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Preface
When I started developing for the iPhone after a fifteen-year break from
software, my first thought was: What is going on here? I'd written
machine code for Macs and had some experience with earlier versions of
Mac OS. It soon became obvious that Cocoa Touch was doing clever
things behind the scenes, and that my apps were supposed to be
exchanging information with those clever things.

Unfortunately, neither the official documentation nor unofficial sources
of help were making it clear what those things were.

With enough persistence, it's possible for almost any developer to
reverse-engineer the documentation and answer the “What is going on
here?” question for himself or herself. But it's more productive to have
that information before starting out. So my first goal for this book is to
equip you, as a developer, with the key concepts you need to build
Cocoa projects efficiently and productively.

Understanding Cocoa means more than being able to name-check
concepts like delegation and Model-View-Controller; it means learning
how Cocoa applies these concepts, how they influence the design of
Cocoa's classes, and how your code can leverage the features built into
Cocoa to simplify projects and minimize development time. In short, it
means discovering how to think Cocoa. New features will begin to feel
intuitive once you understand the reasoning behind them.

My second goal for the book is to give readers the skills they need to
answer Cocoa questions for themselves, without handholding. OS X is
vast and complex, and a full printed guide of every feature would have
to be delivered on a truck. Books always sell better when readers can
pick them up and take them home without stalling traffic, so this book
doesn't try to detail every Cocoa feature. It also doesn't try to build
complex sample projects that are unlikely to match your specific needs.



Instead, it gives you the skills you need to find answers to questions for
yourself, using the official documentation and other sources of insight.

One feature you won't find in this book is cheerleading. Like any other
development environment, Cocoa is a mix of excellence and
unpredictability. Cocoa's best features are almost supernaturally
productive and take you where you want to go with almost no code at
all. Other elements offer a more scenic journey through less intuitive
class relationships. Instead of a sales pitch, this book gives you a guided
tour of the highlights but also warns you about some of the more
dangerous parts of town.

Finally, software is as much an art as a science. Art is about creating
captivating, enjoyable, and colorful experiences for an audience. In
common with the Apple ethic, this book is deliberately less formal and
more creative than a pure software reference. You'll find the rules here.
And sometimes you'll also find suggestions for breaking the rules.

Every author tries to make his or her books as helpful as possible.
Comments and feedback are welcome at

cocoadr@zettaboom.com.
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Introduction

This book is about developing Cocoa projects for OS X using the Xcode
SDK. The theoretical elements of Cocoa are similar to those in Cocoa
Touch and apply equally to both OS X and iOS. The more practical
elements were written to describe OS X but with significant overlap with
the equivalent features in iOS.

You'll find this book useful if you're a newcomer to Cocoa at the
beginner or intermediate level and have experience with C/C++/C#, Java,
Flash, Python, or a Web language such as PHP. If you're ambitious and
feel up to a challenge, you can start with no experience at all. If you do,
you'll find it helpful to use Objective-C (Wiley, 2010) as a companion
title.

Cocoa isn't a synonym for OS X, and for practical reasons this book says
little about the low-level Mach/POSIX features that underpin OS X. It
mentions some of the C-level frameworks that Cocoa is built on but
doesn't detail them, although it does give you enough information to
explore them for yourself if you choose to.

Chapter 1 is an introduction to the history of Cocoa and OS X and
explains how Cocoa evolved from Smalltalk and from the Objective-C
development environment introduced by NeXT in the late 1980s. It also
includes some strategic hints about the OS X and iOS application
markets and how to research the current state of both so that you can
target your applications for maximum return.



Chapter 2 is an informal introduction to the features that make Cocoa
unique. Whether you're starting programming from scratch, or have a
background in some other environment, this is one of the most critical
chapters in the book. Reading it will save you time later.

Chapter 3 is a guide to the Apple documentation. It may not be obvious
why this needs a guide, but Apple has structured the documentation in
specific ways, and you'll progress more quickly and with less effort if you
understand what this means in practice. Understanding and using the
documentation is a key skill. Don't skip this chapter, even if you already
have experience in other environments.

Chapter 4 explains how to join Apple's Developer Programs, and how to
download and install Xcode. It also introduces the key features of Xcode
3.2.3, including the windows, menu items, and customizable toolbar.
This chapter explains how to create a new sample project — an essential
skill that's used repeatedly later in the book.

Chapter 5 introduces objects and classes and describes how they're
implemented in Objective-C. If you have experience in other object-
oriented environments, you'll need this chapter to reorient yourself to
Objective-C. If you haven't, you'll find an explanation of object-oriented
development that's a fundamental requirement for understanding Cocoa.

Chapter 6 explores objects in Cocoa in a more hands-on way, with very
simple projects that illustrate how to use objects and their features in
real Cocoa applications.

Chapter 7 introduces the key features of Interface Builder and explains
how you can use IB to build complete applications, because IB isn't just
for interfaces.

Chapter 8 demonstrates how to use IB to build a working application
with a custom interface assembled using Cocoa library objects and how
to connect a UI created in IB to code written in Xcode. This is another
essential chapter. You'll need this information to build Cocoa successful
applications.



Chapter 9 introduces some of the standard Cocoa design patterns and
their supporting features, including target-action, Model-View-
Controller, and selectors. It also looks more closely at Cocoa key-value
technologies such as Key-Value Coding and Key-Value Observing and
explains how to work with them effectively.

Chapter 10 introduces the Cocoa file interface and explains how it's built
into many Cocoa objects, making a file manager unnecessary. For
completeness, this chapter also introduces the file manager and explains
how to add open and save panes to an application.

Chapter 11 explains how to manage timing, threads, and tasks in Cocoa.
It also introduces the new block syntax, which is slated to replace
delegation and other design patterns in future versions of OS X.

Chapter 12 introduces Cocoa's data collection classes, including

NSArray, NSDictionary, and NSSet, and explores some of their

features. It explains how to use NSCoder to serialize data when saving
it or reloading it and introduces the essentials of both manual memory
management and automated garbage collection.

Chapter 13 explores bindings, which are often seen as one of Cocoa's
more challenging features but which are explained here in an unusually
straightforward and practical way.

Chapter 14 follows from the previous chapter with an introduction to
Core Data. It explains how to build a working card index application
with no code at all and also how to customize it to make it more useful
and flexible.

Chapter 15 introduces Cocoa's attributed — styled — text features and
explains how to create applications with multiple document windows.
You'll also find information about printing, undoing, and localizing text
for foreign markets.

Chapter 16 explains how to create 2D graphics, using Cocoa's path, fill,
and stroke features and also gives a low-level example of creating effects



with Cocoa's Core Image filters.

Chapter 17 expands on the techniques of the previous chapter and
demonstrates various animation techniques, including a simplified but
animated Core Image filter. You can also find an introduction to OpenGL
in Cocoa, with a sample animated teapot application.

Chapter 18 introduces various tools and strategies for debugging and
profiling code and optimizing performance.

Chapter 19 is about developing for iOS. It introduces the key differences
between Cocoa and Cocoa Touch, explains how to use the iOS simulator
and how to get started with development on real hardware, and also
explores some of the commercial opportunities offered by the iPhone
and iPad.

Appendix A is about building dashboard widgets, which use JavaScript
instead of Objective-C and are a quick and easy way to get started with
Mac development.

Appendix B lists some of the common errors that appear in Cocoa code
and introduces some possible bug-busting strategies.

Code appears in a monospaced font. Items you type appear in
bold.

Projects were developed with Xcode 3.2.3 on OS X 10.6.3. Supporting
code is available on the book's Web site at
www.wiley.com/go/cocoadevref. See the readme there for the most recent
system and software requirements. Code is supplied as is with no
warranty and can be used in both commercial and private Cocoa
projects but may not be sold or repackaged as tutorial material.

http://www.wiley.com/go/cocoadevref
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Chapter 1: Introducing Cocoa

In This Chapter
Introducing Cocoa

Understanding Cocoa's history

Profiting from Cocoa

Introducing Xcode and the Apple developer programs

Apple's Cocoa technology is one of computing's success stories. When
OS X 10.0 was released in 2001, it immediately revolutionized the look
and feel of desktop applications. Since then, other operating systems
have borrowed freely from Cocoa's innovations. Apple has continued to
innovate with the iPhone and iPad, introducing Cocoa Touch for mobile
devices. Cocoa Touch offers a simplified and more tactile user
experience, and is the first popular and successful attempt to move
beyond a traditional window, mouse, and menu interface. Future
versions of Cocoa on the Mac are likely to blend the iPhone's tactile
technology with the sophisticated data handling, 64-bit memory
management, and rich user interface options that are already available to
Cocoa developers. Cocoa is widely used in Apple's own projects, and it
determines the look and feel of an application such as Aperture, shown
in Figure 1.1.

Introducing Cocoa
Cocoa is the collection of libraries and design principles used to build
skeleton Mac applications, create and display a user interface, and



manage data. Cocoa is also a design philosophy based on unique ideas
about application design and development that you can find throughout
the rest of this book. You don't need to understand Cocoa's history to
use the Cocoa libraries, but their features may be easier to work with if
you do.

Understanding Cocoa's history
Cocoa's origins can be traced to the mid-1970s and are closely tied to
the history of the Objective-C programming language. Cocoa and
Objective-C are used at different levels. Cocoa is a code library and a set
of interface and development guidelines. Objective-C is the language
that implements them.

Cocoa is now available for other languages, including JavaScript, Python,
and Ruby on Rails, but most Cocoa developers continue to work in
Objective-C because its syntax and features are a natural fit for Cocoa
projects.

FIGURE 1.1
Apple's Aperture application uses Cocoa technology and follows
Apple's user interface design guidelines. Although Cocoa objects
implement the interface, they don't enforce a standard look and feel.



Objective-C, developed by Brad Cox and Tom Love when they worked
at ITT Corporation in the early 1980s, began as a mix of C and features
copied from the Smalltalk experimental language. Smalltalk had been
created — originally as a bet — by Alan Kay at the Xerox Palo Alto
Research Center (PARC). PARC's famous graphical user interface (GUI)
experiments inspired much of the visual design of both Mac OS and
Windows. Smalltalk influenced those experiments by implementing a
development environment in which independent objects communicated
by sending and receiving messages.

At a time when most software was still procedural — it started at the
beginning of a computer run and continued to the end, with occasional
branches and subroutine calls — Smalltalk's model suggested a new and
less rigid approach to software development. It enabled programmers to
build applications from a library of “copy-able” but distinct interactive


