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CHAPTER 1

Using Documents

We use documents to store and organize data in the apps that we use.

This is a simple description of how and why we use documents with
mobile apps built with macOS and iOS. There’s much more than this
simple description to consider when you start working with documents,
and this chapter goes into the basic details you need to consider. You can
find many books and articles dealing with documents, but the key points
are described here.

Describing a Document

When you use an app, you sometimes need to store data for the app (that’s
the basic description just mentioned). Storing data turns out to be far from
simple because when we talk about storing data, we almost always mean
storing and retrieving data on demand. For that store-and-retrieve process
to be useful to developers and users, you need to be able to identify the
data to be stored and retrieved, such as the current temperature.

Just to make things a little more complex, you need to be able to store
and retrieve data that you can identify in two different ways:

* Youneed to be able to identify the physical location of
the data to be stored and retrieved.

e Youneed to be able to identify the logical
characteristics of the data to be stored and retrieved.

© Jesse Feiler 2019 1
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CHAPTER 1 USING DOCUMENTS

Putting this together means that you need to be able to store, retrieve,
and identify data by its location and characteristics (such as a name).

Keeping Track of a Document and Its Data

We are accustomed to thinking of documents as static objects: once a
document is written or printed, it doesn’t appear to change. You can make
changes or edits to documents, but those changes are typically visible in
one way or another so that the initial document is modified. In the digital
world, changes can be continual, and thinking of a document as a static
object is misleading, to say the least.

When you use word processing tools, you can often track changes to
documents so that instead of a static document you may have a multitude
of changed documents. This multitude of changed documents can
proliferate quickly not only with word processing documents but also
with changes using tools such as Git or GitHub.

Structuring a Document

Documents can be structured in any way that the developer chooses. As
you will see in Chapter 2, you can use structures that you create or common
structures that are defined by others. The structure of a document provides a
structure (or format) for the data that the document will contain. When you
know a document’s structure, you can read or write its data.

At least that is the idea. Document structures can change over time so
in practice you need to know not only the structure of a document but the
specific variation of the structure in use.

Note The variation of a document’s structure is often referred to as
a version.
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Handling Document Versions

A common way of handling the issue of document versions is to create a
document structure that has at least two components: one is the version
identifier and the second is everything else. For example, a document can
start with the version identifier, which might be something as simple as a
string or even an integer. In that way, your app will know to read a single
integer or a string of X characters from the beginning of a document’s data.
That integer or string lets your app identify the version; having done that,
your app can read the data for that version. This strategy is commonly used
in macOS and iOS using a file manager (described in Chapter 2).

Comparing Documents and Files

Documents store data for an app in a known location from which it can be
retrieved (or to which it can be stored). This location is typically a file—an
object that is managed by the operating system. Like documents themselves,
files can also have versions. A significant difference between a file and

a document is that in many cases, the operating system manages a file’s
opening, closing, and storage. A document in many cases is inside a file.

Note This is a simplification and generalization.

Structuring a Document and an App

Apps that are based on data are easy to build or convert to document-
based apps. There are two common ways of building such apps. In the first
way, developers start from a data structure and add functionality to it. In
the other way, developers start from functionality and add data to it.
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Summary

In this chapter, you saw an overview of documents, versions, and the
differences between documents and files. From here you will move onto
the details of documents and how to use them effectively.

Today, JSON (JavaScript Object Notation) and the Codable protocols
are commonly used for managing app data. Previously, a technology
referred to as coding was commonly used to store and manage data
that is internal to an app. The basic process was to convert data that is
identified by keys to and from NSData objects. The operating systems
support NSData, and you don’t have to worry about the implementation:
it is fast and efficient. The only limitation is that not every type of data
can be archived.

If you are building an app that needs to manage persistent data,
chances are that Codable is the way to go. If you are modifying an existing
app, you may want to continue using the archiving code that already
exists. (Using both is perfectly feasibly, but it can become a maintenance
nightmare.)



CHAPTER 2

Looking Inside a
Document

In Chapter 1, you learned how to describe and structure a document.
You now know that you, as the designer and developer of an app and its
documents, control what data is stored, where and how it is stored, and
how to identify and reference it.

You can decide that the data will be stored as a sequence of integers or
as a single long string, whatever matters to you and the data you will use.
In practice, it makes sense to structure the data inside a document if only
to be able to access it easily. This chapter shows how to structure the data
within a document using JSON encoding. This structure and encoding
provides an easy-to-use format for data that relies on Unicode strings that
can represent basic types recognized by JSON.

Using JSON Encoding

What matters most for JSON is the fact that the format is text-based (as
opposed, for example, to a binary or digital representation) and the

fact that each element can be named (as opposed to being identified by
location or sequence).

© Jesse Feiler 2019 5
J. Feiler, Implementing iOS and macOS Documents with the Files App,
https://doi.org/10.1007/978-1-4842-4492-0_2



CHAPTER 2  LOOKING INSIDE A DOCUMENT

A location- or sequence-based coding style lets you specify the format
of each element in the encoding sequence. Knowing the format of an
element means that you know how much space it will take up, and this will
let you read or write the data using the standard read/write syntax in any
programming language.

The disadvantage of sequence- or location-based coding is that if you
change the sequence of data elements or the format of a data element, you
break any read/write code that you already have. JSON encoding relies on
names of data elements rather than their formats or sequence. Thus, you
avoid the frequent problem of breaking read/write code when you modify
a format of a single data element or when you change the order of the data
elements.

Introducing JSON

JSON starts as a text format for serialization of structured data. In this
sense, serialization means converting the strings or other objects into
a format that can be read or written. JSON starts from four primitive
types, the meanings of which are common to many programming
languages:

o Astringis an ordered collection of Unicode characters.

o A number is just that; the most basic JSON number is a
double.

e A Boolean is true or false.

o The final primitive value in JSON is null, an object that
has no value.

In JSON, these types can be combined into objects, which are
unordered collections of name/value pairs; a JSON array is an ordered
collection of name/value pairs.
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JSON and Swift

Swift goes beyond the basic JSON types with its JSONSerialization class
(part of the Foundation framework). JSONSerialization converts JSON
into array and dictionary Swift data types in addition to the basic JSON
string, number, and Bool data types.

Note Swift bridges Boolean and bool (C) types into Bool types. This
is handled automatically for you.

Using Swift Structs

JSON is a flexible and easy-to-use notation tool. On the other hand, Swift
is designed to be a powerful tool for building apps, particularly those using
the model-view-controller (MVC) design pattern, which is more complex
than JSON. One area that demonstrates this well is the Swift struct type.
You may often declare structs in Swift that you will use throughout your
app (or not at all). When you work strictly with JSON, it is uncommon to
declare a struct that is not used to store data. This section explains how to
create and use Swift structs with JSON.

Listing 2-1 shows how to create a Swift struct for a Student object or
model (the terms are interchangeable in this section) using a playground.

Listing 2-1. Swift Struct
import Foundation

struct Student {
var name: String
var studentID: Int
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What matters here is that the Student struct contains two var elements:
name and studentID. Also worth noting is the fact that in this playground
the Foundation framework must be imported because it will be used for
working with JSON data. The other elements of the struct are standard
Swift elements.

Tip Note that the Swift style is to capitalize names of objects such
as structs, so the name of the Student struct is capitalized.

With the struct shown in Listing 2-1, you can create an instance of the
struct using code such as the following:

let studentl = Student(name: "John Appleseed", studentID: 154)

You can integrate JSON with Swift by using an encode (to: encoder)
function to encode data along with an init (from decoder:) to do the
reverse. To do this, you need to create keys to identify the elements that
you will be coding and decoding. The first step is to declare coding keys as
an enum CodingKeys element, as shown in Listing 2-2.

Listing 2-2. Swift Extension for Coding Keys

enum CodingKeys: String, CodingKey {
case studentID = "studentID"
case name

Note that they are the keys you will use to encode and decode the data
for the name and studentID variables. With the keys established along with
the variables, you can now create an encode (to: encoder) function, as
shown in Listing 2-3. Note that this extension indicates that the Student
struct conforms to the Encodable protocol.



