Embedded Systems
Architecture for

Agile Development

A Layers-Based Model
Mohsen Mirtalebi

Apress’

Embedded Systems
Architecture for Agile
Development

Mohsen Mirtalebi

Apress’

Embedded Systems Architecture for Agile Development: A Layers-Based Model

Mohsen Mirtalebi
Indianapolis, Indiana, USA

ISBN-13 (pbk): 978-1-4842-3050-3 ISBN-13 (electronic): 978-1-4842-3051-0
https://doi.org/10.1007/978-1-4842-3051-0

Library of Congress Control Number: 2017957715

Copyright © 2017 by Mohsen Mirtalebi

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Susan McDermott
Development Editor: Laura Berendson
Technical Reviewer: Amir Shahirinia
Coordinating Editor: Rita Fernando
Copy Editor: Karen Jameson

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the books product page, located at www.apress.com/9781484230503. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3051-0

To my parents who put up with my handyman
projects since age four when I was first
electrocuted attempting to fix the TV. To my son
who has patiently learned that I only answer the
calls after the sixth attempt. This is why I was slow.

Table of Contents

About the AUROFcccccemmiimnmnsnssssnssssss s n s san s an s n s ann s nnnn s nnnnnnns xi
About the Technical ReVIEWETccussssnssssssssassssnssssnssssssssnsssassssasssssssssnsssansssasssas Xiii
INtroductionccccmmssemmmssmnmsssnnmsssnnssssnnssssnnssssnnnsssanssssansssssnnsssannsnsnnnnnssnnsnssnnnnssnnnnss XV
Chapter 1: The History of Layers Architecture........ccuscmmmmssssnnsmnssssnnsssssssssssssssssnssnsns 1
The NeW and the Ol...........cccoreeeerercr s 4
ClaSh OF CURUIEScoveeeeecrerce s n e nnne s 5
Clash Of TROUQNLScccvieerircierese s 5
Projects @nd PrOCESSES.....ccuieririrrerieriesresissese e sessesse s ss e s s sae e s s e s st s e s saesae st s e saesaesas e ssesaees 6
Products and PEOPIEcocvveierrtrcie e e e e 6
ProdUCE SOTEWAIEovevecccrerisecce e 7
Embedded SYSIEMS ... s 7
Process BOLLIENECKScccccrerererrenerrncsesesessesesse e sesesesssse s sesssses e s ses e sesssssssssessssssensssnssnnns 8
Intelligent Product Development..........ccoveiinren s 8
Architecture in the Construction INAUSEIYcoviinicnnrns e 9
Land SUIVEY DIaWINGSccccverrererrerereriesenessessesessessessesessessessessssessessesasssssessessesssssssessessessssensesaes 10
ArchiteCtural DraWINGScccoeveriiriensieneriesses e se s e s s s s ss s s s s s e s sae s saesssesaesaesaesssesaesaennnnns 12
Drawing’s Reusability, Maintainability, Readability, and Scalability............ccoceerrerierrrrerseren 22
Making Buildings versus Making PCBS...........cccuouimnnnnnneninsess s sessesessssessssesens 24
SUMIMANY ..ttt E e e e e E e e e e e e R e A e e e e e Re e R e e e e e Re R e R e e e e R es 25
Chapter 2: Project Management Methodsccccnnmmmnmnssssnnnnnssssssnsssssssssssssssssnsnss 27
THE BASICS....ucuerueuerreerenseserseses e sesesesse e s e e ses e s sesse e see e s e e sse e se e e s e e s se e sre e see e senae e naenenennes 28
Project Management Using Critical Path Methods (CPM)ccccveenrennenernserenese s 28
WRAL IS CPIM? ...ttt bbbt 29
Creating a Robust Gantt Chart...........c.ccovennenrescrrsesre e 29

TABLE OF CONTENTS

Project Management Using Agile Methodscccvvinrninininne s 36
What D0ES AGIle MEANTY.........cccvverereererierereresseressessesesessesaesassessesaessesessessessessssessessesssnensesaes 37
THE IABAI SCIUM ... 37

Collaborative Product Development (CPD).......ccouvienrnserneninssesis e ssssesessesessssessssesens 43
Tasks, Deliverables, and DECISIONS.......cccveviiiieiiimiiiirsi s sssssses 44

Software and Project Management ... s 47
SOTEWAIE LAYEIS......ciecieicirir et 47
Software Development ProCeSS ... s snes 49
Software Reusability, Maintainability, Readability, and Scalabilitycccccecvvrinivinienene. 51
Software throughout CPD PrOCESSccccerrrierirerirereris s e sesse e ses e sessesessssesenns 52
V-Model (SOftWare Life CYCIE)cccveeerrrrererererercrircren e sessesesseseses e sessesessesesessesesasnens 53

Design for Manufacturing (DFM).........cccoeeoererrerererese s sessesenns 54

Modeling Languages and AgIle........c.vocereeererernenrsesesese s ssesessssesenns 56
Unified Modeling Language (UML).........ccoverrenerenernesesesesesesesesesssse e ses e e sessssesessesenns 56
Model-Based Design (MBD)..........cccvuererenmrrenerensesesesessesesessesesssssssssssessessssssssssssssssssssssssssenes 56

SUMIMANY ..ttt e s se e e e e e e e Re e e e sen e e e Re e Re e nen e nnnsnnnns 57

50 100 o] OO 59

Chapter 3: Convergence of Management and Architecture..........ccuccsmsssnnssssasssssans 61

Convergence of Management and ArchiteCture.........ovvvvrirerrcrc e 62
A RequIrement MOGEL.........covirirererirere s s s s s e s p e e e s sre e s s naes 63

Creating REQUIrEIMENTScovierierererirssrere s s s s e sessesse s e sas e ssesaesaesessesaesassassessesaesssssnsessees 70
Every Problem Is a Communication ProbIEmccccvvrevnrnienensnensesesessssesessessssessessenes 70
Marketing Requirements Document (MRD).......c.cccveririnnnnenieninsin s sse e ssesnens 74
CONCEPIUAI DBSIGN.....ceceruerrererierererer s s rre e s s sese s s e s s s e e s saesaese e e saesaesae e s e saesaeseeensesnens 75
L Ty TR 0L D o 82
LT 0 TN = T | R 83
Component Design and Product Breakdown Structure (PBS)ccvevverievnrensensenenessensenens 86

£ 11114 7R 89

BiDIOGIAPNY ... 90

TABLE OF CONTENTS

Chapter 4: Requirements Modelccuusemmmmmsssmnnmmmssssnssssssssssssssssssssssssssssesssssssssenss 91
Process and Control Requirements MOGEL..........ccccoveerrcernieniniescrs e sens 91
CoNtEXE DIAgrAMScvieeirirerire it p e e 92
FIOW DIaQramsS.......ccueceiieierieninsene s sese e ss s sr s s s s sre s s s p s e s s 95
Process and Control Specification (PSPEC, CSPEC).........cccourvmnnnrinnrnennnssensesessesessssesennes 97
The Requirements DiCHONAIYccccceverirrrre e s 99
Timing SPECIfICALIONSevvverereererrere e sa e e e sa e e e aennen 100

A Note on Requirements MOdEL..........ccccoereririrnenrirrer s sae s 101

B3 1T T =T ST] S 104
SIMPlIfied V-MOGEIcoveereeeeeeeeeesss s sssnsnns 104
PBS DEVEIOPMENL........cceceeccceire sttt e e s p e et 114

A Different Approach in DESIgN........cccceviirininiennsnrese e 116
Processing the External Datacccocviniinininnsnsn s 118
Bringing [t All TOQETNENceevceeee e s s sa e ae e 120
Utilizing MBD TOOIS fOF PBScovirieiiriresesesesesesesss s ssssssssssssssessssssssssssssssanes 122
SUMIMANY ..ttt e e e R e e e e e R e b e e e e e Re e R e e e e e Re e Re R e e e e e Re e R e e e e e Renns 122
L2110 0T =T o] S 123
Chapter 5: Problem Statementccccmmiiiinnnnnse s 125
Understanding the ProbIEm ... s e 125
Requirements MOGEL ... et e s nne 126
Data Context and Control Context Diagrams (DCD, CCD)......ccoovverrmreresesesrsserensessssesessssesenns 127
Data Flow and Control Flow Diagrams (DFD, CFD)ccoeeeerenernsesenenensssessssessssesessssesennes 129
PSPEC and CSPECcccovveeceeeesss st s e e sssssssssnees 135
Timing SPeCIfiCALION........ccoveierererresrr e nne s 137
Requirements DiCHONAIYccocvreeerenmrnsesrnesese s nenns 138
Architectural MOdel ... 139
11T 111 1T o SRS 140
510 100 i o] OO 141

vii

TABLE OF CONTENTS

Chapter 6: Process ArchiteCture........ccccuseemrmnsssnnnmmssssnnnsssssssnssssssssnssssssssnssssssnnnnss 143
Lo (1010 00T T o O 145
Hardware RECYCIING......cccccviimrcirererir e s s s 147
SOftWAre RECYCING.....c.cotirierirerirc s e s e e e 148

1 e gLl ST 1 oS 148
Team Dynamics in CONCEPt REIBASE........ccvvererrererrerrererseserseressessssessessessessssessessesssssssessesees 148
Scrum and the Concept REIBASEcceevreververerererrerierereesesese e sessessessessesessessesaessssensessens 150
Architecture and Planning..........ccccovvriinninsn e 153
Hardware RECYCIING.......ccccuvircirererirsere e s 154
SOftWAre RECYCIING.......coiirereresrer s s r s e nne 154
Method RECYCIINGcvceiirieirire s e 155
TEaM DYNAMICScc.cvviiecirerer et s p e e 155
Modules and Components REIEASESc.ccuvrrrrrernninnne st s e snens 155
The FINAl REIEASE........ceeeerreerererere e nr e nnene s 157
Departing from CPD and Landing on Structured SCrum............ccoovevrrenresernsesnsesesesesennes 157
SIMOKE TS e r e e nr e 159
0L =T 1 T OO 160
£ 11134 R 160
Chapter 7: Layers Model..........cccuunmmmmmmmmnmmmmmmmmssesssssss 103
L LU U ST 1o = 163
Process and Product MOEIS ..o s 164
Product’s Process MOGELc.eeerinernierereeree s 166
Development Process MOdEl ... s enes 169
1115 I oo S 172
MBD ULIlIZAtion STEPS......ccciirercerre e st 173
Layer Model and MBD.........c.ouovienmrenernsesesesesese s ess s s sessessssssssssssssssssssssssssssssessssenns 174
MBD’S BUIIA PIOCESSvcuerveuerrrsesssseersesesesessssesessasessssessssessssesesssssssssessssssessassssssssssssssssansssassnsnns 177
MBD in Layers MOUE]ccverrrieriererenerseresessssessessessessssessessesessessessesssssssessesssssssessessesssssssesaens 179
MBD PIAtfOrMS ... e 181
SUMIMANY ..ttt R e e e e e R e e e e e e e R e R e e e e e Re e Re R e b e e e RenR e e e e naenrs 182
L2110 0T =T o] 182

viil

TABLE OF CONTENTS

Chapter 8: MBD and Requirements Model..........ccccuremmrinssnnnnmnssssnnnsssssssssssssssnnns 183
Product MOGEL..........coeeeeeeeecreeeere e e 186
MBD and Process MOGELccveereecrrcrereerese s 195

Timing SPeCIfiCaliONSccccoiiiirrr e ——————— 196
Requirements DiCtiONArY ... s 198
Real-Time Operating SYStEMS ... s 199
Database ArChiteCIUIEc.ccceereeerecr e 200
Verification and Validation (V&V) ..o e snes 201
Continuous INTEGration ... 203

63 1110 (LT 203
Manufacturing TESTScceiiircr s ———————— 204
DIAGNOSTICS .. cceieerierecire e e e 204
£ T 205
INO@X uuetiissnnnssnnnsssnnssssanssssanssssanssssanssssannssssnnssssnnssssnnssssnnssssnnssssnnssssnnssssnnssssnnnsssnns 207

ix

About the Author

Mohsen Mirtalebi is a specialist in diagnostics software

with Cummins Inc., a global power leader that designs,
manufactures, sells, and services diesel and alternative fuel
engines as well as related components and technologies.

He has more than 10 years of experience in the engineering
field. At Cummins, Mohsen leads a team of engineers,

where he oversees the software quality meeting regulatory
requirements by utilizing various data analysis tools, controls
software reviews, as well as Agile and project management

tools. Previously he worked for Rockwell Automation as a
control firmware engineer, responsible for control algorithm design and implementation
for motor drives utilizing MBD, and real-time operating systems. He has held other
hardware/software positions at Danfoss, Emerson Process Management, and more.
Computer skills include being a certified user of Matlab/Simulink, LabView/TestStand
and Texas Instrument DSC/DSP products specializing in motion devices. Mohsen has a
MS in Electrical Engineering with an emphasis on power electronics control and
HIL/SIL/MIL. He has been a member of IEEE for 10 years. He is an advocate of STEM
and has coached many robotics teams in grade schools.

About the Technical Reviewer

Dr. Amir Shahirinia is an Assistant Professor of the
Department of Electrical and Computer Engineering at the
University of the District of Columbia, Washington, DC.
He received BS and MS degrees from K.N.Toosi University
of Techology, Tehran, Iran, and a PhD from University of
Wisconsin-Milwaukee in Electrical Engineering. He also

performed postdoctoral research in the Power Electronics
group at Rockwell Automation (Allen Bradly) from 2013-2015.
Dr. Shahirinia is the director of Center of Excellence for
Renewable Energy (CERE) at UDC. Dr. Shahirinia’s research
interests encompass the areas of power systems, smart grids, power electronics, and

control and ranges from optimal planning of renewable energy grid integration systems
(REGIS), optimal operations of REGIS, modeling and intelligent real-time control

of REGIS, Bayesian statistical analysis and predictive modeling of REGIS, to power
electronics and motor drives.

xiii

Introduction

What do onions and software have in common? Apparently there is nothing in
common between them, but how many things around us are inspired by nature? Years
ago I was hired by a high-tech company for what was, I thought at the time, one of the
coolest products. Here I was in a small manufacturing company with a high innovative
spirit but not part of a highly meaningful organization. For a duration of two and half
months I had nothing to do but to get myself familiarized with the product, and I loved it.
So as a free agent I started roaming around every corner of the company, visiting many
departments from quality control to hardware, manufacturing, program management,
and even product returns.

The result of two and half months of my spiritual journey into the deep belly of the
product was to discover that there were numerous holes in our development process
of which many were software related. Since our product target and host software
were closely coupled, which were also utilized internally for various applications
such as product calibration and tests, I came up with a 30-page report including some
recommendations to improve the quality of the software architecture on both ends:
target and host software. I thought it could be cost effective to enhance the existing
architecture rather than investing in a new platform. Additionally, there were some
serious security concerns. Our OEM customers were using the same host software,
and the chances of breaching the engineering tier was high. Perhaps when our OEM
customer was talking to us, we didn’t do a good job of listening; and now they had to
take the matter into their own capable hands to tweak some product configuration
parameters for us.

On that account, listening to the customer’s voice is essential. Either we choose to
listen to them when we are developing the requirements or were forced to do so when
the hammer comes down on us through the product return doors. Although we might
think the product research and returns are two different departments, in fact they are the
same with a minor difference. These two departments fall on the two ends of product
development process, but in both, people get into the same type of cause-and-effect
cycles. The difference falls into the chronology of the product issues.

INTRODUCTION

A new anomaly in returns most likely is an old known one in research. The reason
some people might think it is a new problem is because the problem was either
overlooked, forgotten, or currently being worked on - in secrets without notifying other
internal departments. So if there was a way we could capture this wealth of knowledge
that we've tirelessly gained during product R&D, then there is a very good chance we can
better manage them downstream. This is called transparency.

In another example with a different manufacturer, I observed that the products
of a well-known test and measurement vendor were extensively used in the R&D
department. Although the manufacturing was not using the same type of test tools, but
their test routines were basically the same only designed to be more subjective and
shorter in duration. Then I thought if I could convert the tools in manufacturing to be
matched with R&D tools, I could recycle research software programs for manufacturing
uses. So that was exactly what I did. The result was a seamless path between
development and manufacturing that not only unified the tools but also the languages
these two very different departments were speaking. This was more than creating a
scalable test process; it was about creating a freeway of knowledge - the very knowledge
that distinguishes one product, one company, one country from another.

Coming back to my 30-page report, I received the worst possible review. “Huh?!” was
the only reply I got from the executive management. I don’t blame them. If anyone else
was in their shoes, reading a technical report that compares a software to an onion, you
could most likely have the same reaction. So why on earth did I make this comparison?

It’s simple, because onions do not rot in a way other perishable produce do. The
progress of decay in an onion is in layers. If the outside layers get infected by bacteria,
the inner layers would be still intact. This is because each layer is carefully isolated and
independent from another layer. So if you haven’t guessed it by now, I had proposed a new
software architecture based on targeted functional layers specific for different applications.

You might ask now how the Layers architecture works? The concept of layers is to
reduce dependencies between various engineering disciplines involved in product
development while keeping the functionality of the software intact. Layers also help to
break the development constraints in a multiplatform product consisting of hardware
and software. As we know, hardware and software follow their own life cycle at their own
pace. Often we see that either the hardware gets a head start while software waits for the
hardware development to complete, or often the software becomes much more complex
than its own hardware platform. In either case, software is always late, incomplete, and
buggy. Unfortunately this is the case in every embedded systems market that makes the
software the bottleneck in our product development processes.

XVi

INTRODUCTION

The first golden rule of removing the bottlenecks is to remove dependencies. This is
not 20 years ago when we didn’t have tools to do hardware in the loop (HIL), software
in the loop (SIL), or model in the loop (MIL) simulations. Back then we didn’t have
evaluation boards handy for every product. We can now simulate the entire product no
matter how complex its functionality is. However, you might ask, we have the tools but
why aren’t our processes still not as efficient? It’s because the tools can’t think. What we
need is a trusted process that would enable us to organize our thoughts systematically
and across various engineering disciplines. Layers is a work frame that will enable us to
architect our products before they are even formed into a meaningful concepts. It is an
organic process solely based on our understanding of our own customer’s requirements.
It is organic because it is formed based on your application, product, organization,
and company’s culture. Once we inputted and analyzed the customer’s voice, then the
developers and the tools can take over and breathe through the development process -
from research, to design, to manufacturing, deployment, and beyond.

Nevertheless, this is not the end of the story: there are still various other bottlenecks
in the development. Testing is one of those. Product testing is one of the lengthiest
and possibly the single most expensive item in the development. In addition, various
engineering departments design and perform their own engineering/manufacturing
tests independently from one another and often unknowingly overlap in test scopes.
Since Layers emphasizes independence, the chances of redundancy would increase
even more. However if a common product integration tool is used across all the
development, this common language would make the redundancies evident to the
designers; therefore they can address it beforehand. But this is not enough because the
ultimate goal is to remove lengthy and expensive redundancies in the test in order to
make our processes lean.

To create lean processes you can’t just jump into buying fancy tools yet, unless you'd
like to add to your collection of very expensive dust collectors. We need an active product
architecture that is designed based on the customer’s specific needs. With the help of
the Requirements Model and Model-Based Design tools, creating and maintaining an
active product architecture is easier than ever. Furthermore, these tools will enable
the development team, from research to manufacturing, to cut back on the amount of
documentations without compromising the integrity of the design. For the people who
are worried about government regulations and scrutiny of its various branches such as
DOD, FDA, DOT, DOE, EPA, ARB, etc., this would provide a documentation system with
arobust traceability feature for your design.

xvii

INTRODUCTION

Although the “onion” architecture belonged to that particular company facing a
specific security problem, the idea of layers can well be expanded into any existing
development whether in software, hardware, or a mixture of both, especially in
embedded systems. Each department only needs a portion of this software while still
receiving the majority of product knowledge. The idea of layers will provide a solution
to unify the different languages that now exist in each development segment. It reduces
the rework and the time to market, and most importantly saves money, which in
return enables the manufacturers to stay competitive not only locally but globally. The
macroeconomic impact of deploying intelligent development and product architecture
such as Layers would not be dismissive. It is now time to turn away from looking at
software as a commodity and see it as a conduit in which knowledge flows.

Finally, by removing the constraints in our development processes, we would be able
to implement one Agile framework for development for both hardware and software
rather than having a hodgepodge of traditional V-Model or Water Fall in software and
ancient phase-gate (CPD)/CPM systems for our hardware. Nevertheless, you still can
represent your progress in a phase-gate approach if you choose to, but the development
team won't be bugged down by it as they will follow the Agile approach. All these would
empower the development team who is doing the bulk of the work to synchronize their
paces across the board while keeping a desirable cadence to deliver incremental values
to the customers.

xviii

CHAPTER 1

The History of Layers
Architecture

What does developing a real-time system project have in common with a construction
project, from the project management perspective? Can we develop and manage both
projects with the same methodologies and tools? Some of you might think from a
project management standpoint, developing real-time or embedded systems should

not resemble developing a construction project. Although both might look similar
organizationally and share the same types of resources such as time, money, and people;
however, the fact that software has become an integral part of embedded systems will
significantly differentiate these two projects from each other. Now, this important
question arises: why is it that in many companies, both developments are called projects
and use the same project management tools? The answer to this question will go
beyond the boundaries of what the science of management can offer. This is because the
sciences involved with developing real-time systems are very new and are in a constant
state of change. Therefore the word “project” might carry a misleading connotation
when it’s used for developing embedded systems. But this misconception has deeper
roots than one might think. We all have seen many leaders in the embedded systems
industry still utilize the same tools and methods that a construction company uses in
developing their projects.

Nevertheless there are very valuable lessons in studying the construction projects,
not in the management methods that have been used for years but in their own schools
of thought. The construction industry has evolved through their thousands of years
of history. All in all, the traditional management tools can work for real-time systems
projects but in no way can one call this type of project management efficient for
developing mid- to large-size embedded systems. Through reading this book you will
realize how developing embedded systems are fundamentally different from any other
types of projects. To start off, let’s avoid the use of the term “project” temporarily as it

© Mohsen Mirtalebi 2017
M. Mirtalebi, Embedded Systems Architecture for Agile Development,
https://doi.org/10.1007/978-1-4842-3051-0_1

CHAPTER 1 THE HISTORY OF LAYERS ARCHITECTURE

might misleadingly imply only a process. An embedded system development is not just
a process, it is a product integrated into a process. Although you might say a physical
building is considered a product but it is not, because it lacks manufacturing of the same
building in a volume of thousands of identical copies. Since a building is not a product,
therefore, the term “project” shouldn’t apply to embedded systems. If you want, you can,
but keep in mind, our embedded system development project implies the process and
product.

The fact that there will be thousands of copies of what you are making in the market
makes the concept of efficiency of grave importance. An efficient development method
results in an efficient product, and this translates directly to waste elimination, which
creates direct economic impacts on both our company and customers through our
process and products respectively. If we reduce the cost of development, our product
would become cost effective and more competitive in pricing. In return it will bring a
considerable amount of saving of costs to our customers. Combine efficiency and the
astronomical numbers of embedded systems used currently across the globe, and we
will come to the realization that the efficiency we intend to create will propagate to the
furthest corner of the earth. Now this is a true green process. So forget not about the
green products, but instead imagine your product will be the greenest of all. However,
for some reasons, the idea of green in the industry has been slowly becoming a concept
confined only to some promotional tools for marketing biodegradable materials in
products or environmentally compliant methods such as ISO14000.

Although the recent waves of the green movement in the waste management and
manufacturing process improvements are very good starting points for creating efficient
systems, the bulk of waste in resources happens during development of products of
any sorts. It is ironic that the term “green,” which would imply efficient should result
in lower costs; but rather it imposes additional compliance regulations by which the
manufacturers must assign budgets to maintain. This will result in higher developmental
costs and longer product time to market, which consequently results in higher product
prices defeating the purpose of being green. As we can see, a true green process results
in better economic impacts such as a lower finished cost of the product without
compromising the quality of the product. Therefore our concept of green runs a bit
deeper, and it starts from where the first idea of a product sparks; however, it doesn’t stop
there and it continues to bear fruit while it runs its entire course of product life cycle. The
Agile method of development is one way to reduce the waste since these methodologies
were initially created to specifically target waste; however there are two shortcomings in

CHAPTER 1 THE HISTORY OF LAYERS ARCHITECTURE

these frameworks. One is that most Agile methods are optimized for software products,
not embedded systems that are comprised of both software and hardware. Also,
embedded systems are produced in order to carry out critical applications where general
purpose computers are not to be trusted to perform the tasks; therefore saving costs is
not the main objective of creating these systems.

In other words, most real-time systems are mainly designed to carry out control
functions with critical applications. The Agile methods give waste elimination the
highest priority, which could make us happy about the efficiency portion, but they fail
to put enough emphasis on the robustness of the product. A good example of this is the
Microsoft products that are developed through Agile methods. Their numerous after-
release software patches and their daily software updates are evident that robustness is
not high on their list. We are not to blame one product over its lack of quality. What we
want to say is that, when there is not enough emphasis on one aspect of product or there
is so much of it on another aspect, people who follow those methods blindly might not
be able to put things in perspective. In addition, since in the span of development time
and also product life cycle the technology and hardware components can change, it is
very important to plan carefully ahead. While an Agile method empowers the project to
deal with short-term changes, it might make it easier for its followers to abandon long-
term plans for the product. The real consequence of this approach is that the importance
of architecture in product development will be devalued. As you can see later, the
product architecture plays a vital role in developing the embedded systems.

A project manager, in any type of project, from construction to hi-tech needs to
put several hats on during the life of the project. In a real-time system development
project, a manager needs to interface with different stakeholders and internal and
external customers at different phases of a project and needs to follow various life cycles
including project, product, and software life cycles. However, a project manager is hardly
a product architect. This is because most project managers are trained and skillful in the
art of management rather than designing a real-time system. This book is intended to
find the common aspects of various life cycles and introduce an inclusive methodology
that would cover them all under one umbrella with an emphasis on the necessary
amount of documentation. We are hoping that by the end by reading this book, if not
anything, at least your outlook will change toward real-time systems development.

Furthermore, this book is for the embedded system project architects who are aware
of steps involving developing a real-time system and not just the project. The detail of
how to become aware of the design steps is through systematic use of a tool called the

CHAPTER 1 THE HISTORY OF LAYERS ARCHITECTURE

requirement model. This new addition to what Agile methods seem to be lacking will
empower the project architects to create a robust architecture that would very well
address the criticality of a real-time system development while creating an efficient
process and product. The advantage of following an Agile method will break the never-
ending cycle of analysis-paralysis that most classical product development methods
suffer from. Nevertheless, we all know that the classical methods are the foundation
of the new methods; therefore, the ideas discussed here might be new but backward
compatible and are absolutely true to the traditional methods, especially the CPD
framework. Nevertheless, this book will not discuss the details of any design standards;
software and hardware testing methods such as white box, black box, or any hardware
development phase such as hardware alpha and beta prototyping; and manufacturing
bottlenecks such as functional and end-of-the line testing, but it will show you how to
utilize these methods and tools when you get to the different phases of development.
Nevertheless, if we look at the nature, there is a great lesson in it, that anything and
everything in nature happens for a reason. There is no beauty for the sake of only beauty.
Any vibrant or dull color and exotic or subtle shape carries a reason. It is useless to talk
about team structure and function if we don’t know the mission. A mission creates a
structure and a structure delivers a function. As Louise Henry Sullivan, the father of
skyscrapers and the founder of the school of organic architecture said, “Form Follows
Function.” This book is to show you how to build your processes around the product.

The New and the Old

If you are coming from an Industrial Engineering background, you know that a simple
Gantt chart would never satisfy you if you are planning a project. This is because you
believe a project must have a baseline. But why don’t most project managers create
project baselines? It is because it’s a tedious job as you have to break down the project
to the units of work per person, which are called tasks, then you have to go on to load
all the tasks with resources that they are required to have their own work calendars.
Finally you have to apply the logical and temporal constraints to see how the tasks line
up, and at the end you have to level the resources by sliding the tasks in the schedule.
Therefore, creating a simple Gantt chart by no means is project planning and control.
Years later when I changed gears in my career and became an electrical engineer, to
my astonishment I saw the embedded system development projects were managed the
same way as a construction project was managed.

4

CHAPTER 1 THE HISTORY OF LAYERS ARCHITECTURE

However, considering the short history of electronics, software, and computer
engineering relative to other branches of engineering such as mechanical, chemical,
and civil, these new disciplines are still at their infancy stage with respect to work
standardization and offering best practices. Nevertheless, our modern manufacturing
and the backbone of our industries are built on the foundation of these new branches of
engineering. So the storyline goes like this: there are three young sheriffs in our town and
they are clueless.

Clash of Cultures

In every traditional development project there are two types of people. People who know
the product and people who know the project and hardly enough people who know the
product and project at the same time. People who know the product can tell you very
well what the product is comprised of. They can identify the sub-assemblies, modules,
and components; and they can break down the product into various functions. People
who know the project can arrange development and manufacturing work in such way
that product or concepts would come to life through the path of the least resistance.
However, both groups of people have one thing in common: they are concerned about
the constraints. Product-oriented crowds want to establish constraints and project-
oriented individuals want to avoid them. This brings up a very interesting phenomenon
in product development and manufacturing: the clash of cultures.

Clash of Thoughts

By definition, a project is a unique set of activities that a distinctive team of people carry
out only once. On the other hand, a process is what a fixed number of people do routinely.
With respect to constraints, projects want to remove the constraints and processes want
to solidify them. In classical project planning, the project manager starts drafting the
project with no constraints in mind, with the sort of 9-women-giving-birth-to-a-child-
in-a-month mentality. Therefore, ideally all project activities start at the same time and
continue concurrently. Consequently, the project managers don’t want any resource,
material, and budget constraints. However, in an engineering process everything is
diagonally opposing this view. Engineers, for example, want design reviews before
approvals, prototypes before releases, and so forth. This brings us to another fundamental
difference between processes and projects; let’s call it the clash of school of thoughts.

CHAPTER 1 THE HISTORY OF LAYERS ARCHITECTURE

Projects and Processes

By calling a product development, which inherently has a procedural nature, a project,
you bound yourself, your team, and your company to utilize project planning and
control methods and tools instead of utilizing methods and tools that were specific to the
processes. This is contradictory to the nature of product development, because a product
development is much closer in nature to manufacturing, which is also process based,
than being a project in its classical form. Let’s remember that the most powerful modern
product development methodologies such as Lean and Agile come from manufacturing
environments but in contrast, the project management methods and tools are originated
from the non-manufacturing environments.

Let’s assume your company manufactures switching power supplies in various sizes
for different applications. Your company has two main lines of products, a fixed line with
the highest volume of production; and a custom line that is low in volume but for special
applications. You, as an owner, decide to call these two product lines differently. You
call the more established product line a process and the custom line or any new product
development, a project. In the best case, you decide to use a common pool of resources
to support both lines; otherwise you have no option but to have two parallel teams
with the same skill sets to work on two different lines. As long as you are using the same
resources in the common pool to support and also develop products, you have created
a very inefficient system with two very different product visions, project vs. process. But
the worst case is when you use two different teams for these two different lines, and then
you lose valuable product knowledge in transition from one team to another. In both
cases your system has become highly inefficient.

Products and People

A product is nothing more than a collection of constraints that have been materialized.
The size, value, scope, and functionality of a product are predefined from day one of
its inception. The moment you envision a product in your mind you have constrained
it. Consequently the product developers are people who are aware of these constraints
and work around or with them to conceptualize the product. Let’s say you start a new
“project” and invite numerous subject-matter experts into the development team. Let’s
assume you invited Matt, an expert in power electronics hardware design, to the team.

CHAPTER 1 THE HISTORY OF LAYERS ARCHITECTURE

He’s been doing this for the last 15 years. To him, project x, y, and z don’t mean much.
All he cares about is to design a robust hardware that meets all the constraints or in
better words all the requirements of any particular “project.”

Product Software

Now the big question is where the software development falls into product development
as a whole? Software is becoming a very integral part of our lives and it is growing fast in
complexity, which is accepting a bigger portion of the product. The traditional software
development methods and life cycles such as V-Model, waterfall, and so forth are
project-based methods, because the hallmark of a project is that it has a distinctive start,
an end, and some transitional stages in between. The reason V-Model and other software
life cycles are so popular now in software development is because when software needed
development methods, the only trusted methods available all had roots in project-based
methodologies. Software science took off so fast that it left the method thinkers in the
dust, giving no advance warning to them to come up with standards and established
methods. But now we are at a different juncture of time where we have process-based
methodologies such as Lean and Agile, which are gaining tremendous grounds in

the industry. This is good news for the software industry but not good enough for the
embedded systems.

Embedded Systems

These systems are neither purely hardware nor software but a combination of both. As
a matter of fact, the software takes a different name in these systems, called firmware,
emphasizing how firmly software is tied to the hardware. The fundamental problem
that lays down in the nature of embedded systems is originated from how differently
hardware and software are viewed from the developmental standpoint. By adopting
two different methods in developing hardware and software separately, we create the
clashes of thoughts and cultures resulting in enormous challenges in embedded systems
development as how to synchronize the paces of development in software and hardware
to minimize the development losses.

In an attempt to overcome this challenge, some cutting-edge industry leaders
have decided to adopt two different approaches for hardware and software separately.
Process-based methodologies are chosen for the firmware and project-based methods

CHAPTER 1 THE HISTORY OF LAYERS ARCHITECTURE

are chosen for their hardware development. But this, in no way, will help to resolve the
initial issue. You still have two different mythologies under one roof for one product
while creating additional problems with respect to the clashes of cultures and thoughts.
Let’s find out what’s the root cause of this synchronization problem? To answer this we
should look at what the bottlenecks are in the development of the embedded systems.

Process Bottlenecks

In my previous writings, I pointed out two major bottlenecks, firmware latencies, and
test applications. For the embedded systems development, these two are the two sides of
the same coin. The test bottleneck would be the real issue and the firmware bottleneck
would be a consequential one. In other words, firmware development for an embedded
system wouldn’t cause any bottleneck if the hardware platform was readily available. But
to develop the hardware we need firmware. To resolve this situation some people resort
to developing their hardware beforehand to give the firmware a head start prior to the
“project’s” formal kickoff. But that will make your entire product development gravely
inefficient, which not only increases the final cost of the product but also lowers the
product quality.

The solution might be to utilize any of the in-the-loop methods such as Model in the
Loop, Software in the Loop, and Hardware in the Loop, intelligently. We know that the
in-the-loop methods have been utilized in the industry for a long time, but why there
is still so much waste in our systems? This is because we don’t know when exactly to
deploy these tools. We have no plan and no road maps as how to resolve the bottleneck

issues.

Intelligent Product Development

As we discussed before we should avoid managing our Hi-Tech developmental process
like a construction project. But there is one thing we can learn from construction projects:
no one in a construction project starts the project until every participating team is aware
of the building or site architecture. You might think there are still a lot of embedded
systems manufacturers who just do that. That’s correct, but soon after the product
architecture is in place, the product hardware and software take their own development
paths only to synch by enforcing “project” management tools. An active product
architecture would give us a road map on when to deploy our synchronization tools.

8

