Beginning Reactive
Programming with
Swift

Using RxSwift, Amazon Web Services,
and JSON with i0S and macOS

Jesse Feiler

ApPress’

Beginning Reactive
Programming
with Swift

Using RxSwift, Amazon
Web Services, and JSON
with iOS and macOS

Jesse Feiler

Apress’

Beginning Reactive Programming with Swift: Using RxSwift, Amazon
Web Services, and JSON with iOS and macOS

Jesse Feiler
Plattsburgh, New York, USA

ISBN-13 (pbk): 978-1-4842-3620-8 ISBN-13 (electronic): 978-1-4842-3621-5
https://doi.org/10.1007/978-1-4842-3621-5

Library of Congress Control Number: 2018955902
Copyright © 2018 by Jesse Feiler

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
email orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please email rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/978-1-
4842-3620-8. For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3621-5

Table of Contents

About the AUtNOF ... ———————— ix
About the Technical REVIEWETccuusseemmrsssssnnsssssssssssssssssnsssssssnnssssssnns xi
INtroduction........cccuinseememmmnnnnnnsssss s ———— Xiii
Part I: Building Composite Apps with Swift.........c..ccccviieniniennnns 1
Chapter 1: Building Blocks: Projects, Workspaces, Extensions,
Delegates, and FrameWOrkscccssmssmmnmmssssssssssssssnsssssssnssssssssnnnnnnnss 3
Component Architecture OVEIVIEWccccvverevnnnseniesessssesesesssses s e ssssessesaens 5
Looking at the i0S and macO0S Building BIOCKS........ccceevvrvrverenensensenessesesserenees 6
EXTENSIONS ..ottt s 6
Delegates and Protocols..........ccccuvvvinennininn s 8
FramMEWOTKS.....ccceiecresinsire s e s 8
Building with the Building BIOCKScccocvvriininirinrinse e sesses s sensenns 9
USING @ WOPKSPACEcvcereereerieriersie s sesses s sessse s e s e s ssessesaesssssesaesaennens 9
Building with Combinations of Building BIOCKS...........ccverrerenensenseressssensersenns 9
Command-Line Integrationcuvvrvrninnnnnsrnss e 10
SUMMAIY..c..ctiir e b e p e s b e e s aenns 15
Chapter 2: Using CocoaPods........c.ucceumrmsssnmnnmsssssnnnssssssnsnssssssssssssssnnnnss 17
INStall COCOAPOMS........ccectrirerieir e e e 18
Create a Simple App (SingIe-VieW APD) ...ccvcererrrnienenn s sessessessesessessesees 18
1] 4= O 27

iii

TABLE OF CONTENTS

Part ll: Using Codable Data with Swift and i0Scccesseeennne 29
Chapter 3: Reading and Writing JSON Data...........ccusseemnrnsssnnnnsssssnnnns 31
Identifying Data That Needs t0 Be Sharedcccceerievvrnvenensnennensenesessensenens 31
Considering Security for Sharing Data............c.ccovvriniinnnnnnnsnee e 33
The Challenges of Sharing Data...........cccovrerrenrnsnnneserese e 33
Identifying Data EIEMENTSc.ccvverrererrcrrcsesese e 34
Managing Inconsistent Data TYPES......c.cccvrrererenernsesessesesese s sesesessesesenns 35
Exploring the Document and Structure ISSUES ... 35
LOOKING @t JSON.......coeiecerreereresere s s 36
USiNg JSON—THE BaSICS.......cecerrrrererrnerrninisesenssse s sss e sssesessesesssesenns 4
1] 4= O 4
Chapter 4: Using JSON Data with Swift.........c.cccccinineemnnnnsnnnnnnnsnnnn 43
Getting Started with a JSON Swift Playground...........cccccvvenrnnrniennnescrnsenens 43
Using the JSON Integration Tools in SWift........cccccvirinninininnsnsne e 50
Integrating @ SWift Array.........ccoeernermresereerr e 50
Integrating a Swift Dictionary..........ccccvirnnnnnnnn s 52
SUMMANY.....eeieeresere s e se s e re e nee e s 54
Part lll: Integrating Facebook Loginsccccmmmmssssnnnnnnssssssnnnns 55
Chapter 5: Setting Up a Facebook Account with i0S..........cccceemennnnns 57
Beginning to Explore the Facebook i0S SDKccccevenmnenernsesnnesesesessnsenenns 58
Looking at the Components of the Facebook i0S SDK.........c.ccoevvrvrieriennsnienens 62
1] 4= 65

iv

TABLE OF CONTENTS

Chapter 6: Managing Facebook LOgINSccusseeerrsssssnnssssssssnssssssnnnnes 67
Beginning the Facebook SDK LOgin ProCESScocuveverererrenerenieresesessesesensenenns 67
Providing Basic i0S/Facebook Integration...........ccccvvvnincnnnnnsnieniesnsensennens 71
Connecting the i0S app to your Facebook Appc.cccvvvrvninennsnsesnese e 73
R T 111 1T o OSSR 76

Chapter 7: Adding a Facebook Login to an i0S ApPcccccuseeenrrssssnnnnas 77
Starting to Integrate the Facebook SDK with an i0S appcccceeevverrervrencerennen 78
Download the Facebook SDK for SWift.........c.covenernmnnsnssnennssssesesesssseas 82
Adding Frameworks and Functionality to Your Facebook Appcccceeevvveriennene 86
ENhancing YOUr APP ..o s e sss s e sssssssessesnens 89
SUMMANY....eieereresere e e e e e e e e 96

Part IV: Storing Data in Amazon Web Services.........ocsusssssansssnes 97

Chapter 8: Working with Amazon Web Services and Cocoa............... 99
Comparing COMPONENTS........cccvirierernrirrere s se e saesnes 99
USing AWS With COCOA......ccccevrrrerreriererrrrere e s se s s se s ssesessessesneees 100

Sharing Data with Others ... 101
Using Data Across PlatfOrmscccccvvrevnnnsenesinnen s sessessessesessessesees 102
Playing to Your SIrengths ... sesennens 104
Playing to Your Users’ EXpectations ... 104
EXPIOFING AWS ... s 105
Getting Started With AWS ..o 106
Comparing Cocoa and AWS Products for Data Managementc.cceueu... 108
L1114 7SS 109

TABLE OF CONTENTS

Chapter 9: Managing AWS LOQiNS.....ccccusssesssesssssnssssssssnssssssssnsssssssnns 111
Looking at AWS Accounts and the Root USErcccecvvvvrecrnccrnccnenecennnne, 111
Creating 0rganizations..........cccvirinnsnnnnsns e 116
WOrking With TAM..........ccoeerereccrreserese s 117
Integrating AWS With XCOE.......cccoveerrererisernesnese s 121
L1414 OO 122

Chapter 10: Beginning an AWS Project........ccccusseemmrsssssnnsssssssnsnsssssnns 123
Setting Up the i0S APP ..cvcererrrrrereresesseresessssessessessessssessessesssssssessesssssssessessens 123
Setting Up the i0S Project.........ccccricrninncnrcsenn e 124
Exploring the Documentation...........c.ccovcvininnnnnni e 127
Creating @ ProjECLovcerreerrerereser e 130

Setting Up the Back ENd.........ccoveorecrererecsrese e 131
Add the POGS ..o s 135
SUMMANY....ceitierirererese e r s e ae e nr e e 137

Part V: Using RXSWift........ccscmmmmmnnssnmnnmmmmsssssssnmnmssssssssnsnsssssnns 139

Chapter 11: Getting Into Code...........cosscmmmsemmmsmmmssnsmsnssssnssssnsssassssnsnnes 141
Getting STArted......cccovevrcere e 142
Installing RXSWift from GitHUDccovvvirrerierr e 143
Using the RXxSwift Playground..........cccceovivrninnenninsesnsesese s sesse s 146

Looking at a Formatted Playgroundccccoeernennnenennnnennncseseseseesennes 147
SUMMANY....iitiirire e s e s e s r e e s R r e e e nne s 155

Chapter 12: Thinking Reactively.......ccccccimirrnmsssssssmssmnnnnnsmssssssssssnnnns 157
What Are We Developing?.........ccoveevrrenerenesrssesessssesessssssesessssssssssssssssessssssssnens 158
Approaches to Programmingcoccevnsennessnsesnsessssssessssessssessssssessssesssseens 159

Programming Paradigms..........ccooueermresesesesnsessssesssssessssessssssessssessssessssenens 161
DeSign PatternS........cueevernisernse s 163

TABLE OF CONTENTS

Processing Configurations........c..cccevvniniennsnsnicsnsnsesse s sesesnens 165
Introducing Reactive Programmingcccoveemnenesenernsesessesessssesessesessesesennes 166
Focusing on REACLIVEX........ccccvvrernrmrenesersne s s sranes 166
SUMMANY ...t a e e np e 167

Chapter 13: Exploring the Basic RXCOdeccussmmmrssssnnnssssssnnnnssssnnns 169
Overview of ReactiveX/RxSwift—Xcode Integrationccccvvvvrverierinnenseniennens 170
Start from the RXxSwift DOWNIoad............cooeeeverernniencncrrr s 171
Explore the Workspace and Playground...........ccccvvvvnnsnieniennsnsenessssensessens 173
Adding a Project to the RxSwift DOWNIOAdccoveererenerenserererereseresesesnenens 174
Building Your RxSwift-enhanced Projectccueeervnernnesnsesesenesessesessesensnnes 180
Modify the Project.........cccvverninennsrnessns s s snanes 181
SUMMAIY.c.ueiteirerere e s e s s s e e s e s sae st e e s aesaesae e e e eaesae e e e nannaees 182

Chapter 14: Build a ReactiveX/RXSWift App ...covveeemrnrmmnsmsssssssssssnnnnas 183
Setting Up the ProjECt......ccvviervriererrrerrere s ssere s e s sesse s sessesessesaessssensesaens 186
Add REACTIVEX ..ot 192
Build RxCocoa and RXSWIf.........ccverrrenmrnnernsesenesese s 192
Add RxSwift and RxCocoa to YOUr Project..........cccvveererenmrnsenensesesesesensesensnnens 193
Verify the SYNTaX ... 193
Building the SToryboardccccvverevninieniennsenses s sessessesseees 194
Adding the UlTableView Code and Delegatecccvrevrvrerverernnensessersesessensenns 196
Implementing the ReactiveX Search Barcccevvvrnvnnenninscsnsesesesessnns 198
Reviewing the Code ... s 199
SUMMANY....eiveeriecseree e nenpe e e e 201

INA@X.iiiiisssnnnnnnnnnnnsssssssnnnnnnnnnnssssssssnnnnnnnnnssssssssnnnnnnnnnsssssssnsnnnnnnnnnsssssnnn 203

vii

About the Author

Jesse Feiler is a developer, consultant, trainer, and author specializing

in database technologies and location-based apps. He is the creator of
Minutes Machine, the meeting-management app, as well as the Saranac
River Trail app, a guide to the trail that includes location-based updates
as well as social media tools. His apps are available in the App Store and
are published by Champlain Arts Corp. Jesse is heard regularly on WAMC
Public Radio for the Northeast’s The Roundtable. He is founder of Friends
of Saranac River Trail, Inc. A native of Washington, D.C., he has lived in
New York City and currently lives in Plattsburgh, NY.

ix

About the Technical Reviewer

A passionate developer and experience enthusiast, Aaron Crabtree has
been involved in mobile development since the dawn of the mobile device.
He has written and provided technical editing for a variety of books on the
topic, as well as taken the lead on some very cool cutting-edge projects
over the years. His latest endeavor, building apps for augmented reality
devices, has flung him back where he wants to be: an early adopter in an
environment that changes day-by-day as new innovation hits the market.
Hit him up on Twitter, where he tweets about all things mobile and

AR: @aaron_crabtree.

Introduction

As technologies change, we see how basic patterns recur over time.
In many ways, there aren’t that many new things to learn — just new
variations and combinations of existing technologies and concepts.
(See my book “Learn Computer Science with Swift” for more on the
patterns that recur).

As always, there are many people to thank for helping on this book.
Most important are the people who have contributed to the technologies.
When it comes to the many open source technologies (including ReactiveX
and its projects), there are more and more people working on the
technologies, and that makes it easier for everyone.

Closer to home, Aaron Crabtree has provided very helpful and
watchful comments on the manuscript. And, as always, Carole Jelen at
Waterside Productions has helped make this book possible.

xiii

PART |

Building Composite
Apps with Swift

CHAPTER 1

Building Blocks:
Projects, Workspaces,
Extensions, Delegates,
and Frameworks

Building apps today isn’t really about writing code. You may have learned
how to write code in school or at a bootcamp intensive workshop, and
those experiences are valuable ways to learn about the principles of
coding. However, when you start your first coding job, you may find that
you're asked to correct a typo in the title of a report that an existing app
produces. It’s a simple job that you can divide into two parts.

First, find where the typo is (a basic app can easily have many
thousands of lines of code—Windows is estimated to have 50 million
lines). It might not take long to find a typo in a single line of code, but how
long does it take to find the line of code in the first place?

Second, fix the typo.

A month later, after you have finished the task of changing the title
typo, you may find yourself actually building an app. That job, too, can be
divided into several component parts.

© Jesse Feiler 2018 3
]. Feiler, Beginning Reactive Programming with Swift,
https://doi.org/10.1007/978-1-4842-3621-5_1

CHAPTER 1 BUILDING BLOCKS: PROJECTS, WORKSPACES, EXTENSIONS, DELEGATES,
AND FRAMEWORKS
First, implement a user authentication process. You can do this using

the Facebook API or using some open source code from a trusted web
source. You just have to find the code or API and then put it into your app.

Second, you need to implement your app’s functionality that comes
into play after the authentication process is complete. Depending on what
the app is, you may have to write it from scratch, but chances are that you'll
find yourself revising existing code from a similar project.

Third, you may take your new app and port it to a different platform.

Coding today is often about reading and understanding existing code
and then reusing it in new apps and new combinations. Yes, there is a lot
of from-scratch coding going on, but there’s also a lot of reuse of existing
code happening in the development world.

A number of factors have come together to create and support this
world of reusable and repurposed code, which, after all, represents many,
many hours of effort by many, many people. Reusing analysis and code is
just as important as reusing and recycling natural resources. In the case of
code, reuse means not reinventing the wheel. By not starting from scratch
each time an app is created, the entire world of software development can
move forward.

This chapter will provide an overview of how this world of reusable
code functions—particularly from the vantage point of iOS, tvOS, macOS,
and watchOS. You will find an overview of the reusable code building
blocks, along with an overview of how you can put them together using
Xcode and other tools that are part of the Apple developer’s standard
toolkit. There are three parts to the chapter:

e Component Architecture Overview gives you an idea
of what it’s like to build apps from components.

o Looking at the i0OS and macOS Building Blocks
provides an overview of what those blocks are.

o Building with the Building Blocks provides an
overview of how to put them together.

CHAPTER 1 BUILDING BLOCKS: PROJECTS, WORKSPACES, EXTENSIONS, DELEGATES,
AND FRAMEWORKS

Component Architecture Overview

Since the beginning of the computer age in the 1940s, there has been

a development backlog of projects waiting to be done. (A companion
backlog accompanied the rise of the web.) The need for software seemed
unstoppable. Various strategies emerged, and components were a key part
of many of them, both for the web and for software in general.

The idea was that building complete websites, programs, and apps
from scratch was an unsustainable model. There had to be some way of
speeding things up by reusing code that had already been written and
debugged. The problem with this simple idea was that it wasn’t possible to
easily reuse code—changes always needed to be made.

One way of reusing code to speed up the development process was
to take existing code and extract its key functions and features. These
elements could be reused more easily than an entire code base. This was
the beginning of component software development.

As time passed, these reusable extracts began to be used in two
different ways:

¢ Use a framework or shell. In this model, there is a
framework into which you can plug components.

The framework model was popular in the 1990s;
IBM'’s Software Object Model (SOM) was one

of the first. Microsoft entered the component
software world with Object Linking and Embedding
(OLE) and Component Object Model (COM). A
consortium of Apple, IBM, and WordPerfect worked
on OpenDoc. All of these were frameworks into
which you could plug specialized components (from
the user’s point of view, most were documents into

which you could plug components).

CHAPTER 1 BUILDING BLOCKS: PROJECTS, WORKSPACES, EXTENSIONS, DELEGATES,
AND FRAMEWORKS
e Build a product from components. In this model,

you combine a number of reusable components
(off-the-shelf or written specifically for the project) to
make a single product. There usually isn’t a framework
or container as a shell; in some projects, there is indeed
such an overarching container or shell, but it may be
created specially for each project.

Regardless of the component model you're working with, there
is a critical issue that crops up as soon as you start thinking about
components: What language will you use? In today’s world, the languages
for i0OS (and macOS) are Swift and Objective-C. However, one of the
features of component architecture is that in some cases you can mix
different languages, as you will see in the “Command-Line Integration”
section later in this chapter.

Looking at the i0S and macOS Building
Blocks

The building blocks in this section are all built in the Swift and Objective-C
languages for iOS and macOS, and with APIs such as UIKit for iOS and
AppKit for macOS, as well as their companions. This section will provide

a brief overview of the building blocks; for more information, look on
developer.apple.com.

Extensions

Extensions in Swift let you add functionality to an existing class, structure,
enumeration, or protocol type. You can find an example in the Adopting
Drag and Drop in a Custom View sample code on developer.apple.com.
The drag-and-drop functionality is defined in protocols (see the following

CHAPTER 1 BUILDING BLOCKS: PROJECTS, WORKSPACES, EXTENSIONS, DELEGATES,
AND FRAMEWORKS
section for more on protocols and delegates) and implemented in

extensions.

In Figure 1-1, you can see an app that uses the code from the Adopting
Drag and Drop in a Custom View sample. In this case, the basic class is a
custom view controller (PersonnelViewController). There is an extension
defined as follows:

extension PersonnelViewController: UIDragInteractionDelegate {

Each extension is in a file that references the base class (the class that
is to be extended). As you can see in Figure 1-1, the names of those files are

PersonnelViewController+Drag
PersonnelViewController+Drop

BO® P | H | siend) @ o i Eacorad Beady | Today ot 076 AL = «02 0O
DERAsd®ED@ B ¢ 0 B Seea) [Macosee [vie_ters) [ners) [er_red | |1 eransnenisatsetrarersiug o) i Seeren ne
2 Bacians M 1 /% idansiey an Trew
bl "‘am” - ? See LICENSE folder for this sample’s licensing information. A=y ::“:““M""""’
B] 2 T e - |
S~) 4 Abstract: — B
-] MpDsiegata vt 5 Implements the delegate methods for providing data for a drag ST
¥ [Sons ool L interaction. st
v [e Coruraters 4w L]
20 Vi Corvaiers “ Carionta Vi
¥ [0 View Comtraliers ; . - CortiensPennsi
[y S r—— " 8 import UIKit = osterson
w0 persene]
) Pervrmtiatid/emOwerchucrl; ® 10 extension PersonnelViewController: UIDragInteractionDelegate {
R = 1 ff MARK: - UIDragInteractionDelegate
. PorsomneienCorsrabers Dosn sl O g ermern
STE " f= B # Gcuwrs
1 Cou G st ™ The ‘dragInteraction(_:itemsForBeginning:}" method is
Rk e S the essential method
4 Lo to implement for allowing dragging from a view, —
16 wf Tout Encoding | Uneade (UTF- 8] B
I T e g s Ect L triras_ D)
17 unc dragInteraction(_ interaction: UIDragInteraction,
itemsForBeginning session: UIDragSession) -» i L B
[ulDragltem] { Tl L
guard let image = imageview.imege else { return [] } 6 wan e
20 let provider = NSItemProvider(object: image)
1 let item = UIDragItemiitemProvider: provider)
2 item.localObject = image
3 Boen
2% L]
b} Returnimg & non-empty array, as shown here,
enables dragging. You
2% can disable dragging by instead returning an esply
array. Mo Matches
27 =/
= return [item]
% ¥
30
@ @ 3 = &

Figure 1-1. Using extensions in a Swift class

CHAPTER 1 BUILDING BLOCKS: PROJECTS, WORKSPACES, EXTENSIONS, DELEGATES,
AND FRAMEWORKS
At runtime, you can reference the functions and other members of the

extension just as you would reference elements of the class.
Extensions can be added to base classes and other structures for which
you only have the API and not the source code.

Delegates and Protocols

Delegates and protocols work together. In the declaration of a class or
other structure, you see the superclass (if any) in the declaration, as in the
following declaration for a subclass of UIDocument in iOS:

class MyDocument: UIDocument {

A protocol can define functions that will be implemented in any class
that conforms to the protocol. Whereas with an extension the extensions
are added to the base class, with a protocol the protocol defines the code
that you will add to the base class.

Delegates often work together with protocols so that the
implementation of the protocol code is not placed into the base class;
rather, it is placed in a separate file called a delegate. The specific file that
implements the protocol is typically assigned to a field called delegate in
the base class.

Frameworks

If you work with iOS or macOS a lot, you are probably familiar with the
basic frameworks, such as AppKit (macOS) and UIKit (i0S), along with
smaller frameworks such as AddressBook. Frameworks can contain
functions and properties. You add them to a Swift project with an import
statement; with Objective-C, you can use an #import or #include
statement. (In Objective-C, the #import directive imports the framework
once; #include may import it several times.)

CHAPTER 1 BUILDING BLOCKS: PROJECTS, WORKSPACES, EXTENSIONS, DELEGATES,
AND FRAMEWORKS

Building with the Building Blocks

You can use delegates and protocols, extensions, and frameworks within
an Xcode project. You can use a workspace to combine several projects,
and you can use other tools to combine multiple components. Both
workspaces and the combinations of building blocks will be described in
this section.

Using a Workspace

With a workspace, Xcode takes care of managing the building of whichever
target within the workspace you want to build. Targets may share elements
from the workspace and will use them as needed to build various targets
(such as for iOS and watchOS with the same workspace).

Building with Combinations of Building Blocks

The building blocks from Apple (frameworks, protocols, and delegates,
as well as extensions) often provide a neat and elegant way to extend and
expand your code. However, there are cases in which a single feature
requires the use of multiple building blocks—for example, a feature
might need one very big framework to be installed, along with a dozen or
more smaller (but related) frameworks. Protocols and delegates are now
commonplace in many structures, and extensions, likewise, may be added
to the mix. Thus, implementing a new feature using shared code may
require many additions to your code base.

Situations in which multiple building blocks need to be added to an
app are common, and they can be difficult to manage. There are several
tools available to help you manage such combinations. These tools use a
structure that organizes the changes to your app so that a script or other
tool can apply the changes in the right places and in the right order.

CHAPTER 1 BUILDING BLOCKS: PROJECTS, WORKSPACES, EXTENSIONS, DELEGATES,
AND FRAMEWORKS
One of the most widely used of those tools is CocoaPods, which is the topic

of Chapter 2.

GitHub has become the most widely used code-sharing tool and
site today, and it is integrated with most package managers. Thus, the
download of the latest GitHub version of the complex building blocks is
done for you automatically as you run the package manager.

Package managers like CocoaPods use their own code and scripts
to perform the integration. To do so, they—and you—must use some
command-line code. If you are used to macOS and the Finder, you may not
use the command line very often. Don’t worry—the products hide most
of that syntax from you. However, for the cases in which you do need to
access a file or folder from the command line, the following section will
provide some tips.

Command-Line Integration

Terminal, which is automatically installed as part of macOS, is the app that
gives you access to the command line. When you launch it, you will see the
basic screen shown in Figure 1-2.

10

CHAPTER 1 BUILDING BLOCKS: PROJECTS, WORKSPACES, EXTENSIONS, DELEGATES,
AND FRAMEWORKS

[NON | & class — -bash — 73x21

Last login: Thu Apr 19 12:29:18 on console
Jesses-Mac-Pro:~ class$ [I

Figure 1-2. Use Terminal to access the command line

The first line shows you the date and time of the last login. On the second
line, you can see the name of the computer you are using. You then see the
identifier of the user you are running, and a symbol such as $ marks the end
of the automatically generated text. You type your command after that.

Note You can customize the formatting of lines in Terminal.

In Figure 1-3, you can see the first command entered into Terminal.
It is the list command (the code is 1s).

11

