


Cocoa®

Table of Contents

Part I: Getting Started

Chapter 1: Introducing Cocoa

Introducing Cocoa

Understanding Cocoa's history

Moving from NeXTStep to Cocoa

Profiting from Cocoa

Profiting from the iPhone

Developing for fun

Introducing Xcode and the Apple Developer Programs

Working with Xcode and Interface Builder

Working with Safari

Summary

Chapter 2: Think Cocoa!

Designing for Cocoa

Understanding Aqua

Using Aqua with Cocoa

Creating Cocoa Applications

Understanding layers and frameworks

Developing features across layers

Moving to Cocoa and Objective-C from Other Platforms



Working with Objective-C objects and messages

Managing data in Cocoa and Objective-C

Exploring other Cocoa features

Comparing Cocoa to other platforms

Summary

Chapter 3: Introducing the Cocoa and OS X Documentation

Getting Started with the Documentation

Understanding resource types

Understanding Topics

Using the Documentation

Sorting the documentation

Working with source code

Summary

Chapter 4: Getting Started with Xcode

Getting Ready for Xcode

Registering as a developer

Joining the Mac Developer and iPhone Developer programs

Installing Xcode

Creating a New OS X Project

Exploring Xcode's Windows

Understanding Groups & Files

Selecting items for editing

Customizing the toolbar

Summary

Chapter 5: Introducing Classes and Objects in Objective-C



Understanding Objects

Understanding classes

Designing objects

Creating classes

Defining a class interface

Defining accessors: setters and getters

Using self

Defining a class implementation

Defining public properties

Defining public methods

Using Objects in Objective-C

Summary

Chapter 6: Getting Started With Classes and Messages in Application
Design

Understanding the Cocoa Development Process

Understanding Applications

Exploring standard application elements

Introducing the application delegate

Discovering Object Methods and Properties

Finding and using class references

Introducing Code Sense

Working with multiple classes

Receiving messages from OS X with a delegate

Receiving messages from OS X with NSResponder

Subclassing NSWindow

Creating a category on NSWindow



Summary

Chapter 7: Introducing Interface Builder

Introducing Nib Files

Loading objects from nib files

Editing nib files

Getting Started with Interface Builder

Introducing IB's windows

Introducing First Responder and File's Owner

Setting Classes and Subclasses

Summary

Chapter 8: Building an Application with Interface Builder

Designing a Project in Interface Builder

Introducing the Interface Builder workflow

Adding objects to a nib

Understanding links, outlets, and actions

Creating links in Interface Builder

Using NSTimer to create a simple seconds counter

Using Advanced UI Techniques

Using loose typing and (id) sender

Placing outlets and actions

Summary

Part II: Going Deeper

Chapter 9: Using Cocoa Design Patterns and Advanced Messaging

Understanding Model-View-Controller



Using MVC with Cocoa controller objects

Creating custom controllers

Defining the data model

Understanding Target-Action

Defining selectors

Using selectors in code

Understanding the limitations of selectors

Defining selectors in Interface Builder

Creating an example application

Other applications of selectors

Using Key-Value Coding

“Objectifying” values

Using Key-Value Observing

Making assignments KVO compliant

Using KVO

Using Notifications

Posting notifications

Using notifications and delegates

Handling Errors and Exceptions

Using NSError

Handling errors with NSException

Summary

Chapter 10: Working with Files, URLs, and Web Data

Creating and Using File Paths

Creating paths with NSString

Getting the application bundle path



Finding other standard directories

Using autocompletion

Using paths

Using file handles

Using the File Manager

Creating and Using URLs

Understanding paths and references

Using URLs to read and write data

Using Open and Save Panes

Using Web APIs

Getting started with bit.ly

Using the bit.ly API

Creating XML requests

Creating asynchronous Web requests

Using Cocoa's XML classes

Using WebView

Summary

Chapter 11: Using Timers, Threads, and Blocks

Using NSTimer

Using performSelector:

Implementing a pause method

Running the selector in a separate thread

Messaging across threads

Working with NSThread

Pausing a thread

Managing thread memory



Handling UI and thread interactions

Using NSOperation

Creating an NSOperation object

Using NSOperationQueue

Getting Started with Blocks

Understanding block syntax

Using NSBlockOperation

Passing parameters to NSBlockOperation

Introducing Grand Central Dispatch

Using NSTask

Summary

Chapter 12: Managing Data and Memory in Cocoa

Introducing Data Collection Objects

Using objects, keys, and values

Implementing Key-Value Observing

Using NSValue and NSNumber

Using NSArray

Using NSDictionary

Using NSSet and NSMutableSet

Enumerating items

Archiving and de-archiving collection objects

Using NSCoder and NSData

Introducing archiving and coding

Creating a class with NSCoder

Archiving and de-archiving an object

Managing Memory



Using garbage collection

Implementing manual memory management

Summary

Chapter 13: Using Preferences and Bindings

Understanding Bindings

Getting started with bindings

Using bindings to manage interactivity

Using KVO to manage bindings

Using formatters

Using Bindings with Controllers

Adding a controller object

Setting up the controller's data source

Reading data from the controller into a view

Implementing Preferences with Bindings

Understanding preferences

Creating an application with preferences

Creating and Using Value Transformers

Summary

Chapter 14: Using Core Data

Creating a Core Data Application Visually

Adding an entity

Adding properties

Creating relationships

Generating a user interface

Building the application



Exploring and Extending a Core Data Application

Understanding Core Data's objects and programming model

Displaying search results

Summary

Chapter 15: Working with Text and Documents

Using NSString

Using NSRange

Working with encodings

Using NSAttributedString

Drawing and using attributed strings

Creating Nanopad: A Rich Text Editor

Using NSFontManager

Saving and loading rich text

Implementing the Open Recent menu

Creating, Saving, and Loading Documents

Creating a default nib file

Setting document types

Implementing save and open code

Printing documents

Using NSUndoManager

Localizing Applications

Summary

Part III: Expanding the Possibilities

Chapter 16: Managing Views and Creating 2D Graphics

Understanding Windows and Views



Understanding the view hierarchy

Subclassing the root view

Adding and removing views from the view hierarchy

Handling mouse events in views

Understanding the Cocoa Graphics System

Understanding and defining basic geometry

Creating shapes and colors in drawRect:

Creating a simple project: MultiBezier

Using CoreImage Filters

Adding CoreImage effects in Interface Builder

Setting up filters for processing

Applying filters to an image

Summary

Chapter 17: Creating Animations and 3D Graphics

Using Direct Property Animation

Creating a timer for animation

Creating property animation code

Using drawRect:

Using Animators

Creating a simple proxy animation

Setting the animation duration

Customizing the animation object

Creating and using animation paths

Creating Animations with CALayer

Using layers for animation

Creating an animatable filter



Animating the filter

Using OpenGL

Introducing OpenGL

Creating an OpenGL animation

Controlling an OpenGL animation

Summary

Chapter 18: Debugging, Optimizing, and Managing Code

Using the Console and NSLog

Getting started with NSLog

Selectively enabling NSLog

Debugging with Breakpoints and the Debugger Window

Enabling debugging

Using the Debugger window

Using Instruments

Using Shark

Managing Code with Snapshots and Source Control

Copying projects and creating snapshot versions manually

Using Snapshots

Using SVN source control

Summary

Chapter 19: Developing for the iPhone and iPad

Introducing the iPhone, iPod touch, and iPad

Comparing iOS and OS X applications

Understanding the mobile app business model

Moving to iOS from OS X



Getting started with the iPhone SDK

Understanding iOS app design goals

Understanding key iOS coding differences

Considering iOS and hardware compatibility

Understanding iOS Views and UI Design

Working with Windows and views on the iPhone

Managing orientation

Adding navigation and control features

Handling touch events

Working with windows and views on the iPad

Developing for iOS in Xcode

Using the Xcode Simulator

Introducing the Xcode templates

Building a Simple Application

Adding view controller subclasses

Implementing the view controllers

Creating views

Handling events with protocol messaging

Creating an animated view swap

Selling in the App Store

Understanding certificates, provisioning profiles, and permissions

Packaging an app for the App Store

Uploading an app to the App Store

Summary

Part IV: Appendixes



Appendix A: Building Dashboard Widgets

Disassembling widgets manually

Assembling widgets manually

Exploring the Dashcode interface

Working with parts and the Library

Using the Inspector

Creating widget graphics

Using JavaScript in widgets

Deploying and importing widgets

Appendix B: Maximizing Productivity and Avoiding Errors

Solving common problems

Managing classes and files

Solving Impossible Problems



Cocoa®

Richard Wentk

Cocoa®

Published by

Wiley Publishing, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256

www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc.,

Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis,

Indiana

Published simultaneously in Canada

ISBN: 978-0-470-49589-6

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced,

stored in a retrieval system or transmitted in any

http://www.wiley.com/


form or by any means, electronic, mechanical,

photocopying, recording, scanning or otherwise,

except as permitted under Sections 107 or 108 of

the 1976 United States Copyright Act, without

either the prior written permission of the Publisher,

or authorization through payment of the

appropriate per-copy fee to the Copyright

Clearance Center, 222 Rosewood Drive, Danvers,

MA 01923, (978) 750-8400, fax (978) 646-8600.

Requests to the Publisher for permission should be

addressed to the Permissions Department, John

Wiley & Sons, Inc., 111 River Street, Hoboken, NJ

07030, 201-748-6011, fax 201-748-6008, or online

at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The

publisher and the author make no representations

or warranties with respect to the accuracy or

completeness of the contents of this work and

specifically disclaim all warranties, including

without limitation warranties of fitness for a

particular purpose. No warranty may be created or

extended by sales or promotional materials. The

advice and strategies contained herein may not be

suitable for every situation. This work is sold with

the understanding that the publisher is not

engaged in rendering legal, accounting, or other

professional services. If professional assistance is

required, the services of a competent professional

person should be sought. Neither the publisher nor

the author shall be liable for damages arising

herefrom. The fact that an organization or Website



is referred to in this work as a citation and/or a

potential source of further information does not

mean that the author or the publisher endorses

the information the organization or Website may

provide or recommendations it may make. Further,

readers should be aware that Internet Websites

listed in this work may have changed or

disappeared between when this work was written

and when it is read.

For general information on our other products and

services or to obtain technical support, please

contact our Customer Care Department within the

U.S. at (877) 762-2974, outside the U.S. at (317)

572-3993 or fax (317) 572-4002.

Library of Congress Control Number: 2010935569

Trademarks: Wiley and the Wiley logo are

registered trademarks of John Wiley & Sons, Inc.

and/or its affiliates, in the United States and other

countries, and may not be used without written

permission. Cocoa is a registered trademark of

Apple, Inc. All other trademarks are the property of

their respective owners. Wiley Publishing, Inc., is

not associated with any product or vendor

mentioned in this book.

Wiley also publishes its books in a variety of

electronic formats. Some content that appears in

print may not be available in electronic books.



To Bea, for the inspiration.

Nam et ipsa scientia potestas est.

About the Author

With more than ten years of experience as a developer and more than
fifteen years in publishing, Richard Wentk is one of Great Britain's most
reliable technology writers. He covers Apple products and developments
for Macworld and MacFormat magazines and also writes about
technology, creativity, and business strategy for magazines such as
Computer Arts and Future Music. As a trainer and a former professional
Apple developer returning to development on the iPhone and OS X, he
is uniquely able to clarify the key points of the development process,
explain how to avoid pitfalls and bear traps, and emphasize key benefits
and creative possibilities. He lives online but also has a home in
Wiltshire, England. For details of apps and other book projects, visit
www.zettaboom.com

Credits

Acquisitions Editor

Aaron Black

Project Editor

Martin V. Minner

Technical Editor

Benjamin Schupak

Copy Editor

http://www.zettaboom.com/


Lauren Kennedy

Editorial Director

Robyn Siesky

Editorial Manager

Rosemarie Graham

Business Manager

Amy Knies

Senior Marketing Manager

Sandy Smith

Vice President and Executive Group Publisher

Richard Swadley

Vice President and Executive Publisher

Barry Pruett

Senior Project Coordinator

Kristie Rees

Graphics and Production Specialists

Joyce HaugheyJennifer Henry



Quality Control Technician

John Greenough

Proofreading

Laura Bowman

Indexing

BIM Indexing & Proofreading Services

Media Development Project Manager

Laura Moss

Media Development Assistant Project

Manager

Jenny Swisher

Media Development Associate Producer

Shawn Patrick



Preface
When I started developing for the iPhone after a fifteen-year break from
software, my first thought was: What is going on here? I'd written
machine code for Macs and had some experience with earlier versions of
Mac OS. It soon became obvious that Cocoa Touch was doing clever
things behind the scenes, and that my apps were supposed to be
exchanging information with those clever things.

Unfortunately, neither the official documentation nor unofficial sources
of help were making it clear what those things were.

With enough persistence, it's possible for almost any developer to
reverse-engineer the documentation and answer the “What is going on
here?” question for himself or herself. But it's more productive to have
that information before starting out. So my first goal for this book is to
equip you, as a developer, with the key concepts you need to build
Cocoa projects efficiently and productively.

Understanding Cocoa means more than being able to name-check
concepts like delegation and Model-View-Controller; it means learning
how Cocoa applies these concepts, how they influence the design of
Cocoa's classes, and how your code can leverage the features built into
Cocoa to simplify projects and minimize development time. In short, it
means discovering how to think Cocoa. New features will begin to feel
intuitive once you understand the reasoning behind them.

My second goal for the book is to give readers the skills they need to
answer Cocoa questions for themselves, without handholding. OS X is
vast and complex, and a full printed guide of every feature would have
to be delivered on a truck. Books always sell better when readers can
pick them up and take them home without stalling traffic, so this book
doesn't try to detail every Cocoa feature. It also doesn't try to build
complex sample projects that are unlikely to match your specific needs.



Instead, it gives you the skills you need to find answers to questions for
yourself, using the official documentation and other sources of insight.

One feature you won't find in this book is cheerleading. Like any other
development environment, Cocoa is a mix of excellence and
unpredictability. Cocoa's best features are almost supernaturally
productive and take you where you want to go with almost no code at
all. Other elements offer a more scenic journey through less intuitive
class relationships. Instead of a sales pitch, this book gives you a guided
tour of the highlights but also warns you about some of the more
dangerous parts of town.

Finally, software is as much an art as a science. Art is about creating
captivating, enjoyable, and colorful experiences for an audience. In
common with the Apple ethic, this book is deliberately less formal and
more creative than a pure software reference. You'll find the rules here.
And sometimes you'll also find suggestions for breaking the rules.

Every author tries to make his or her books as helpful as possible.
Comments and feedback are welcome at

cocoadr@zettaboom.com.

Acknowledgments
Books don't write themselves — not yet, anyway. Until operating
systems become self-documenting, writing a book continues to be a
team effort.

I'd like to thank acquisitions editor Aaron Black for enthusiastically
suggesting the project and project editor Marty Minner for his support
and for taking the manuscript and producing a book from it. Sincere
thanks are also due to the rest of the team at Wiley for their hard work
behind the scenes.

Software development has become a communal activity, and particular
appreciation is due to the countless bloggers, experimenters, developers,



and problem-solvers on the Web whose generosity and creativity have
made so much possible in so many ways.

Finally — love as always for Team HGA. I couldn't have written it
without you.

Introduction

This book is about developing Cocoa projects for OS X using the Xcode
SDK. The theoretical elements of Cocoa are similar to those in Cocoa
Touch and apply equally to both OS X and iOS. The more practical
elements were written to describe OS X but with significant overlap with
the equivalent features in iOS.

You'll find this book useful if you're a newcomer to Cocoa at the
beginner or intermediate level and have experience with C/C++/C#, Java,
Flash, Python, or a Web language such as PHP. If you're ambitious and
feel up to a challenge, you can start with no experience at all. If you do,
you'll find it helpful to use Objective-C (Wiley, 2010) as a companion
title.

Cocoa isn't a synonym for OS X, and for practical reasons this book says
little about the low-level Mach/POSIX features that underpin OS X. It
mentions some of the C-level frameworks that Cocoa is built on but
doesn't detail them, although it does give you enough information to
explore them for yourself if you choose to.

Chapter 1 is an introduction to the history of Cocoa and OS X and
explains how Cocoa evolved from Smalltalk and from the Objective-C
development environment introduced by NeXT in the late 1980s. It also
includes some strategic hints about the OS X and iOS application
markets and how to research the current state of both so that you can
target your applications for maximum return.



Chapter 2 is an informal introduction to the features that make Cocoa
unique. Whether you're starting programming from scratch, or have a
background in some other environment, this is one of the most critical
chapters in the book. Reading it will save you time later.

Chapter 3 is a guide to the Apple documentation. It may not be obvious
why this needs a guide, but Apple has structured the documentation in
specific ways, and you'll progress more quickly and with less effort if you
understand what this means in practice. Understanding and using the
documentation is a key skill. Don't skip this chapter, even if you already
have experience in other environments.

Chapter 4 explains how to join Apple's Developer Programs, and how to
download and install Xcode. It also introduces the key features of Xcode
3.2.3, including the windows, menu items, and customizable toolbar.
This chapter explains how to create a new sample project — an essential
skill that's used repeatedly later in the book.

Chapter 5 introduces objects and classes and describes how they're
implemented in Objective-C. If you have experience in other object-
oriented environments, you'll need this chapter to reorient yourself to
Objective-C. If you haven't, you'll find an explanation of object-oriented
development that's a fundamental requirement for understanding Cocoa.

Chapter 6 explores objects in Cocoa in a more hands-on way, with very
simple projects that illustrate how to use objects and their features in
real Cocoa applications.

Chapter 7 introduces the key features of Interface Builder and explains
how you can use IB to build complete applications, because IB isn't just
for interfaces.

Chapter 8 demonstrates how to use IB to build a working application
with a custom interface assembled using Cocoa library objects and how
to connect a UI created in IB to code written in Xcode. This is another
essential chapter. You'll need this information to build Cocoa successful
applications.



Chapter 9 introduces some of the standard Cocoa design patterns and
their supporting features, including target-action, Model-View-
Controller, and selectors. It also looks more closely at Cocoa key-value
technologies such as Key-Value Coding and Key-Value Observing and
explains how to work with them effectively.

Chapter 10 introduces the Cocoa file interface and explains how it's built
into many Cocoa objects, making a file manager unnecessary. For
completeness, this chapter also introduces the file manager and explains
how to add open and save panes to an application.

Chapter 11 explains how to manage timing, threads, and tasks in Cocoa.
It also introduces the new block syntax, which is slated to replace
delegation and other design patterns in future versions of OS X.

Chapter 12 introduces Cocoa's data collection classes, including

NSArray, NSDictionary, and NSSet, and explores some of their

features. It explains how to use NSCoder to serialize data when saving
it or reloading it and introduces the essentials of both manual memory
management and automated garbage collection.

Chapter 13 explores bindings, which are often seen as one of Cocoa's
more challenging features but which are explained here in an unusually
straightforward and practical way.

Chapter 14 follows from the previous chapter with an introduction to
Core Data. It explains how to build a working card index application
with no code at all and also how to customize it to make it more useful
and flexible.

Chapter 15 introduces Cocoa's attributed — styled — text features and
explains how to create applications with multiple document windows.
You'll also find information about printing, undoing, and localizing text
for foreign markets.

Chapter 16 explains how to create 2D graphics, using Cocoa's path, fill,
and stroke features and also gives a low-level example of creating effects



with Cocoa's Core Image filters.

Chapter 17 expands on the techniques of the previous chapter and
demonstrates various animation techniques, including a simplified but
animated Core Image filter. You can also find an introduction to OpenGL
in Cocoa, with a sample animated teapot application.

Chapter 18 introduces various tools and strategies for debugging and
profiling code and optimizing performance.

Chapter 19 is about developing for iOS. It introduces the key differences
between Cocoa and Cocoa Touch, explains how to use the iOS simulator
and how to get started with development on real hardware, and also
explores some of the commercial opportunities offered by the iPhone
and iPad.

Appendix A is about building dashboard widgets, which use JavaScript
instead of Objective-C and are a quick and easy way to get started with
Mac development.

Appendix B lists some of the common errors that appear in Cocoa code
and introduces some possible bug-busting strategies.

Code appears in a monospaced font. Items you type appear in
bold.

Projects were developed with Xcode 3.2.3 on OS X 10.6.3. Supporting
code is available on the book's Web site at
www.wiley.com/go/cocoadevref. See the readme there for the most recent
system and software requirements. Code is supplied as is with no
warranty and can be used in both commercial and private Cocoa
projects but may not be sold or repackaged as tutorial material.

http://www.wiley.com/go/cocoadevref


 

Part I: Getting Started

In This Part
Chapter 1

Introducing Cocoa

Chapter 2

Think Cocoa!

Chapter 3

Introducing the Cocoa and OS Documentation

Chapter 4

Getting Started with Xcode

Chapter 5

Introducing Classes and Objects in Objective-C

Chapter 6

Getting Started With Classes and Messages in Application Design

Chapter 7

Introducing Interface Builder

Chapter 8

Building an Application with Interface Builder



Chapter 1: Introducing Cocoa

In This Chapter
Introducing Cocoa

Understanding Cocoa's history

Profiting from Cocoa

Introducing Xcode and the Apple developer programs

Apple's Cocoa technology is one of computing's success stories. When
OS X 10.0 was released in 2001, it immediately revolutionized the look
and feel of desktop applications. Since then, other operating systems
have borrowed freely from Cocoa's innovations. Apple has continued to
innovate with the iPhone and iPad, introducing Cocoa Touch for mobile
devices. Cocoa Touch offers a simplified and more tactile user
experience, and is the first popular and successful attempt to move
beyond a traditional window, mouse, and menu interface. Future
versions of Cocoa on the Mac are likely to blend the iPhone's tactile
technology with the sophisticated data handling, 64-bit memory
management, and rich user interface options that are already available to
Cocoa developers. Cocoa is widely used in Apple's own projects, and it
determines the look and feel of an application such as Aperture, shown
in Figure 1.1.

Introducing Cocoa
Cocoa is the collection of libraries and design principles used to build
skeleton Mac applications, create and display a user interface, and



manage data. Cocoa is also a design philosophy based on unique ideas
about application design and development that you can find throughout
the rest of this book. You don't need to understand Cocoa's history to
use the Cocoa libraries, but their features may be easier to work with if
you do.

Understanding Cocoa's history
Cocoa's origins can be traced to the mid-1970s and are closely tied to
the history of the Objective-C programming language. Cocoa and
Objective-C are used at different levels. Cocoa is a code library and a set
of interface and development guidelines. Objective-C is the language
that implements them.

Cocoa is now available for other languages, including JavaScript, Python,
and Ruby on Rails, but most Cocoa developers continue to work in
Objective-C because its syntax and features are a natural fit for Cocoa
projects.

FIGURE 1.1
Apple's Aperture application uses Cocoa technology and follows
Apple's user interface design guidelines. Although Cocoa objects
implement the interface, they don't enforce a standard look and feel.



Objective-C, developed by Brad Cox and Tom Love when they worked
at ITT Corporation in the early 1980s, began as a mix of C and features
copied from the Smalltalk experimental language. Smalltalk had been
created — originally as a bet — by Alan Kay at the Xerox Palo Alto
Research Center (PARC). PARC's famous graphical user interface (GUI)
experiments inspired much of the visual design of both Mac OS and
Windows. Smalltalk influenced those experiments by implementing a
development environment in which independent objects communicated
by sending and receiving messages.

At a time when most software was still procedural — it started at the
beginning of a computer run and continued to the end, with occasional
branches and subroutine calls — Smalltalk's model suggested a new and
less rigid approach to software development. It enabled programmers to
build applications from a library of “copy-able” but distinct interactive


