implementing iOS and macOS Documents with the Files App,
https://doi.org/10.1007/978-1-4842-4492-0_2

CHAPTER 2 LOOKING INSIDE A DOCUMENT

A location- or sequence-based coding style lets you specify the format
of each element in the encoding sequence. Knowing the format of an
element means that you know how much space it will take up, and this will
let you read or write the data using the standard read/write syntax in any
programming language.

The disadvantage of sequence- or location-based coding is that if you
change the sequence of data elements or the format of a data element, you
break any read/write code that you already have. JSON encoding relies on
names of data elements rather than their formats or sequence. Thus, you
avoid the frequent problem of breaking read/write code when you modify
a format of a single data element or when you change the order of the data
elements.

Introducing JSON

JSON starts as a text format for serialization of structured data. In this
sense, serialization means converting the strings or other objects into
a format that can be read or written. JSON starts from four primitive
types, the meanings of which are common to many programming
languages:

o Astringis an ordered collection of Unicode characters.

o A number is just that; the most basic JSON number is a
double.

e A Boolean is true or false.

o The final primitive value in JSON is null, an object that
has no value.

In JSON, these types can be combined into objects, which are
unordered collections of name/value pairs; a JSON array is an ordered
collection of name/value pairs.

CHAPTER 2 LOOKING INSIDE A DOCUMENT

JSON and Swift

Swift goes beyond the basic JSON types with its JSONSerialization class
(part of the Foundation framework). JSONSerialization converts JSON
into array and dictionary Swift data types in addition to the basic JSON
string, number, and Bool data types.

Note Swift bridges Boolean and bool (C) types into Bool types. This
is handled automatically for you.

Using Swift Structs

JSON is a flexible and easy-to-use notation tool. On the other hand, Swift
is designed to be a powerful tool for building apps, particularly those using
the model-view-controller (MVC) design pattern, which is more complex
than JSON. One area that demonstrates this well is the Swift struct type.
You may often declare structs in Swift that you will use throughout your
app (or not at all). When you work strictly with JSON, it is uncommon to
declare a struct that is not used to store data. This section explains how to
create and use Swift structs with JSON.

Listing 2-1 shows how to create a Swift struct for a Student object or
model (the terms are interchangeable in this section) using a playground.

Listing 2-1. Swift Struct
import Foundation

struct Student {
var name: String
var studentID: Int

CHAPTER 2 LOOKING INSIDE A DOCUMENT

What matters here is that the Student struct contains two var elements:
name and studentID. Also worth noting is the fact that in this playground
the Foundation framework must be imported because it will be used for
working with JSON data. The other elements of the struct are standard
Swift elements.

Tip Note that the Swift style is to capitalize names of objects such
as structs, so the name of the Student struct is capitalized.

With the struct shown in Listing 2-1, you can create an instance of the
struct using code such as the following:

let studentl = Student(name: "John Appleseed", studentID: 154)

You can integrate JSON with Swift by using an encode (to: encoder)
function to encode data along with an init (from decoder:) to do the
reverse. To do this, you need to create keys to identify the elements that
you will be coding and decoding. The first step is to declare coding keys as
an enum CodingKeys element, as shown in Listing 2-2.

Listing 2-2. Swift Extension for Coding Keys

enum CodingKeys: String, CodingKey {
case studentID = "studentID"
case name

Note that they are the keys you will use to encode and decode the data
for the name and studentID variables. With the keys established along with
the variables, you can now create an encode (to: encoder) function, as
shown in Listing 2-3. Note that this extension indicates that the Student
struct conforms to the Encodable protocol.

