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Preface

This book includes the lectures and problem sets from the

one-semester course ‘Earth Modelling and Prediction’ that

I teach at the University of Edinburgh. The course is aimed

at first-year geoscience undergraduates who want to

understand the Earth and its evolving climate but do not

have the necessary quantitative skills to move beyond

qualitative studies. My primary and most ambitious

objective for this course was to help students overcome the

psychological barrier of applying mathematics to problems

associated with the Earth. It is this barrier that artificially

limits students’ ability to gain a deeper understanding of

the underlying science. My second objective was to show

that the relatively simple mathematics covered in this

course could be applied to learn something relevant to

current areas of scientific research.

The focus of the book is the application of mathematics to

scientifically relevant problems. Rather than being

comprehensive, the material should be seen as providing a

background for more advanced geoscience courses, which

practise the application of mathematics and introduce the

students to additional mathematics. I support the use of

real data in teaching and so in recent years I have included

progressively more exercises that involve the analysis of

real measurements, many of which form the backdrop to a

major news story in that year, for example,

increased/decreased tropical deforestation rates or the

reduction in the spatial extent of Arctic sea ice. I hope to

include in future editions more varied data analysis

problems that reflect the breadth of geoscience research.
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How Do You Know that Global

Warming Is Not a Hoax?

The title of this introductory chapter is the question I pose

at the start of my course in Edinburgh. It seems like a

ridiculous question to ask a bunch of bright young

students, especially ones who have chosen to study the

Earth system. But up until walking through the doors of the

university many students have not had the resources,

inclination, and/or ability to question what they are told;

the key to being an effective scientist is to ask the right

questions, ones that probe at the very heart of the problem

being studied. I provide the student with four possible

choices to answer the question and ask for a show of

hands:

1. popular media (internet, TV, radio, newspapers);

2. rigorous scientific reasoning and/or debate;

3. (blind) faith in scientists; or

4. other.

Typically, choice 1 represents the vast majority of hands.

Why? Because we are bombarded with scientific and

political coverage of climate change. Why is this

dangerous? Because companies need to sell newspapers

and to get people to watch TV, and politicians are invariably

biased in their opinions. Much of the coverage is accurate

but some programmes are biased, loosely based on fact,

with a damaging effect on the science education of the

general public. Sensationalism about Earth’s climate

(particularly looking to the future) is rife, but some aspects



of Earth’s climate are genuinely remarkable and awe-

inspiring. So how do you know what to believe?

Choice 2 often represents the second highest show of

hands, but a much smaller proportion than choice 1. This is

fine up to a point. Scientists are some of the biggest

sceptics around and are generally very careful about what

they say. For instance, we see later in this chapter that the

wording used in the Intergovernmental Panel on Climate

Change (IPCC) report1 has very strict statistical

interpretation that is difficult to misinterpret. But you only

learn from the scientists what they tell you. How did they

reach their conclusions? Could they have approached the

problem from a different perspective and reached a

different conclusion? With the renewed call for

transparency in science, particularly related to climate,

most data used to draw conclusions about Earth’s climate

are online and freely available to download. Often the only

barrier to pursuing option 2, given that data are now freely

available, is the confidence to understand and interrogate

quantitative data. The aim of this book is to increase that

confidence.

This mix of responses is reasonably similar to the general

public response to the question ‘How well do you feel you

understand the issue of global warming?’ that has been

asked frequently by Gallup (www.gallup.com) for the past

quarter century (Figure 1.1). For this admittedly crude

comparison I have equated ‘Great deal’ with ‘Rigorous

scientific reasoning’, ‘Fair amount’ with ‘Popular media’,

and ‘Only a little’ with ‘(Blind) faith in scientists’.

http://www.gallup.com/


Figure 1.1 Results from a Gallup poll question ‘How well

do you feel you understand the issue of global warming?’

that has been asked since 1989.

How can mathematics help? In simple terms, mathematics

(at this level) is a tool that allows us to move far beyond

what we can learn from descriptive analysis. How much has

sea ice changed? If we use the current rate of change, how

long will it be before the Arctic is free of ice? These are

simple example questions that cannot be answered without

mathematics.



Figure 1.2 A schematic describing the broad-scale

subcomponents of the Earth system. Graphics reproduced

with permission from the UK/NERC National Centre for

Earth Observation. (Image courtesy of NASA.)

The Earth system: how do we know

what we know?

I define the Earth system as the land, ocean, and

atmosphere, all the physical, chemical, biological, and



social processes and their interactions (Figure 1.2). This is

a big unwieldy interconnected system that is coupled on a

wide spectrum of spatial and temporal scales. To minimize

the risk of discussing current science results that might be

superseded by new data, I have decided to focus on how

scientists generally know what they know about the Earth

system and the recent role of human activity and not what

they know:

First, we have a basic physical understanding of the

Earth. We know, for example, about the heat-trapping

properties of gases in the atmosphere, based on work

first started in the nineteenth century. Another example

is continental drift, a theory describing how Earth’s

continents move relative to each other, which has been

known since the twentieth century. These are well-

established science theories that have stood up to

decades/centuries of scientific scrutiny.

Second, we have circumstantial evidence. We make

qualitative connections between observations of

disparate quantities and results from computer models2

of the Earth system, for example, warming of oceans,

lands, and the lower atmosphere, cooling of the middle

atmosphere, and increases in water vapour.

Third, we have palaeoclimate evidence. We can

reconstruct past climate using a variety of data, for

example, ice core, lake sediment core, coral reefs,

pollen. This places contemporary warming trends in the

longer-term context. Although there is debate about

whether the past is any guide to the future, they do

provide us a history of how Earth has behaved in the

past.

Finally, we have so-called ‘fingerprint’ evidence. The

underlying philosophy is that individual (natural and



human-driven) processes will leave their own unique

signature (or fingerprint) on measurements of the Earth.

By comparing these data that naturally include these

signatures with computer models of climate

with/without descriptions of the processes responsible

for these signatures we can understand the importance

of individual processes. This can also potentially identify

the need for additional processes that are currently not

present in the model.

It is important to acknowledge that several independent

lines of inquiry are used to investigate phenomena and

provide evidence to test a hypothesis. The IPCC is testing

the overarching hypothesis that human activity has

determined recent changes in climate. As we will see in the

next chapter, the hypothesis is right at the crux of the

scientific method. In successive IPCC reports the headline

result has been stronger and stronger:

1995: The balance of evidence suggests a discernable

human influence on global climate.

2001: Most of the observed warming over the last 50

years is likely to have been due to the increase in

greenhouse gas concentrations.

2007: Most of the observed increase in globally

averaged temperatures since the mid-twentieth century

is very likely due to the observed increase in

anthropogenic greenhouse gas concentrations.

In the IPCC nomenclature the term ‘likely’ refers to a

probability greater than 66% and ‘very likely’ to a

probability greater than 90%. In 2001 the IPCC was more

than 66% certain that climate change was caused by

human activity. By 2007 it was more than 90% certain that

recent climate change is due to anthropogenic greenhouse



gas concentrations. And most recently, in 2013, the IPCC

increased this confidence to 95%. It is possible that climate

change is due to other causes, but the IPCC regards this as

unlikely. It is unfortunate that this level of scientific

‘honesty’ also represents an inroad to climate scepticism.

Notes

1 A report prepared by a subset of leading climate

scientists that summarizes the state of the science. The

latest report can be found at www.ipcc.ch

2 A model in this instance is a collection of interrelated

equations, written in a computer language, that

describe, for example, the physics, chemistry, and

biology of the atmosphere and ocean. Without a

computer, evaluating these equations would be an

intractable task. In fact some of the fastest computers in

the world are dedicated to studying Earth’s climate.

http://www.ipcc.ch/


2 

Preamble:  

This chapter lays out many core mathematical skills that

are important but do not fit neatly into other chapters.

2.1 The scientific method: pushing

back the frontiers of ignorance

We start by introducing the idea of the scientific method,

which describes a general series of steps for investigating

phenomena. You will already be familiar with many of the

steps but it is useful to go over the basics. Figure 2.1

illustrates the basic steps of the scientific method (see also

boxed text below).



Figure 2.1A schematic describing the scientific method.

We start by identifying or defining a problem to investigate.

It might be that a ‘problem’ can be split up into a number

of sub-problems.

We follow this by forming a hypothesis, an idea of what/how

we expect the problem to be once it is measured. The

hypothesis can be as simple as the expected value of a

measurement or as complicated as how an object will

respond to a change in its environment. It is important to



note that the hypothesis must be formed prior to the

measurement, otherwise it compromises the validity of the

conclusion we might draw from the method.

We make some observations or we perform an experiment

to test the hypothesis. We aim to improve knowledge of the

system by measurement. For many problems, data may

already be available, in which case we move on to the next

step.

We organize or analyse the data. ‘Organizing the data

might involve gathering together or combining different

sets of data. Data analysis describes a whole range of

techniques, some of which we will discuss in later chapters.

In both this step and the last, we must pay careful attention

to measurement error, otherwise our analysis may result in

erroneous conclusions. We discuss errors in Chapter 6.

Finally, we self-reflect on our experiment. Do the data

agree with the hypothesis? Is the answer definitive? Are

other explanations possible? This is an important step in

the overall scientific method (therefore marked in bold) and

is what distinguishes the method from less rigorous

pseudo-science methods. Depending on the nature of your

experiment, you may have learnt something if the data

agree or disagree with the original hypothesis. So you

might choose to draw reasonable conclusions at this point.

If the data do not agree with the original hypothesis, other

valid responses might include additional analysis or

additional experiments to refine the original hypothesis. Or

you may choose to completely revise the hypothesis and go

through the whole process again.

Because of the importance of this method we will return to

many of these key concepts, particularly the self-reflection,

throughout the book.


