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Preface

The first edition of Frank Herbert Attix’s widely used book Introduction to
Radiological Physics and Radiation Dosimetry was published in 1986 and
reprinted in 2004. The exercises and solutions at the end of each chapter were
widely regarded as a useful complement to the theory described in the different
chapters.
In the second edition of the book, which we abbreviate as FIORD (from Fun-

damentals of IOnizing Radiation Dosimetry), the exercises have been updated
and new ones prepared for chapters and topics that were not included in the
first edition. Publishing the solutions to the exercises as a separate book was
considered to be a more convenient approach, and they are presented here
in order to complement some of the (sometimes limited) discussions in the
textbook, supported by references to its equations and figures. Hopefully, they
will also be a source of inspiration for teachers to prepare new exercises.
The electronic Data Tables of the textbook, necessary for the solution of the

exercises, are available from http://www.wiley-vch.de/ISBN9783527409211;
physical constants and atomic data are also given in Appendix A of the textbook.

6th December 2016 Pedro Andreo
David T. Burns
AlanE.Nahum
Jan Seuntjens

http://www.wiley-vch.de/ISBN9783527409211
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Background and Essentials

1 What is the photon energy range corresponding to the UV radiation band?
Answer: 10 nm–400 nm corresponds to 124 eV–3.1 eV.

Solution:
The quantum energy k of any electromagnetic photon is given in keV by

k = h 𝜈 = hc
𝜆

= 12.3982 keVÅ
𝜆

= 1.23982 keVnm
𝜆

where 1Å(Angstrom) = 10−10 m, Planck’s constant is h = 6.62607 ×
10−34 J s = 4.13561 × 10−18 keV s (note that 1.6022 × 10−16 J = 1 keV), and
the velocity of light in vacuum is c = 2.99792 × 108 m∕s = 2.99792 ×
1018 Å∕s = 2.99792 × 1017 nm s−1.
Therefore for the UV radiation, which is in the range of 10 nm–400 nm, the
equation yields 124 eV–3.1 eV.

2 For a kinetic energy of 100 MeV, calculate the velocity 𝛽, for (a) electrons,
(b) protons, and (c) alpha particles.The corresponding rest energies are given
in the Data Tables.
Answer: (a) 0.9999; (b) 0.4282; (c) 0.2271

Solution:
We can apply either of the relations

𝛽2 = 𝜏(𝜏 + 2)
(𝜏 + 1)2

, with 𝜏 = E∕m0c2

or

𝛽2 =
E(E + 2m0c2)
(E +m0c2)2

From the Data Tables, the rest energies are mec2 = 0.51099 MeV,
mpc2 = 938.272 MeV, andm𝛼c2 = 3727.38 MeV. These yield
(a) Electrons: 0.9999
(b) Protons: 0.4282
(c) Alpha particles: 0.2271

Fundamentals of Ionizing Radiation Dosimetry: Solutions to Exercises, First Edition.
Pedro Andreo, David T. Burns, Alan E. Nahum, and Jan Seuntjens.
© 2017Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 byWiley-VCH Verlag GmbH & Co. KGaA.



2 1 Background and Essentials

3 Conversely given a value of 𝛽 = 0.95, calculate the corresponding kinetic
energies of electrons, protons, and α particles.
Answer: (a) 1.1255 MeV; (b) 2066.6MeV; (c) 8209.86MeV

Solution:
The relation between the kinetic energy and the speed (𝛽) is

E =
m0c2𝛽2

2
√
1 − 𝛽2

Using the rest energies from the previous exercise, we get
(a) Electrons: 1.1255MeV
(b) Protons: 2066.6MeV
(c) α-particles: 8209.86MeV

4 The result of a given process is derived as the product of several independent
quantities, Q =

∏
qi. The type A and B uncertainties of each qi, (uA,uB)i,

given as a relative standard uncertainty, are (0.1, 0.5), (0.01, 0.1), (0.02, 0.4),
and (0.3, 0.19). Determine the combined standard uncertainty of Q.
Answer: uc(Q) = 0.75

Solution:
Use the law of propagation of uncertainty twice: first for each of the respective
types of uncertainty to yield the overall uA and uB types,

uA =
√∑

i
uA

2
i , uB =

√∑
i
uB

2
i

and then for the combination of these two to yield uc(Q).
Hence

Quantity Rel standard uncertainty

(uA)i (uB)i

q1 0.10 0.50
q2 0.01 0.10
q3 0.02 0.40
q4 0.30 0.19
Combined uA = 0.32 uB = 0.68

resulting in a combined uncertainty

uc(Q) =
√

u2
A + u2

B = 0.75

5 Given the following set of data (75.4, 79.7, 75.0, 77.0, 78.4), with standard
uncertainties (0.95, 0.5, 0.2, 1.2, 0.8), (a) determine the non-weighted and
weighted means and the corresponding type A uncertainties. (b) Determine
the Birge ratio for the data and comment on the uncertainty estimates of
the data.
Answer: x̄ = 77.1, sx̄ = 0.89; x̄w = 75.8, sx̄w = 0.18; RBirge = 2.2
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Solution:
(a) Requires the straightforward application of Eqs. (1.41)–(1.46), where the

different terms are

i xi (xi − x̄)2 si 𝑤i(= 1∕s2i ) 𝑤i xi 𝑤i(xi − x̄
𝑤
)2

1 75.4 2.89 0.95 1.11 83.55 0.18
2 79.7 6.76 0.50 4.00 318.80 60.79
3 75.0 4.41 0.20 25.00 1875.00 16.07
4 77.0 0.01 1.20 0.69 53.47 1.00
5 78.4 1.69 0.80 1.56 122.50 10.55

n
∑

ixi
∑

i(xi − x̄)2
∑

i𝑤i
∑

i𝑤i xi
∑

i𝑤i(xi − x̄
𝑤
)2

5 385.5 15.8 32.36 2453.32 88.58

Eqs (1.41) (1.43) (1.45) (1.44) (1.46) num
x̄ s(x̄) s(x̄

𝑤
)int x̄

𝑤
s(x̄

𝑤
)ext

77.10 0.89 0.18 75.80 0.83

(b) The Birge ratio is given by

RBirge =
s(x̄𝑤)int
s(x̄𝑤)ext

= 2.2

RBirge = 2.2 is a sign that some uncertainties have been under/over
estimated. We typically think that we can make estimates at, say, the
20% level. A Birge significantly greater than 1.2 or 1.3 is a reasonable
sign of under/overestimation. However, one proviso is the balance of
uncertainties. One huge under/overestimate can make Birge large even
if other uncertainties are properly estimated, especially for small data
sets. This could be the case with data #3, where s = 0.20 might be an
underestimation.

6 Using the half-width of the set of data in the previous exercise, estimate
the type B uncertainty assuming rectangular, triangular, and Gaussian (with
k = 2) distributions. Which of the three is considered to be more
conservative?
Answer: uB rect = 1.36, uB trian = 0.96, uB Gauss = 1.18; the 95%Gaussian ismore
conservative.

Solution:
The half-width of the set of data, [−L,+L], is determined as

L =
max(xi) −min(xi)

2
= 79.7 − 75.0

2
= 2.35

Hence

uB,rect =
L√
3
= 2.35

1.73
= 1.36
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uB,trian =
L√
6
= 2.35

2.45
= 0.96

uB,95% = L
2
= 2.35

2
= 1.18

The rectangular distribution is a special case, because in general formost data
sets there is a higher probability that the true value lies nearer to the middle
than at the extremes. This leaves the triangular and Gaussian (k = 2 → 95%)
distributions being conceptually similar, with the 95% Gaussian being more
conservative.
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Charged Particle Interactions

1 For the Rutherford (Geiger and Marsden) experiment with 5.5 MeV
α particles on a 1 μm gold foil and for the six angles (decades) between
10−5 and 100 rad, calculate the Rutherford differential cross section (DCS),
d𝜎R∕dΩ, (a) without and (b) with screening. Represent both results
graphically and draw conclusions.
Answer: The non-screened DCS values vary between 1.7137× 10−3 and
2.0273× 10−23 cm2 rad−1 in the interval [10−5−1 rad]. The screening angle
is 3.7× 10−3 rad, and the corresponding screened DCS values vary between
9.3620× 10−14 and 2.0273× 10−23 cm2 rad−1. The screening 𝜒a cuts off the
otherwise increasing DCS with decreasing angle, which remains practically
constant below 𝜒a.

Solution:
Note that the foil thickness is irrelevant, as the interaction is assumed to be
with one atom of gold, Z = 79. The α-particle charge is z = 2.
(a) The non-screened Rutherford DCS is given by

d𝜎R
dΩ

= r2e (z Z)2
(mec2

m0c2

)2 1 − 𝛽2

𝛽4
1

(1 − cos 𝜃)2

where the relevant constants given in the Data Tables are mec2 =
0.51099 MeV, m0c2 = m𝛼c2 = 3727.38 MeV, re = 2.81794 × 10−13 cm,
and 𝛽2 = 𝜏(𝜏 + 2)∕(𝜏 + 1)2 with 𝜏 = E∕m𝛼c2. This yields 𝛽 = 0.05426.
TheDCS can then be calculated; the results are given in the table below.

(b) The screened Rutherford DCS is given by

d𝜎R
dΩ

= (z Z re)2
(mec2

m0c2

)2 1 − 𝛽2

𝛽4
1

(1 − cos 𝜃 + 0.5𝜒2
a )2

,

which differs from the non-screened DCS in the screening angle 𝜒a in
the denominator. This is taken to be that of Molière, which is given by

𝜒2
a = 𝜒2

0

[
1.13 + 3.76

(
z Z
137𝛽

)2
]

Fundamentals of Ionizing Radiation Dosimetry: Solutions to Exercises, First Edition.
Pedro Andreo, David T. Burns, Alan E. Nahum, and Jan Seuntjens.
© 2017Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 byWiley-VCH Verlag GmbH & Co. KGaA.



6 2 Charged Particle Interactions

where

𝜒0 =
4.2121 × 10−3

√
1 − 𝛽2

m0c2𝛽
Z1∕3

Thus the screening values obtained are

𝜒0 = 8.922 × 10−5 rad (0.005∘)
𝜒a = 3.678 × 10−3 rad (0.211∘),

which can be inserted in the screened DCS and its values obtained.
Putting together the results for the two DCS, we get the following table:

Rutherford DCS (cm2 rad−1)

𝜽(rad) Non-screened Screened

10−5 1.7137 × 10−3 9.3620 × 10−14

10−4 1.7137 × 10−7 9.3483 × 10−14

10−3 1.7137 × 10−11 8.1178 × 10−14

10−2 1.7137 × 10−15 1.3296 × 10−15

10−1 1.7165 × 10−19 1.7119 × 10−19

100 2.0273 × 10−23 2.0273 × 10−23

which is shown in Figure 2.1 and shows the influence of screening, which at
about 4 × 10−3 rad cuts the otherwise increasingDCSwith angle, remaining
practically constant below 𝜒a.

10–23

10–21

10–19

10–17

10–15

10–13

10–11

10–9

10–7

10–5

10–3

10–5 10–4 10–3 10–2 10–1 100

Non-screen

Screen

D
C

S
 / 

cm
2  

ra
d–1

Angle / rad

Rutherford DCS

Figure 2.1 Rutherford differential cross section, with and without screening, for 5.5 MeV
α-particles on a 1 μm gold foil.
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2 Assume the Rutherford experiment to have been made with protons
having the same speed (𝛽) than the original 5.5 MeV α particles. Calculate
the screened Rutherford DCS for the same angles as above. Compare
graphically with the case of α particles from the previous exercise and draw
conclusions.
Answer: In this case the screening angle is∼ 7 × 10−3 rad, almost double than
that for 𝛼 particles with the same 𝛽, and the DCS varies between 2.3635 ×
10−14 and 7.9977 × 10−23 in the interval [10−5−1 rad].TheDCS of protons is,
above the screening angle, larger than that of the 𝛼 particles, as expected from
the lower proton rest energy. The larger screening angle for protons, due also
to the 1∕m0c2 dependence of 𝜒0, cuts off the DCS earlier (when decreasing
angle) than for 𝛼 particles, so that for 𝜃 < 𝜒a, DCSproton < DCSalpha.

Solution:
The constants and expressions to be used are the same as in the previous
exercise, with the exception of mpc2 = 938.272 MeV and z = 1. As above,
𝛽 = 0.05426, which corresponds to a proton energy of 1.384 MeV.
In this case the screening values are

𝜒0 = 3.544 × 10−4 rad (0.020∘)
𝜒a = 7.313 × 10−3 rad (0.419∘)

which when inserted in the expression for the screened DCS give

Rutherford DCS (cm2 rad−1)

𝜽(rad) Screened

10−5 2.3635 × 10−14

10−4 2.3626 × 10−14

10−3 2.2775 × 10−14

10−2 2.8701 × 10−15

10−1 6.7005 × 10−19

100 7.9977 × 10−23

Figure 2.2 compares the DCS for protons and for the α particles from the
previous exercise. The figure shows that, above the screening angle, the
DCS is larger for protons than for α particles, as expected from the lower
proton rest energy.The larger screening angle for protons (∼ 7.3 × 10−3 rad)
than for α particles (∼ 4 × 10−3 rad), due also to the 1∕m0c2 dependence of
𝜒0, cuts off the DCS earlier (when decreasing angle) than in the alpha case,
and from that point downward, the DCS is smaller for protons than for the
𝛼 particles whenever 𝜃 < 𝜒a.

3 (a) Derive an expression for the relativistic screened Rutherford total cross
section (TCS) restricted to angles smaller than the atomic screening angle
𝜒a. (b) Compare with the unrestricted expression (Eq. (2.15)) for 5 MeV
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10–23

10–21

10–19

10–17

10–15

10–13

10–5 10–4 10–3 10–2 10–1 100

Screen alpha

Screen proton

D
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S
 / 
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Rutherford DCS

Figure 2.2 Screened Rutherford differential cross section for protons and α particles having
the same speed 𝛽 , incident on a 1 μm gold foil.

electrons incident on a mercury atom. (c) Calculate the mean free path
of these electrons due to elastic collisions and the subsequent number of
elastic collisions per path length.
Answer: (a) 𝜎R[0, 𝜒a] = (z Z re)2

(
mec2

m0c2

)2 1−𝛽2

𝛽4

8𝜋(1−cos𝜒a)
𝜒2
a (2+𝜒2

a−2cos𝜒a)
.

(b) 𝜎R[0, 𝜋] = 2.10731 × 10−18cm2 and 𝜎R[0, 𝜒a] = 1.05366 × 10−18cm2,
that is, elastic collisions with 𝜃 ≤ 𝜒a account for practically 50% of the TCS.
(c) MFP = 0.12 𝜇m, that is, almost 10 elastic collisions occur per micron.

Solution:
(a) The screened Rutherford DCS is given by

d𝜎R
dΩ

= (z Z re)2
(mec2

m0c2

)2 1 − 𝛽2

𝛽4
1

(1 − cos 𝜃 + 0.5𝜒2
a )2

where 𝜒a is the screening angle, which in Molière’s theory is given by

𝜒2
a =

4.2121 × 10−3
√
1 − 𝛽2

m0c2𝛽
Z1∕3

[
1.13 + 3.76

(
z Z
137𝛽

)2
]

The screened Rutherford TCS (Eq. (2.15)) was obtained from

𝜎R[0, 𝜋] = ∫
𝜋

0

d𝜎R
dΩ

dΩ = ∫
𝜋

0

d𝜎R
dΩ

2𝜋 sin 𝜃 d𝜃

= (z Z re)2
(mec2

m0c2

)2 1 − 𝛽2

𝛽4
16 𝜋

𝜒2
a (4 + 𝜒2

a )
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Instead of integrating in the interval [0, 𝜋], it is convenient to do it in
the interval [𝜃min, 𝜃max], that is,

𝜎R[𝜃min, 𝜃max] = ∫
𝜃max

𝜃min

d𝜎R
dΩ

2𝜋 sin 𝜃 d𝜃

= (z Z re)2
(mec2

m0c2

)2 1 − 𝛽2

𝛽4 2𝜋
[

1
1 − cos 𝜃min + 0.5𝜒2

a
− 1

1 − cos 𝜃max + 0.5𝜒2
a

]

which for 𝜃min = 0 and 𝜃max = 𝜋 coincides with the expression above.
For the present exercise, we then take 𝜃min = 0 and 𝜃max = 𝜒a and get

𝜎R[0, 𝜒a] = ∫
𝜒a

0

d𝜎R
dΩ

2𝜋 sin 𝜃 d𝜃

= (z Z re)2
(mec2

m0c2

)2 1 − 𝛽2

𝛽4

8𝜋(1 − cos𝜒a)
𝜒2
a (2 + 𝜒2

a − 2 cos𝜒a)

(b) For 5 MeV electrons on mercury (Z = 80, A = 200.59, 𝜌 = 13.546 g
cm−3), 𝛽 = 0.995692,m0c2 = mec2.Thus𝜒a = 5.14873 × 10−3 rad (0.3∘).
Note that we could have replaced Z2 by Z(Z + 1). Therefore

𝜎R[0, 𝜋] = 2.10731 × 10−18 cm2

𝜎R[0, 𝜒a] = 1.05366 × 10−18 cm2

that is, elastic collisions with 𝜃 ≤ 𝜒a account for practically 50% of the
TCS.
The result above explains why even if we would have used the
small-angle approximation,

d𝜎R,small

dΩ
= (z Z re)2

1 − 𝛽2

𝛽4
4

(𝜃2 + 𝜒2
a )2

with corresponding TCS

𝜎R,small[𝜃min, 𝜃max] = ∫
𝜃max

𝜃min

d𝜎R
dΩ

2𝜋𝜃 d𝜃

= (z Z re)2
1 − 𝛽2

𝛽4 4𝜋

[
1

𝜃2min + 𝜒2
a
− 1

𝜃2max + 𝜒2
a

]

that is, for 𝜃max = 1 rad and 𝜃max = 𝜒a, we get, respectively,

𝜎R,small[0, 1] = (z Z re)2
1 − 𝛽2

𝛽4
4𝜋

𝜒2
a (1 + 𝜒2

a )

𝜎R,small[0, 𝜒a] = (z Z re)2
1 − 𝛽2

𝛽4
2𝜋
𝜒2
a

,

the results would have been practically identical, as 𝜒a is very small and
most collisions occur within 𝜃 ≤ 𝜒a.


