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required for the understanding of latter parts of each

volume.

Although these books were conceived as a series, each of
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Author’s Preface

Vibrations and waves lie at the heart of many branches of

the physical sciences and engineering. Consequently, their

study is an essential part of the education of students in

these disciplines. This book is based upon an introductory

24-lecture course on vibrations and waves given by the

author at the University of Manchester. The course was

attended by first-year undergraduate students taking

physics or a joint honours degree course with physics. This

book covers the topics given in the course although, in

general, it amplifies to some extent the material delivered in

the lectures.

The organisation of the book serves to provide a logical

progression from the simple harmonic oscillator to waves in

continuous media. The first three chapters deal with simple

harmonic oscillations in various circumstances while the last

four chapters deal with waves in their various forms. The

connecting chapter (Chapter 4) deals with coupled

oscillators which provide the bridge between waves and the



simple harmonic oscillator. Chapter 1 describes simple

harmonic motion in some detail. Here the universal

importance of the simple harmonic oscillator is emphasised

and it is shown how the elegant mathematical description of

simple harmonic motion can be applied to a wide range of

physical systems. Chapter 2 extends the study of simple

harmonic motion to the case where damping forces are

present as they invariably are in real physical situations. It

also introduces the quality factor Q of an oscillating system.

Chapter 3 describes forced oscillations, including the

phenomenon of resonance where small forces can produce

large oscillations and possibly catastrophic effects when a

system is driven at its resonance frequency. Chapter 4

describes coupled oscillations and their representation in

terms of the normal modes of the system. As noted above,

coupled oscillators pave the way to the understanding of

waves in continuous media. Chapter 5 deals with the

physical characteristics of travelling waves and their

mathematical description and introduces the fundamental

wave equation. Chapter 6 deals with standing waves that

are seen to be the normal modes of a vibrating system. A

consideration of the general motion of a vibrating string as a

superposition of normal modes leads to an introduction of

the powerful technique of Fourier analysis. Chapter 7 deals

with some of the most dramatic phenomena produced by

waves, namely interference and diffraction. Finally, Chapter

8 describes the superposition of a group of waves to form a

modulated wave or wave packet and the behaviour of this

group of waves in a dispersive medium. Throughout the

book, the fundamental principles of waves and vibrations

are emphasised so that these principles can be applied to a

wide range of oscillating systems and to a variety of waves

including electromagnetic waves and sound waves. There

are some topics that are not required for other parts of the

book and these are indicated in the text.



Waves and vibrations are beautifully and concisely

described in terms of the mathematical equations that are

used throughout the book. However, emphasis is always

placed on the physical meaning of these equations and

undue mathematical complication and detail are avoided.

An elementary knowledge of differentiation and integration

is assumed. Simple differential equations are used and

indeed waves and vibrations provide a particularly valuable

way to explore the solutions of these differential equations

and their relevance to real physical situations. Vibrations

and waves are well described in complex representation.

The relevant properties of complex numbers and their use in

representing physical quantities are introduced in Chapter 3

where the power of the complex representation is also

demonstrated.

Each chapter is accompanied by a set of problems that

form an important part of the book. These have been

designed to deepen the understanding of the reader and

develop their skill and self-confidence in the application of

the equations. Some solutions and hints to these problems

are given at the end of the book. It is, of course, far more

beneficial for the reader to try to solve the problems before

consulting the solutions.

I am particularly indebted to Dr Franz Mandl who was my

editor throughout the writing of the book. He read the

manuscript with great care and physical insight and made

numerous and valuable comments and suggestions. My

discussions with him were always illuminating and

rewarding and indeed interacting with him was one of the

joys of writing the book. I am very grateful to Dr Michele

Siggel-King, my wife, who produced all the figures in the

book. She constructed many of the figures depicting

oscillatory and wave motion using computer simulation

programs and she turned my sketches into suitable figures

for publication. I am also grateful to Michele for proofreading



the manuscript. I am grateful to Professor Fred Loebinger

who made valuable comments about the figures and to Dr

Antonio Juarez Reyes for working through some of the

problems.

George C. King



1

Simple Harmonic Motion

In the physical world there are many examples of things

that vibrate or oscillate, i.e. perform periodic motion.

Everyday examples are a swinging pendulum, a plucked

guitar string and a car bouncing up and down on its springs.

The most basic form of periodic motion is called simple

harmonic motion (SHM). In this chapter we develop

quantitative descriptions of SHM. We obtain equations for

the ways in which the displacement, velocity and

acceleration of a simple harmonic oscillator vary with time

and the ways in which the kinetic and potential energies of

the oscillator vary. To do this we discuss two particularly

important examples of SHM: a mass oscillating at the end of

a spring and a swinging pendulum. We then extend our

discussion to electrical circuits and show that the equations

that describe the movement of charge in an oscillating

electrical circuit are identical in form to those that describe,

for example, the motion of a mass on the end of a spring.

Thus if we understand one type of harmonic oscillator then

we can readily understand and analyse many other types.

The universal importance of SHM is that to a good

approximation many real oscillating systems behave like

simple harmonic oscillators when they undergo oscillations

of small amplitude. Consequently, the elegant mathematical

description of the simple harmonic oscillator that we will

develop can be applied to a wide range of physical systems.



1.1 PHYSICAL

CHARACTERISTICS OF

SIMPLE HARMONIC

OSCILLATORS
Observing the motion of a pendulum can tell us a great deal

about the general characteristics of SHM. We could make

such a pendulum by suspending an apple from the end of a

length of string. When we draw the apple away from its

equilibrium position and release it we see that the apple

swings back towards the equilibrium position. It starts off

from rest but steadily picks up speed. We notice that it

overshoots the equilibrium position and does not stop until

it reaches the other extreme of its motion. It then swings

back toward the equilibrium position and eventually arrives

back at its initial position. This pattern then repeats with the

apple swinging backwards and forwards periodically. Gravity

is the restoring force that attracts the apple back to its

equilibrium position. It is the inertia of the mass that causes

it to overshoot. The apple has kinetic energy because of its

motion. We notice that its velocity is zero when its

displacement from the equilibrium position is a maximum

and so its kinetic energy is also zero at that point. The apple

also has potential energy. When it moves away from the

equilibrium position the apple’s vertical height increases

and it gains potential energy. When the apple passes

through the equilibrium position its vertical displacement is

zero and so all of its energy must be kinetic. Thus at the

point of zero displacement the velocity has its maximum

value. As the apple swings back and forth there is a

continuous exchange between its potential and kinetic

energies. These characteristics of the pendulum are



common to all simple harmonic oscillators: (i) periodic

motion; (ii) an equilibrium position; (iii) a restoring force that

is directed towards this equilibrium position; (iv) inertia

causing overshoot; and (v) a continuous flow of energy

between potential and kinetic. Of course the oscillation of

the apple steadily dies away due to the effects of dissipative

forces such as air resistance, but we will delay the

discussion of these effects until Chapter 2.

1.2 A MASS ON A SPRING

1.2.1 A mass on a horizontal

spring

Our first example of a simple harmonic oscillator is a mass

on a horizontal spring as shown in Figure 1.1. The mass is

attached to one end of the spring while the other end is held

fixed. The equilibrium position corresponds to the

unstretched length of the spring and x is the displacement

of the mass from the equilibrium position along the x-axis.

We start with an idealised version of a real physical

situation. It is idealised because the mass is assumed to

move on a frictionless surface and the spring is assumed to

be weightless. Furthermore because the motion is in the

horizontal direction, no effects due to gravity are involved.

In physics it is quite usual to start with a simplified version

or model because real physical situations are normally

complicated and hard to handle. The simplification makes

the problem tractable so that an initial, idealised solution

can be obtained. The complications, e.g. the effects of

friction on the motion of the oscillator, are then added in

turn and at each stage a modified and improved solution is

obtained. This process invariably provides a great deal of



physical understanding about the real system and about the

relative importance of the added complications.

Figure 1.1 A simple harmonic oscillator consisting of a mass

m on a horizontal spring.

Figure 1.2 Variation of displacement x with time t for a mass

undergoing SHM.

Experience tells us that if we pull the mass so as to extend

the spring and then release it, the mass will move back and

forth in a periodic way. If we plot the displacement x of the

mass with respect to time t we obtain a curve like that

shown in Figure 1.2. The amplitude of the oscillation is A,

corresponding to the maximum excursion of the mass, and

we note the initial condition that x = A at time t = 0. The

time for one complete cycle of oscillation is the period T.

The frequency v is the number of cycles of oscillation per

unit time. The relationship

between period and frequency is

(1.1) 

The units of frequency are hertz (Hz), where



For small displacements the force produced by the spring

is described by Hooke’s law which says that the strength of

the force is proportional to the extension (or compression)

of the spring, i.e. F ∝ x where x is the displacement of the

mass. The constant of proportionality is the spring constant

k which is defined as the force per unit displacement. When

the spring is extended, i.e. x is positive, the force acts in the

opposite direction to x to pull the mass back to the

equilibrium position. Similarly when the spring is

compressed, i.e. x is negative, the force again acts in the

opposite direction to x to push the mass back to the

equilibrium position. This situation is illustrated in Figure 1.3

which shows the direction of the force at various points of

the oscillation. We can therefore write

(1.2) 

where the minus sign indicates that the force always acts in

the opposite direction to the displacement. All simple

harmonic oscillators have forces that act in this way: (i) the

magnitude of the force is directly proportional to the

displacement; and (ii) the force is always directed towards

the equilibrium position.

Figure 1.3 The direction of the force acting on the mass m at

various values of displacement x.



The system must also obey Newton’s second law of motion

which states that the force is equal to mass m times

acceleration a, i.e. F = ma. We thus obtain the equation of

motion of the mass

(1.3) 

Recalling that velocity v and acceleration a are,

respectively, the first and second derivatives of

displacement with respect to time, i.e.

(1.4) 

we can write Equation (1.3) in the form of the differential

equation

(1.5) 

or

(1.6) 

where

(1.7) 

is a constant. Equation (1.6) is the equation of SHM and all

simple harmonic oscillators have an equation of this form. It

is a linear second-order differential equation; linear because

each term is proportional to x or one of its derivatives and

second order because the highest derivative occurring in it

is second order. The reason for writing the constant as ω2

will soon become apparent but we note that ω2 is equal to

the restoring force per unit displacement per unit mass.

1.2.2 A mass on a vertical

spring



Figure 1.4 An oscillating mass on a vertical spring. (a) The

mass at its equilibrium position. (b) The mass displaced by a

distance x from its equilibrium position.

If we suspend a mass from a vertical spring, as shown in

Figure 1.4, we have gravity also acting on the mass. When

the mass is initially attached to the spring, the length of the

spring increases by an amount Δt. Taking displacements in

the downward direction as positive, the resultant force on

the mass is equal to the gravitational force minus the force

exerted upwards by the spring, i.e. the resultant force is

given by mg − kΔl. The resultant force is equal to zero when

the mass is at its equilibrium position. Hence

When the mass is displaced downwards by an amount x,

the resultant force is given by

i.e.

(1.8) 

Perhaps not surprisingly, this result is identical to the

equation of motion (1.5) of the horizontal spring: we simply

need to measure displacements from the equilibrium

position of the mass.



1.2.3 Displacement, velocity

and acceleration in simple

harmonic motion

To describe the harmonic oscillator, we need expressions for

the displacement, velocity and acceleration as functions of

time: x(t), v(t) and a(t). These can be obtained by solving

Equation (1.6) using standard mathematical methods.

However, we will use our physical intuition to deduce them

from the observed behaviour of a mass on a spring.

Figure 1.5 The functions y = cos θ and y = sin θ plotted over

two complete cycles.

Observing the periodic motion shown in Figure 1.2, we look

for a function x(t) that also repeats periodically. Periodic

functions that are familiar to us are sin θ and cos θ. These

are reproduced in Figure 1.5 over two complete cycles. Both

functions repeat every time the angle θ changes by 2π. We

can notice that the two functions are identical except for a

shift of π/2 along the θ axis. We also note the initial

condition that the displacement x of the mass equals A at t

= 0. Comparison of the actual motion with the mathematical

functions in Figure 1.5 suggests the choice of a cosine

function for x(t). We write it as

(1.9) 

which has the correct form in that (2πt/T) is an angle (in

radians) that goes from 0 to 2π as t goes from 0 to T, and so



repeats with the correct period. Moreover x equals A at t = 0

which matches the initial condition. We also require that x =

A cos (2πt/T) is a solution to our differential equation (1.6).

We define

(1.10) 

where ω is the angular frequency of the oscillator, with units

of rad s−1 to obtain

(1.11) 

Then

(1.12) 

and

(1.13) 

So, the function x = A cos ωt is a solution of Equation (1.6)

and correctly describes the physical situation. The reason

for writing the constant as ω2 in Equation (1.6) is now

apparent: the constant is equal to the square of the angular

frequency of oscillation. We have also obtained expressions

for the velocity v and acceleration a of the mass as

functions of time. All three functions are plotted in Figure

1.6. Since they relate to different physical quantities,

namely displacement, velocity and acceleration, they are

plotted on separate sets of axes, although the time axes are

aligned with respect to each other.

Figure 1.6 (a) The displacement x, (b) the velocity v and (c)

the acceleration a of a mass undergoing SHM as a function

of time t. The time axes of the three graphs are aligned.



Figure 1.6 shows that the behaviour of the three functions

(1.11)−(1.13) agree with our observations. For example,

when the displacement of the mass is greatest, which

occurs at the turning points of the motion (x = ±A), the

velocity is zero. However, the velocity is at a maximum

when the mass passes through its equilibrium position, i.e. x

= 0. Looked at in a different way, we can see that the

maximum in the velocity curve occurs before the maximum

in the displacement curve by one quarter of a period which

corresponds to an angle of π/2. We can understand at which

points the maxima and minima of the acceleration occur by

recalling that acceleration is directly proportional to the

force. The force is maximum at the turning points of the

motion but is of opposite sign to the displacement. The

acceleration does indeed follow this same pattern, as is

readily seen in Figure 1.6.



1.2.4 General solutions for

simple harmonic motion and the

phase angle ϕ

In the example above, we had the particular situation where

the mass was released from rest with an initial displacement

A, i.e. x equals A at t = 0. For the more general case, the

motion of the oscillator will give rise to a displacement

curve like that shown by the solid curve in Figure 1.7, where

the displacement and velocity of the mass have arbitrary

values at t = 0. This solid curve looks like the cosine

function x = A cos ωt, that is shown by the dotted curve,

but it is displaced horizontally to the left of it by a time

interval ϕ/ω = ϕT/2π. The solid curve is described by

(1.14) 

where again A is the amplitude of the oscillation and ϕ is

called the phase angle which has units of radians. [Note that

changing ωt to (ωt − ϕ) would shift the curve to the right in

Figure 1.7.] Equation (1.14) is also a solution of the equation

of motion of the mass, Equation (1.6), as the reader can

readily verify. In fact Equation (1.14) is the general solution

of Equation (1.6). We can state here a property of second-

order differential equations that they always contain two

arbitrary constants. In this case A and ϕ are the two

constants which are determined from the initial conditions,

i.e. from the position and velocity of the mass at time t = 0.

Figure 1.7 General solution for displacement x in SHM

showing the phase angle ϕ, where x = A cos(ωt + ϕ).



We can cast the general solution, Equation (1.14), in the

alternative form

(1.15) 

where a and b are now the two constants. Equations (1.14)

and (1.15) are entirely equivalent as we can show in the

following way. Since

(1.16) 

and cos ϕ and sin ϕ have constant values, we can rewrite

the right-hand side of this equation as

where

(1.17) 

We see that if we add sine and cosine curves of the same

angular frequency ω, we obtain another cosine (or

corresponding sine curve) of angular frequency ω. This is

illustrated in Figure 1.8 where we plot Acosωt and Asinωt,

and also (A cos ωt + A sin ωt) which is equal to 

. As the motion of a simple harmonic oscillator is described

by sines and cosines it is called harmonic and because there

is only a single frequency involved, it is called simple

harmonic.

Figure 1.8 The addition of sine and cosine curves with the

same angular frequency ω. The resultant curve also has

angular frequency ω.



There is an important difference between the constants A

and ϕ in the general solution for SHM given in Equation

(1.14) and the angular frequency ω. The constants are

determined by the initial conditions of the motion. However,

the angular frequency of oscillation ω is determined only by

the properties of the oscillator: the oscillator has a natural

frequency of oscillation that is independent of the way in

which we start the motion. This is reflected in the fact that

the SHM equation, Equation (1.6), already contains ω which

therefore has nothing to do with any particular solutions of

the equation. This has important practical applications. It

means, for example, that the period of a pendulum clock is

independent of the amplitude of the pendulum so that it

keeps time to a high degree of accuracy.1 It means that the

pitch of a note from a piano does not depend on how hard

you strike the keys. For the example of the mass on a

spring, . This expression tells us that the angular

frequency becomes lower as the mass increases and

becomes higher as the spring constant increases.



Worked example

In the example of a mass on a horizontal spring (cf.

Figure 1.1) m has a value of 0.80 kg and the spring

constant k is 180 N m−1. At time t = 0 the mass is

observed to be 0.04 m further from the wall than the

equilibrium position and is moving away from the wall

with a velocity of 0.50 m s−1. Obtain an expression for

the displacement of the mass in the form x = A (cosωt

+ ϕ), obtaining numerical values for A, ω and ϕ.

Solution

The angular frequency ω depends only on the

oscillator parameters k and m, and not on the initial

conditions. Substituting their values gives

To find the amplitude A: From x = Acos(ωt + ϕ) we

obtain

Substituting the initial values (i.e. at time t = 0), of x

and v into these equations gives

From cos2ϕ + sin2 ϕ = 1, we obtain A = 0.052 m.

To find the phase angle ϕ: Substituting the value for A

leads to two equations for ϕ:

Since ϕ must satisfy both equations, it must have the

value ϕ = 320°. The angular frequency ω is given in

rad s−1. To convert ϕ to radians:


