


Contents

Preface

Acknowledgements

Introduction

Part I The World Without Gravity

1 Non-Relativity for Relativists

1.1 Vectors and Reference Frames

Problems

Problems

Problem

Example 1.1

Example 1.2

Problems

Problem

Problem

Example 1.3

Problem

Problems

Example 1.4

Example 1.5

Example 1.6

References



2 Invariance of Physical Law Under

Change of Inertial Frame of Reference

2.1 Prologue

2.2 The Theory of Light or Electromagnetic

Waves

Problem

Problem

Problem

Problem

Problems

2.3 Measurement Theory and the Lorentz

Transformations

Problem

Problem

Problems

References

3 Implications: Using and

Understanding the Lorentz

Transformations

3.2 Kinematic Applications

Example 3.1

Example 3.2

Problem

Problem

Problems

Example 3.3

Problems

Problem



Problem

3.3 Kinematic Acceleration

Problems

Problem

Problems

3.4 Geometrical Optics

Problems

Problems

Problems

References

4 The Measure of Space-Time

4.1 Prologue

4.2 Metric Space-Time

Problems

Example 4.1

Problems

Problems

4.3 Four-Vector Dynamics

Problem

Example 4.2

Example 4.3

Problems

Problems

Example 4.4

Problems

Problems

Example 4.5

Problems



References

5 Electromagnetic Theory in Space-

Time

5.1 Prologue

Problem

5.2 Lagrangian Dynamics of an

Electromagnetic Charge

Problems

Example 5.1

Problem

Example 5.2

Problems

Example 5.3

Problems

Problem

5.3 Electromagnetism for Arbitrary Inertial

Observers

Problems

Example 5.4

Problems

Example 5.5

References

Part II Relativity With the

Gravitational Field

6 Gravitational Structure of Space-

Time



6.1 Prologue

Problem

6.2 The Weak Gravitational Field

Problem

6.3 Constant or Stationary Gravitational

Field

Example 6.1

Problem

6.4 Strong Gravitational Field

Problems

Problems

Problem

Example 6.2

Example 6.3

Problem

Problems

Problems

References

Plate

Index







This edition first published 2011

© 2011 John Wiley & Sons Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate,

Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer

services and for information about how to apply for

permission to reuse the copyright material in this book

please see our website at www.wiley.com.

The right of the author to be identified as the author of this

work has been asserted in accordance with the Copyright,

Designs and Patents Act 1988.

All rights reserved. No part of this publication may be

reproduced, stored in a retrieval system, or transmitted, in

any form or by any means, electronic, mechanical,

photocopying, recording or otherwise, except as permitted

by the UK Copyright, Designs and Patents Act 1988, without

the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic

formats. Some content that appears in print may not be

available in electronic books.

Designations used by companies to distinguish their

products are often claimed as trademarks. All brand names

and product names used in this book are trade names,

service marks, trademarks or registered trademarks of their

respective owners. The publisher is not associated with any

product or vendor mentioned in this book. This publication is

designed to provide accurate and authoritative information

in regard to the subject matter covered. It is sold on the

understanding that the publisher is not engaged in

rendering professional services. If professional advice or

other expert assistance is required, the services of a

competent professional should be sought.

http://www.wiley.com/


The publisher and the author make no representations or

warranties with respect to the accuracy or completeness of

the contents of this work and specifically disclaim all

warranties, including without limitation any implied

warranties of fitness for a particular purpose. This work is

sold with the understanding that the publisher is not

engaged in rendering professional services. The advice and

strategies contained herein may not be suitable for every

situation. In view of ongoing research, equipment

modifications, changes in governmental regulations, and the

constant flow of information relating to the use of

experimental reagents, equipment, and devices, the reader

is urged to review and evaluate the information provided in

the package insert or instructions for each chemical, piece

of equipment, reagent, or device for, among other things,

any changes in the instructions or indication of usage and

for added warnings and precautions. The fact that an

organization or Website is referred to in this work as a

citation and/or a potential source of further information does

not mean that the author or the publisher endorses the

information the organization or Website may provide or

recommendations it may make. Further, readers should be

aware that Internet Websites listed in this work may have

changed or disappeared between when this work was

written and when it is read. No warranty may be created or

extended by any promotional statements for this work.

Neither the publisher nor the author shall be liable for any

damages arising herefrom.

Library of Congress Cataloguing-in-Publication Data

Henriksen, R. N.

Practical relativity : from first principles to the theory of

gravity / Richard N. Henriksen.

p. cm.

Includes bibliographical references and index.



ISBN 978-0-470-74142-9 (cloth) – ISBN 978-0-470-74141-2

(pbk.) 1. Relativity (Physics) I. Title.

QC173.58.H36 2010

530.11 – dc22

2010023306 A catalogue record for this book is available

from the British Library

ISBN: 978-0-470-74142-9 (H/B) 978-0-470-74141-2 (P/B)

Typeset in 10/12 Times by Laserwords Private Limited,

Chennai, India

Printed in Singapore by Markono Print Media Pte Ltd

Cover images: Dice image from Sights That Einstein Could

Not Yet See – visualization of relativistic effects. Ute Kraus,

Hanns Ruder, Daniel Weiskopf, Corvin Zahn. Latticework and

Clocks from Spacetime Physics, 2e by E.F Taylor and J. A.

Wheeler © 1992 by Edwin Taylor and John Archibald

Wheeler, used with permission.



To the memory of Gertrude and Norman, Emma and Halter;

and to Judith who is life’s force incarnate.



Preface

This book is entitled Practical Relativity. Many of you (I hope

that there will be many) will wonder why, once confronted

with the dense forest of equations. I can only say that in

places I have used words to explain conceptual points.

However I think that what makes it ‘practical’ rests primarily

on two other things. I have started at the beginning of the

subject and gone nearly to the end. Moreover, insofar as I

have been able to navigate between tedium and necessity, I

have included all of the steps that lead to important results.

This is, I think, a characteristic of ‘practicality’. Both of these

themes should be appreciated by serious students.

Problems are included that elucidate the ideas, and these

should be appreciated by professors. A solutions manual,

containing answers to the problems, is available at

www.wiley.com/go/henriksen.

My approach has been to regard fundamental principles

‘eye to eye’, so that any possible alternatives to the

traditional arguments may become evident. Most

derivations are from first principles. I have not cluttered the

book with every possible application of the theory, but the

grand classics are present. I believe, however, and I hope

that you will agree, that the presentation of the necessary

techniques has been comprehensive.

I have not used the latest mathematical treatments of

vectors and tensors, as found for example in the Cartan

calculus. My approach has been to remain as close as

possible to familiar concepts of vectors, tensors and

reference systems in the hope of capitalizing on received

wisdom. I believe that this is another practical aspect.

There are many books on this subject, and in the course of

my writing I have enjoyed reading many of them. They are

http://www.wiley.com/go/henriksen


referred to throughout the book. I do believe that the

present book is not quite the same as the others, mainly

due to the attempt to distinguish the positivist approach

from the theoretical. While one measures, the other

imagines although in the end the loop must be closed. I

have also attempted to cast light on dark corners. I have

enjoyed exploring the corners, and I hope that this book will

also help you to explore and enjoy them.

“Why, I’d like nothing better than to achieve some bold

adventure worthy of our trip.”

Aristophanes, 450-385 BC
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Introduction

This book is written in six long chapters. The intention was

to make each chapter a logical step on the way to

relativistic electromagnetism and gravity, subjects that are

the province of the last two chapters.

The first chapter starts from simple considerations of

reference frames and vectors. The positivist attitude is

emphasized. It is written entirely in the physical context of

classical (Newtonian) space-time and mechanics. However,

the notion of coordinate independence of the physical

description leads inexorably to the apparatus of differential

geometry. This is done deliberately, so that the reader will

become accustomed to the formalism of relativity in an

intuitive geometrical context.

The mystery of inertial frames is discussed at length in this

chapter, with some connection to modern ideas. The

discussion includes non-inertial frames, and the

transformations between them. This leads to the

introduction of time in the coordinate transformations and to

a brief discussion of absolute time. Rotation matrices and

angular velocity matrices are used to write Newton’s second

law in accelerated frames of reference. Contact is made

with other, considerably less explicit, notation. Finally we

emphasize that the necessity to define parallel transport of

a vector already exists in Euclidian curvilinear coordinates.

This is presented in a familiar (if awkward) notation, so that

it is readily recognized later. This chapter assumes a

familiarity with classical ideas at the level of advanced

mechanics and neither is, nor was meant to be, gentle. It

may be best to study it selectively.

The second chapter is devoted to the derivation of the

Lorentz transformations in two distinct ways. The first



method concentrates on the derivation of the Lorentz

transformations as those transformations of space and time

that leave the wave equation for light invariant.

Considerable discussion is devoted to finding what the

results would be, if other equations were taken as the

source of the fundamental invariance. The essential step of

allowing a time transformation, rather than insisting on

absolute time, is shown to distinguish these transformations

from earlier versions by Voigt and Poincaré.

After this derivation the question arises as to why such an

invariance group should apply to all events in space-time.

This question is answered by the operational or positivist

derivation of the transformations first given by Einstein. We

give a version that is based on light-clocks and the

transformation of straight lines in a space-time diagram. We

argue that such a linear transformation must be

accompanied by a ‘units transformation’. These scale

factors are the usual, time dilation and Lorentz-Fitzgerald

contraction. Putting these two concepts together yields the

Lorentz transformations. Because of the maximal and

invariant nature of the speed of light that is assumed ‘a

priori’ in this approach, it is really a theory of ideal

measurement. So long as what one can measure is reality,

the implications of the transformations are ‘real’.

The third chapter details many of the usual applications of

the Lorentz transformations, together with some discussion

that is perhaps rarer. Time dilation, the Döppler shift and the

twin paradox start off the chapter. There are some

astronomical applications. Time on a rotating disc is

examined in the context of the Sagnac effect. The Lorentz-

Fitzgerald contraction is discussed largely in terms of

standard paradoxes, but once again the rotating disc is

found to be instructive. Some gentle speculation is allowed

here, since the topic has a history of errors. The velocity

transformation is introduced and used to define the



phenomenon of aberration of beams of relativistic particles.

The limit is taken for photons and so the inherent

transformation of angles appears, which is optical

aberration.

Under the heading of geometrical optics we discuss such

topics as Thomas precession and the appearance of moving

objects. The derivations are not the most elegant possible!

However, they do have the merit of revealing the essential

unexpected phenomenon in the homogeneous Poincaré

group. The astronomical phenomenon of ‘light echos’ is also

introduced and then argued to be important using

examples. A final topic in the chapter is dynamics with

prescribed acceleration. This requires the transformation of

particle acceleration between inertial observers. Hyperbolic

motion is presented as an example of the horizon

phenomenon.

In the fourth chapter we introduce Minkowski space-time

and adapt all of the results of Chapter 1 regarding vectors

and tensors to the four dimensions of space and time. At

this stage we emphasize that it is not obligatory to conceive

of space-time as a Minkowskian manifold, but that it is

terribly convenient. We demonstrate this by rederiving the

Lorentz transformations based on this principle in two ways.

We assume first that metric moduli are invariant, and then

that the metric itself should be invariant after

synchronization. We also show that the four-vector

treatment of velocity and acceleration allows previous

results on their three-vector transformation properties to be

readily obtained. These discussions serve principally to

demonstrate the internal consistency of the Minkowskian

metric space.

In the absence of real forces, we introduce the Lagrangian

and Hamiltonian for a free particle and infer the momentum

and energy. We show how one may impose constraints on

the motion of a free particle to approximate relativistic



forces. This is all done in generalized coordinates as well as

Galilean coordinates. After deriving the action for a free

particle, we observe that the Euler-Lagrange equations are

equivalent to geodesic equations in the given metric. This

leads to the equation of motion of a free particle that holds

in any pure metric theory. Finally, the collisions of free

particles are treated in terms of the conservation laws. The

principles are extended to photons and applied to Compton

and inverse-Compton scattering.

The fifth chapter is technically more challenging, but

perhaps also more practical. The four-vector

electromagnetic theory is presented in Galilean coordinates.

Then in the traditional ‘three plus one’ split into space and

time, Lagrangian and Hamiltonian methods for solving

particle motion are introduced with examples. Many of the

examples are important classics and some of them are

solved in several different ways in order to elucidate the

methods. The Lorentz equation of motion and the principle

of relativity are used together to infer the transformation of

electric and magnetic fields in an elementary way. One sees

that these vectors are part of a larger object.

Next the three plus one split is abandoned, and Galilean

four-vectors are used exclusively. This leads to the field

tensor, electromagnetic field invariants and the tensor form

of the field equations. The latter result requires, in part, a

discussion of the action that holds for the matter coupled to

the fields, when the vector potential is varied.

As a means of transiting to gravitational metrics, the

Maxwell equations are generalized to metrics for which all

components are in principle functions of space and time.

Such dependence includes curvilinear coordinates and non-

inertial coordinates, but the metric can also reflect a curved

manifold. Finally, in this section, the Landau and Lifshitz

approach based on a (locally) diagonalized metric is used to

write the Maxwell equations in a recognizable form. This



material is rather advanced and can be omitted without

subsequent damage. It does, however, represent a useful

exercise in the use of vectors, tensors and their duals. The

final form of the equations can be used to discuss

electromagnetism near rotating black holes and neutron

stars.

Part II of the book deals with the implications of metrics

that describe various gravitational fields. It is contained in

one long Chapter 6. The chapter has a long prologue that is

meant to introduce qualitatively the nature of the metric

theory and its uses. The reader is free to pass on and let

these speak for themselves.

The first major section explores the metric representation

of a weak gravitational field. This is where the contact with

Newtonian theory is established. The gravitational and

cosmological frequency shifts are discussed in this section in

order to form a complete set of such shifts, but their general

nature is emphasized. Later the gravitational frequency shift

is given a more general treatment. Simple tests are

discussed briefly, with emphasis on the GPS system.

The next section deals with the general form of static and

stationary metrics. The Lagrange equations are used to find

the Christoffel symbols when the metric is spherically

symmetric. The Hamilton-Jacobi and Eikonal equations are

introduced for general metrics. These are used to discuss

the energy of a particle and the proper frequency of a

photon.

The third section presents the metrics for two of the best

known and important strong gravitational fields, due to

Schwarzschild and Kerr. Each metric has its own subsection.

The nature of the Schwarzschild horizon is clarified by

introducing freely-falling (inertial) observers, following

LeMaître. We see that this field of inertial observers is

completely determined by the metric in Schwarzschild form.

The classic calculations of orbital precession and light



deflection are given in detail in two independent

approaches.

The Kerr metric is less manageable, but we find the

meaning of its horizon and ergosphere. Frame dragging and

energy extraction are discussed, as is the upper limit to the

specific angular momentum.

In the last two sections we give first the conservation laws

of matter as the true divergence of the energy (density)-

momentum (flux) tensor. This is then used in the discussion

of the matter sources of the gravitational metrics.

Following Gauss and Riemann, the curvature is identified

as the distinction between what is merely the Minkowski

metric in generalized coordinates and the gravitational

metrics. This leads to defining the Riemann, Ricci and

Einstein tensors. The Riemann curvature tensor is shown to

be equivalent to the non-commutation of the second-order

true derivatives. The Einstein equations are given and the

Bianchi identities are shown to be essential to the

conservation laws of matter. Finally, a brief discussion of the

modification necessary to include the cosmological constant

(or vacuum energy density from another point of view) is

given.

No detailed calculations using the Einstein equations are

presented. These are left to other texts, although in

principle the reader has the techniques with which to launch

himself into the heart of this grand subject.



Part I

The World Without Gravity



1

Non-Relativity for Relativists

Dura lex, sed lex (The law is hard but it is the law)

1.1 Vectors and Reference

Frames

In this section we discuss our fundamental concepts as

drawn from experience. This ends in frustration since

experience is approximate, most things are known relative

to other things, and our concepts often seem to be defined

in terms of themselves. Thus ‘fundamental’ argument

resembles the circular snake devouring its tail (the

Ouroboros). However we must make a beginning, and so we

confront our first definition and its algebraic implications.

What is an inertial reference frame? I prefer to parse this

question into two principal questions. By ‘reference frame’

we mean some well-defined system of assigning a

measured time and a measured position to an ‘event’. For

the moment an ‘event’ is point-like, as for example the time

at which a particle or the centre of mass of an extended

body takes a particular spatial position. The reference frame

also implies an ‘observer’ who records the measurements.

The resulting numbers are the ‘coordinates’ of the event in

this reference frame. By ‘inertial’ we mean a reference

frame in which Newton’s first law of motion1 applies to

sufficiently isolated bodies. This axiom requires not only that

the coordinates of a body be determinable from moment to

moment, but also that fixed spatial directions be defined.



Neither one of these definitions is particularly exact or

obvious and yet they are fundamental to our subject. Thus

we continue their exploration in the next two sections.

1.1.1 Reference Frames

Although this is not strictly necessary, location is normally

specified relative to a set of objects that have no relative

motion between them. Some fixed point within this set of

objects is chosen as the reference point or ‘origin’ from

which all distances are measured. On small enough scales

that we can reach continuously, the measurement is made

by placing a standard length along a straight line between

the points of interest. We call this standard length a ‘ruler’

or a ‘unit’ and we assume that we can determine a ‘straight

line’. On larger scales, various more subtle methods are

required.

Our most familiar example is the Earth itself. On small

scales we have no difficulty in establishing a rigid frame of

reference by assuming Euclidean geometry. That is, we

assume that the Earth is ‘flat’ so that trigonometry and an

accurate ruler suffice to measure distance. When lasers are

used we are assuming that even the near space above the

surface of the Earth is Euclidean and that light follows the

straight lines. On larger scales the Earth is found to be a

sphere, so that its surface does not obey Euclidean

geometry. Position has to be assigned by latitude and

longitude, which requires the use of a combination of

accurate clocks and astronomical observations in the

measurements. Distance is computed between points using

the rules of spherical trigonometry, rather than the

Euclidean rule of Pythagoras2 (see e.g. Figure 1.1).

Figure 1.1 The three perpendicular axes emanating from O

are reference directions. Each axis is rigid and the

projections of OP on these axes furnish the Cartesian



weights or components. The theorem of Pythagoras gives

the distance OP in terms of these

The Earth is not exactly a rigid sphere, but a global

reference frame precise enough to detect this fact became

generally available only with the advent of the Global

Positioning System (GPS) of satellites. This remarkable

development, based on multiple one-way radar ranging, has

allowed us to measure the ebb and flow of oceans and

continents in a non-rigid, spheroidal global frame. However,

it assumes principles that we have yet to examine, and that

will be the subject of much of this book.

Thus the procedure to define a ‘rigid’ frame of spatial

reference always involves assumptions about the nature of

the world around us, and it is these that we must carefully

examine subsequently. Moreover such a reference frame is

always an idealization. Errors are involved in determining

practical spatial coordinates on every scale, so that our

knowledge of distance is always approximate. Moreover the

degree of idealization increases with spatial extent of the

reference frame, as it becomes progressively more difficult

to maintain rigidity.

In parallel with spatial position, we have managed recently

to establish a global measure of time that allows us to say

whether or not events occurred simultaneously. This means



that a single number can be assigned to a global point-like

event (e.g. the onset of an earthquake in China or sunrise at

Stonehenge on Midsummer’s Day). The number is assigned

by each of a network of synchronized atomic clocks

distributed over the reference frame of the Earth. The

sequence of such numbers defines ‘coordinate time’ for the

Terrestrial Reference Frame. The difference between such

numbers that encompass the beginning and end of an

extended event (such as a lifetime) may be called a

‘duration’ for brevity. In practice, only durations of finite

length are meaningful since no measurement can be made

with infinite precision, but we normally assume that they

can be arbitrarily small in principle. Figure 1.2 shows an

ideal rigid reference frame with synchronized clocks at each

spatial point.

The creation of a terrestrial coordinate time has been

accomplished through the global synchronization of atomic

clocks (within limits) rather than by astronomical measures

such as day count and Sun angle. The latter does not

establish a global reference time as any ‘jet-lagged’

traveller knows well! Once again this global clock

synchronization involves principles and corrections that we

have yet to discuss, but which will be one of our principal

preoccupations.

Our direct experience of time tends, however, to be local

rather than global. It is an event that includes oneself whose

duration is measured by our clock, our schedule, our heart

beat or our ageing process. Such local time is proper to us

and is generally referred to as ‘proper time’. The ‘origin’ of

either coordinate or proper time is just as arbitrary as is the

spatial origin, and may be chosen for convenience.

There are many reasons, however, why proper time does

not run at the same rate as coordinate time. These reasons

are physical as well as psychological. One physical reason is

that our bodies age according to a thermodynamic time



measured by increasing entropy, and the rate is different for

different individuals. Another is the differing set of inertial

frames that an individual occupies relative to the terrestrial

reference frame. This unexpected dependence we shall

explore in subsequent sections. The psychology of time is

not within the competence of this author, but ‘apparent’

proper time is notoriously variable!

The complications involved in defining reference frames

have been elegantly revealed by our exploration of the solar

system. The planets do not form a rigid system of reference.

A global reference frame on Mars moves relative to a global

reference frame on the Earth, so that a rigid reference

frame encompassing the two is not possible. One solution is

to construct an imaginary rigid frame whose origin is at the

centre of the Sun. The three independent directions required

to encompass all space in the Cartesian fashion are not

fixed in the Sun, which is not rigid either, but rather with

respect to very distant objects in the Universe (such as

quasars) that appear fixed to us. Coordinates determined

along these directions are useful to determine the

momentary position of the centres of mass of the planets.

Ultimately, however, we are forced to have recourse to

systems proper to each planet, such as latitude and

longitude for the Earth, and these are neither fixed nor

constantly oriented with respect to the Cartesian reference

axes.

Time measurements in the solar system have also

revealed difficulties with a panplanet coordinate time. For

example, assuming nothing faster than our electromagnetic

signals, Martian events happen later for an Earth observer

than they do for a Martian observer such as a Martian Rover

Vehicle (and vice versa for Earth events observed on Mars,

such as the initiation of a command signal on the Earth).

Electromagnetic signals propagate in a vacuum with the

speed of ‘light’, which is almost universally labelled as c and



which has the approximate numerical value 0.2998 metres

per nanosecond (we know it to much greater accuracy).

Thus although we can experience a Martian duration

delayed by the travel time of our signals (and slightly

distorted due to the motion of Mars relative to the Earth),

we cannot share proper times. Moreover there can be no

electromagnetic connection between the Earth and Mars

during this travel time.

There is, then, since at present c is the fastest signal we

know, a causality gap wherein nothing on Earth can affect

Mars and vice versa. This a-causal gap varies roughly from 4

minutes to a little less than 12 minutes depending on the

relative positions of Earth and Mars. We have met such an

effect previously when astronauts were on the Moon, but

the gap was only of the order of two seconds. Our

intercontinental calls by way of satellites in synchronous

orbit have an a-causal gap roughly equal to a third of a

second, which is barely noticeable in conversation.

One might think that by using atomic clocks synchronized

on Earth and Mars we could agree on simultaneous events

after the fact at least, and so establish a pan-planet

coordinate time, which would be ‘absolute’ in the solar

system. However, we shall see that even the most perfect

atomic clocks cannot remain synchronized in the presence

of relative velocity between reference frames, provided that

signals of only finite speed are available to us.

The sort of reference frame that we can construct at the

centre of the Sun is composed of an inferred origin plus

geometric straight lines and it has no proper ‘observer’.

Time and space in this frame are constructed from events

measured by atomic clocks and observers located

elsewhere, after correction to the solar origin. These

corrections are an example of a general mapping from local

coordinates to ‘generalized’ coordinates at the centre of the

Sun. Such mappings will be discussed in greater detail



below. Although useful as fictitious standards and widely

used in the theory of gravity, these virtual reference frames

are distinct from a tangible reference frame that is inhabited

by ‘observers’ capable of measuring the coordinates of

events directly.

The conclusion to this discussion so far may be

summarized algebraically by stating that a reference frame

allows an observer to assign coordinates to point-like events

according to

(1.1) 

The notation on the left indicates a set of four quantities as

a takes on the successive values {0, 1, 2, 3}, equal to the

set of quantities in the column four-vector on the right (in

order beginning at the top). Thus x0 = t, x1 = q1 and so on.

If there is any danger of confusing the raised indices with

powers in a given context, we will enclose them in brackets.

For brevity we write the column vector usually as xa.

The quantity t is simply the coordinate time for the

reference system and the set {qi} where i = 1, 2, 3 give the

spatial position. Generally curly brackets are meant to

indicate a set, but more usually they are simply understood.

These may be the familiar Cartesian set {x, y, z} (see Figure

1.3) or they might be spherical polar coordinates {r, θ, ϕ} (θ

is co-latitude, ϕ is longitude and r is the distance from the

origin); or in fact any other set of three numbers that

defines a spatial position. As such they are ‘generalized

coordinates’.

We shall use this convention whereby letters early in the

alphabet (before h) shall take on four values 0, 1, 2, 3 as

above for xa, while those later in the alphabet will run from

1 to 3, as above for qi. All four quantities in xa may be taken



as pure numbers, each giving the value of the

corresponding quantity in terms of standard units when

length or time is involved, or giving the radian measure for

angles.

Figure 1.2 After a rigid spatial frame of reference is

established locally by measurement and synchronization, it

might appear as shown in this cartoon. Each ruler indicates

a unit of distance and any point on the grid is located with

three numbers giving the three independent spatial steps

relative to the reference point. The fourth number is the

coordinate time, which is the same over the grid. The

reference point is shown as having the reference clock with

which all of the other clocks are synchronized. Extended to

infinity, the grid is the instantaneous world of the reference

observer O and friends. It is their inertial frame of reference.

Source: Reproduced with permission from Taylor & Wheeler,

Spacetime Physics (1966) W.H. Freeman & Company (See

Plate 1.)

By space we mean primarily the relative position of

events, and especially the distance between them.3 We can

locate a particular point or position by a three vector, called


