


Swift™ For Dummies©

Visit

www.dummies.com/cheatsheet/swift

to view this book's cheat sheet.

Table of Contents

Cover

Title Page

Introduction

About This Book

Foolish Assumptions

Icons Used in This Book

Beyond the Book

Where to Go from Here

Part I: Getting Started with Swift

Chapter 1: Setting Up an Xcode Swift

Project

Looking Ahead to the End

Working with Swift

Getting the Developer Tools

Setting Up Your Mac

Planning Your Environment

Getting Started with Swift

Exploring Your Project

Chapter 2: Playing in the Playground

Creating a Playground

Using a Playground

Using the Timeline in the Playground

http://www.dummies.com/cheatsheet/swift
file:///tmp/calibre_5.41.0_tmp_0_d4conm/h7f_q7_h_pdf_out/OPS/cover.xhtml


Chapter 3: Using the Xcode Editing

Tools

Getting Started with Editing Tools

Completing Code with Code Completion

Using Fix-It to Correct Code

Folding and Unfolding Code

Using Code Snippets

Chapter 4: Creating a Swift App

Double-Checking Your Environment

Creating the Project

Testing the Template

Setting the Location for iOS Simulator

Adding the Map to the Storyboard and Project

Testing the App

Adding Swift Code to Locatapp

Testing the App with Location Data

Part II: Introducing Actions

Chapter 5: Operating on Data

Classifying Operators

Answering Syntax Questions with Playgrounds

Clearing the Way for Operators

Assigning Values with Assignment Operators

Counting On Arithmetic Operators for Math

Addition

Multiplication

Division

Incrementing and decrementing numeric values

Combining operators

Comparing values

Choosing and Checking Values with Logical

Operators

Chapter 6: Using Swift Types



Understanding Types and Type Safety

Swift Standard Library Types

Specifying Variable or Expression Types with Type

Annotations

Dealing with Tuples

Working with Optional Types

Using Generic Types

Chapter 7: Collecting Objects

Playing by Swift Collection Rules

Organizing Data Sequentially with Arrays

Organizing Data Logically with Dictionaries

Chapter 8: Controlling the Flow

Looping through Code

Using Conditions

Transferring Control

Using Assertions

Chapter 9: Functioning Successfully

Setting the Stage for the Social Media Location App

Exploring the Functions in Locatapp

Understanding the Locatapp Architecture

Uncovering the Function Features

Adding Location Support

Part III: Putting Expressions Together

Chapter 10: Expressing Yourself

Surveying the Types of Swift Expressions

Understanding Lazy Loading

Chapter 11: Declaring the Symbols

Navigating through Symbols with the Symbol

Navigator

Preventing Disasters with Assertions

Patterns

Ranges



Chapter 12: Initializing and

Deinitializing Data

Understanding Initialization

Performing Initialization

Understanding Deinitialization

Part IV: Using Components and

Subcomponents

Chapter 13: Expanding Objects with

Extensions

Working with a Swift Extension

Using Swift Extensions with a Built-In Class

Chapter 14: Managing Access Control

for Your Objects

Introducing Access Control Levels

Using Swift Access Control Terminology

Chapter 15: Building Classes,

Structures, and Enumerations

Exploring Classes, Structures, and Enumerations

Declaring a Simple Class

Exploring a Swift Class, Structure, or Enumeration

File

Chapter 16: Using Properties,

Variables, Outlets, and Actions

Understanding Properties and Variables

Encapsulating Data for Good Design and

Maintainability

Understanding Properties and Variables in Locatapp

Declaring Outlets and Actions

Chapter 17: Working with

Enumerations to Consolidate Values

Using Enumerations with Swift

Understanding Traditional C Structures and

Enumerations



Exploring Swift Enumerations

Chapter 18: Using Protocols to Provide

Templates for Functionality

Understanding Protocols

Experimenting with Protocols

Exploring Protocols and a UITableViewController

Chapter 19: Mixing Objective-C and

Swift

Comparing Frameworks in Objective-C and Swift

Calling an Objective-C Method in Objective-C within

Swift to Set a Pin on the Map

Bridging between Objective-C and Swift

Part V: The Part of Tens

Chapter 20: Ten Swift Features That

Aren’t in Objective-C

Using Playgrounds to Explore Code and Syntax

Using Tuples

Using Ranges to Save Code

Taking Advantage of Strict Typing and Type Safety

Initializing Your Variables and Constants

Understanding Optional Types

Looking at Frameworks for Your Own Code

Including Annotations and Attributes in

Declarations

Deinitializing Variables Where Necessary

Use Patterns to Simplify Your Code

Chapter 21: Ten Swift Features That

Are Not in C

Strong Typing

Libraries Extend C

Switch Statements Fall through Cases in C

C Is an International Standard



Swift Is Tightly Linked to the Cocoa and Cocoa

Touch Frameworks

Swift Includes Memory Management

Swift Is Designed to Function in a Multi-Threaded

Environment

Types Can Be Created Easily in Swift

Swift Has Its Own IDE and Compiler

Types Can Be Classes, Structures, or Enumerations

Chapter 22: Ten Objective-C Features

That Aren’t in Swift

Saying Goodbye to Header (.h) Files

Saying Farewell to Dangling Pointers (Almost

Always)

Forgetting About Uninitialized Variables and

Properties

Exploiting a Common Superclass Like NSObject

Managing Type Casting

Preferring Closures to Blocks

Getting Rid of Legacy Memory Management

Replacing Property Decorators

Using Swift Style to Access Class Properties

Clarifying Swift Access Control

About the Author

Author’s Acknowledgments

Cheat Sheet

Advertisement Page

Connect with Dummies

End User License Agreement





Swift™ For Dummies®

Published by: John Wiley & Sons, Inc., 111 River

Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Hoboken,

New Jersey

Media and software compilation copyright © 2015 by

John Wiley & Sons, Inc. All rights reserved.

Published simultaneously in Canada

No part of this publication may be reproduced, stored in

a retrieval system or transmitted in any form or by any

means, electronic, mechanical, photocopying, recording,

scanning or otherwise, except as permitted under

Sections 107 or 108 of the 1976 United States Copyright

Act, without the prior written permission of the

Publisher. Requests to the Publisher for permission

should be addressed to the Permissions Department,

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ

07030, (201) 748-6011, fax (201) 748-6008, or online at

www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man

logo, Dummies.com, Making Everything Easier, and

related trade dress are trademarks or registered

trademarks of John Wiley & Sons, Inc. and may not be

used without written permission. Swift is a trademark of

Apple, Inc. All other trademarks are the property of their

respective owners. John Wiley & Sons, Inc. is not

associated with any product or vendor mentioned in this

book. Swift For Dummies® is an independent publication

and has not been authorized, sponsored, or otherwise

approved by Apple, Inc.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY:

THE PUBLISHER AND THE AUTHOR MAKE NO

http://www.wiley.com/
http://www.wiley.com/go/permissions


REPRESENTATIONS OR WARRANTIES WITH

RESPECT TO THE ACCURACY OR COMPLETENESS

OF THE CONTENTS OF THIS WORK AND

SPECIFICALLY DISCLAIM ALL WARRANTIES,

INCLUDING WITHOUT LIMITATION WARRANTIES

OF FITNESS FOR A PARTICULAR PURPOSE. NO

WARRANTY MAY BE CREATED OR EXTENDED BY

SALES OR PROMOTIONAL MATERIALS. THE

ADVICE AND STRATEGIES CONTAINED HEREIN

MAY NOT BE SUITABLE FOR EVERY SITUATION.

THIS WORK IS SOLD WITH THE

UNDERSTANDING THAT THE PUBLISHER IS NOT

ENGAGED IN RENDERING LEGAL, ACCOUNTING,

OR OTHER PROFESSIONAL SERVICES. IF

PROFESSIONAL ASSISTANCE IS REQUIRED, THE

SERVICES OF A COMPETENT PROFESSIONAL

PERSON SHOULD BE SOUGHT. NEITHER THE

PUBLISHER NOR THE AUTHOR SHALL BE LIABLE

FOR DAMAGES ARISING HEREFROM. THE FACT

THAT AN ORGANIZATION OR WEBSITE IS

REFERRED TO IN THIS WORK AS A CITATION

AND/OR A POTENTIAL SOURCE OF FURTHER

INFORMATION DOES NOT MEAN THAT THE

AUTHOR OR THE PUBLISHER ENDORSES THE

INFORMATION THE ORGANIZATION OR WEBSITE

MAY PROVIDE OR RECOMMENDATIONS IT MAY

MAKE. FURTHER, READERS SHOULD BE AWARE

THAT INTERNET WEBSITES LISTED IN THIS

WORK MAY HAVE CHANGED OR DISAPPEARED

BETWEEN WHEN THIS WORK WAS WRITTEN

AND WHEN IT IS READ.

For general information on our other products and

services, please contact our Customer Care Department

within the U.S. at 877-762-2974, outside the U.S. at 317-



572-3993, or fax 317-572-4002. For technical support,

please visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic

formats and by print-on-demand. Some material included

with standard print versions of this book may not be

included in e-books or in print-on-demand. If this book

refers to media such as a CD or DVD that is not included

in the version you purchased, you may download this

material at http://booksupport.wiley.com. For more

information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2014954655

ISBN 978-1-119-02222-0 (pbk); ISBN 978-1-119-02224-

4(ebk); ISBN 978-1-119-02223-7 (ebk)

http://www.wiley.com/techsupport
http://booksupport.wiley.com/
http://www.wiley.com/


Introduction

In June of 2014, one of the highlights of Apple’s

Worldwide Developers Conference (WWDC) was the

announcement — a surprise to many attendees,

including the multitudes of developers watching the

videos around the world — of the development of a new

language aimed at developers to use with iOS and OS X

devices. Called Swift, it was presented as the language

of the future for Apple’s developers, but it was made

very clear that it would cooperate with the existing basic

development language — Objective-C. (In describing the

ways Swift and Objective-C would interact, Apple

repeatedly used the phrase “mix and match” — not only

in the presentations at WWDC, but in other venues as

well.)

Think about that date— Swift has only been around since

June 2014: We’re all beginners with Swift.

About This Book

Swift For Dummies is a beginner’s introduction to

Apple’s new programming language. The book gets you

started developing with Swift. You’ll quickly see how to

create projects in Swift from the built-in templates that

are part of the Xcode development tool. From there, you

delve into the features of the language, from the basic to

the advanced. Some of these features are unique to Swift

whereas other, possibly more familiar features were

inherited from other programming languages.

Before we get started with Swift, consider these two

points:



Apple has done this before, and they know how

to do it. On both the hardware and software sides,

Apple has successfully managed transitions to new

technologies. Developers have sometimes cheered,

sometimes booed, and even sometimes not even

noticed much difference, but nonetheless, Apple has

managed to bring them along to a new technology

that makes their lives easier and improves things for

users.

The languages are only part of the development

environment for Apple. When you develop apps for

iOS or OS X, you use the Xcode development tool

(technically an Integrated Development Environment,

or IDE), the Cocoa or Cocoa Touch frameworks, and a

programming language — either Objective-C or Swift.

What differentiates the iOS and OS X development

environment from most others is that the language is

only one-third of the overall environment, as well as

the fact that a single company (Apple) controls all of

that environment.

Conventions Used in This Book
Cocoa is the framework you use for developing Mac

apps; Cocoa Touch is the framework for iOS apps. Both

have a common heritage and many similar classes. In

general, classes that start with NS are Cocoa classes, and

classes that start with UI are Cocoa Touch classes. Many

Cocoa NS classes are also used in Cocoa Touch, so you’ll

find both types of classes in many of your apps and in the

sample code and templates.

Code examples in this book appear in a monospaced font so

that they stand out a bit better. Some non-syntax

components appear in an italicized monospaced font.

(Thus, weatherConditions might be a variable, but variable

could be any variable you want to use.)



Like many languages, including Objective-C, Swift is

case-sensitive, so please enter the code that appears in

this book exactly as it appears in the text. I also use the

standard Cocoa naming conventions — such as

capitalizing class names and leaving the names of

methods and instance variables lowercase.

Note that all URLs in this book appear in a monospaced

font as well. In accordance with common usage, most

URLs in this book include the subdomain (such as www) at

the beginning of many URLs except for addresses that

don’t require that component (such as

developer.apple.com).

If you're ever uncertain about anything in the code, you

can always look at the source code on my website at

www.northcountryconsulting.com or the For Dummies website

at www.dummies.com. From time to time, I’ll provide updates

for the code there and post other things you might find

useful.

Foolish Assumptions

This book makes few assumptions about readers because

Swift programmers come from many backgrounds and

with varying degrees of proficiency in various languages.

As to the future, however, there’s one simple assumption:

You want to create apps based on the Cocoa and Cocoa

Touch frameworks, and you want to do it in the simplest

way possible.

Fittingly, then, this book is aimed at Cocoa and Cocoa

Touch developers at all stages of expertise, from those

who’ve developed a multitude of App Store apps to those

who have only thought about developing an app . . .

someday.

http://www.northcountryconsulting.com/
http://www.dummies.com/


I also assume you have some Mac or iOS experience. If

you have never used a Mac or iOS device, you may find it

hard to follow this book. I explain advanced technical

terms as they arise, but my assumption is that you know,

for example, what Settings (on iOS devices) and System

Preferences (on Macs are), and that similar concepts are

familiar to you.

You must have access to a Mac that can run the current

version of Xcode (a free download from

developer.apple.com). Without Xcode and the Mac to run it

on, you can't experiment with the sample code.

 Note that Xcode runs only on Macintosh

computers running Mac OS X v10.9.4 (Mavericks) or

later on a 64-bit Intel-based Mac.

Additionally, you must have Internet access. It’s very

important to stress, however, that I don’t mean “always-

on” Internet access. I only mean that you must at least

have limited Internet access — so you can access the

App Store, for example, and connect with Apple’s

developer.apple.com to download software and upload

apps.

Perhaps the most foolish assumption of all may be your

own: that you can’t learn Swift or the Cocoa and Cocoa

Touch frameworks. You can, and this book is designed to

help you. Bear in mind that app development is not easy:

If it were, the App Store would have far more than just

over a million apps. It’s not easy, but you can do it.

Icons Used in This Book

http://developer.apple.com/
http://developer.apple.com/


 This icon indicates a useful pointer that you

shouldn't skip.

 This icon represents a friendly reminder. It

describes a vital point that you should keep in mind

while proceeding through a particular section of the

chapter.

 This icon signifies that the accompanying

explanation may be informative (dare we say

interesting?), but it isn't essential to understanding

Swift. Feel free to skip past these tidbits if you like

(though skipping while learning may be tricky).

 This icon alerts you to potential problems that you

may encounter along the way. Read and obey these

blurbs to avoid trouble.

Beyond the Book

A lot of extra content that you won’t find in this book is

available at www.dummies.com. Go online to find the

following:

Source code for the examples in this book at

www.dummies.com/extras/swift

This book contains a lot of code, and you might not

want to type it. In fact, it’s probably better if you don’t

type this code manually. Fortunately, you can find the

source code for this book on the Dummies.com

http://www.dummies.com/
http://www.dummies.com/extras/swift


website at www.dummies.com/extras/swift. The source

code is organized by chapter. The best way to work

with a chapter is to download all the source code for

it at one time.

Online articles covering additional topics at

www.dummies.com/extras/swift

Here you’ll find out how to know whether to use a

type, collection, flow control, or function to implement

an action; how to initialize stored properties in a class

or structure; and how to let Xcode create actions and

outlets for you.

Ongoing discussions at developer.apple.com (for

registered developers only) and at my website

(www.northcountryconsulting.com) provide even more

information.

The Cheat Sheet for this book is at

www.dummies.com/cheatsheet/swift

Here you’ll find an examination of the anatomy of a

Swift class, the best way to update Xcode for a new

Swift release, and advice about working with both

Swift and Objective-C.

Updates to this book, if we have any, are also

available at

www.dummies.com/extras/swift

Where to Go from Here

It’s time to start your Swift adventure! If you’re new to

programming, start with Chapter 1 and progress through

the book at a pace that allows you to absorb as much of

the material as possible. If you’re in an absolute rush to

get going with Swift as quickly as possible, you could

http://www.dummies.com/extras/swift
http://www.dummies.com/extras/swift
http://developer.apple.com/
http://www.northcountryconsulting.com/
http://www.dummies.com/cheatsheet/swift
http://www.dummies.com/extras/swift


possibly skip to Chapter 2 with the understanding that

you may find some topics a bit confusing later.



Part I

Getting Started with Swift

  Visit www.dummies.com for great For Dummies content

online.

http://www.dummies.com/


In this part . . .

Set up an Xcode Swift project.

Find out how to use a playground.

Explore the Xcode editing tools.

Write your first Swift app.



Chapter 1

Setting Up an Xcode Swift

Project

In This Chapter

 Introducing Swift

 Setting up your computer for Swift

 Defining your development preferences

 Creating and exploring your first project

Swift is Apple’s new language for developers to use with

iOS and OS X devices. As such, it is the successor to

Apple’s existing iOS/OS X development language,

Objective-C, but Swift has been designed to cooperate

with and work alongside Objective-C, so this should be a

slow transition to power.

Some Swift beginners come to the language with

proficiency in other languages, ranging from C and its

offshoots such as C++ and Objective-C, to newer

languages such as Ruby, Python, and Java, as well as

scripting languages such as PHP and JavaScript.

Whether you’re just starting out as an Apple developer

or are an experienced developer who wants to add Swift

to your skills, this chapter helps you get started. There’s

one very important point to remember: As of this writing,

the iOS API (application programming interface) and

SDK (software development kit) are less than ten years

old. (They were launched in early 2008, six months after

the launch of iPhone.) The early years of iOS



development were an exciting period as the pieces of

today’s hardware and software environment fell into

place. Only as thousands of developers and millions of

users started actually using these devices and the

languages that support them did some issues — bugs as

well as great enhancements — begin to take shape.

Arguably, it took several years for the SDK to reach

maturity. Many developers (including your humble

author) believe that it was only with the release of iOS 4

in 2010 that the platform more or less stabilized as the

operating system we recognize today. This was the first

version to be called “iOS” rather than “iPhone OS,” and,

with the release of iOS 4.2.1 in the fall of 2010, it was

the first to support both iPhone and iPad. The first

version of multitasking was present, and preparations

were made for iCloud that was first released in iOS 5.

If you haven’t looked at iOS since that time, a lot has

changed. The release of Swift and iOS 8 is a good

opportunity to look around and get up to date with iOS

(and, for that matter, OS X). This chapter helps you do

that.



 In this book, you’ll occasionally find warnings like

this one about serious issues you should avoid. The

warnings are used sparingly, so pay attention to

them when they appear. The focus in this book is on

getting you up and running as a Swift developer.

That involves giving you the information you need as

well as helping you along the way with

encouragement and, from time to time, reminding

you that you’re not the first person to learn Swift.

Others have been there before, and, in most cases,

others (most definitely including the author) have

encountered the problems you may be facing. There

are a multitude of warnings in this chapter. This isn’t

intended to scare you off: Rather, it’s designed to

help you over that first hump of becoming a Swift

developer. After you have your first clean compile

and have finished a build of a project (in the section,

“Planning Your Environment,” later in this chapter),

you’ll be on your way.

Looking Ahead to the End

As you make progress in Swift, this book helps you build

an app — a real, live app — based on one of the built-in

Xcode templates. Sure, you're probably thinking, that’s

just what I need — another “Hello World” app.

Actually, no. There’s no “Hello World” here. Instead, the

app you’ll be building, called Locatapp, is a full-fledged

Swift app created using the Master-Detail Application

template that's built into Xcode, and it uses Cocoa Touch

and a number of its frameworks to do its work. Locatapp

uses location services on Cocoa Touch and the iOS



mobile devices to find your location, as you see in Figure

1-1.

Figure 1-1: Locatapp finds your location.

If you prefer, you can download Locatapp from this

book’s companion website, as described in the

Introduction, but be warned — some of the details of

registering as a developer described later in this chapter

are needed to get Locatapp to run on your own device.

The pulsing blue dot shows your current location.

Locatapp lets you store other locations you've visited.

The latitude and longitude values of locations that have

been visited are shown in the list at the left of Figure 1-

1. Tap one of them, and you'll see a map with your

current location and with the tapped location indicated

by a red pin.

You can zoom in on the map (see Figure 1-2). This zoom-

in functionality is all built into MapKit and the device so

you don't have to write any code. As you zoom in, you

can see that the two locations shown in Figure 1-1 are



actually over 100 miles apart. The annotation for Current

Location is also part of the framework.

Figure 1-2: Zooming the map.

In addition to the built-in annotation for Current

Location, you can write your own annotations in

Locatapp. Figure 1-3 shows a custom annotation that

you'll write in the course of this book.



Figure 1-3: Writing your own annotations.

That action button at the right of the bar in the interface

(the box with the arrow poking out of the top) is an

interface element you can drag from the Xcode library

into your user interface (called a storyboard). What

happens when you tap that action button depends on a

method you’ll build in this book. This method uses the

built-in actions such as Messages, Mail, Twitter,

Facebook, and so forth, as shown in Figure 1-4. (Yes,

you'll write this code, but Cocoa Touch writes the

supporting code to interact with Messages, Mail, Twitter,

Facebook, and more.)



Figure 1-4: Implementing an action button.

Figure 1-5 shows a tweet you can construct in your app.

Users can modify it (note that there are 57 characters



left), but you write the code for the message and to

insert the map coordinates. Note, too, that the image of a

web page is part of the tweet. You'll see how to

automatically put that into the tweet. Although you can

tap the image of the web page all you want in this book,

in Locatapp, tapping that image will take you to the web

page in Safari.

Figure 1-5: Constructing social media messages from your code.

I’m sure you'll like Locatapp and enjoy thinking of ways

you can build on it.

As I like to say, “Goodbye, ‘Hello World.’”

Working with Swift

Apple has two annual calendars of events. Each is

highlighted by one or more major announcements with

periodic updates throughout the year. For consumers and

end users, the annual calendar focuses on the releases of

new and updated devices. As is true throughout the

world of electronics, a large portion of annual sales



occur during the summer and fall (“back-to-school”) and

during the year-end holiday season.

On the software side, there is a related peak period. It’s

no accident that Apple, Google, and Microsoft all hold

conferences for their developers in May and June.

Typically, they unveil the new features in their operating

systems at that time, allowing developers a few months

to work with those features before the peak period of

hardware sales.

In June of 2014, one of the highlights of Apple’s

Worldwide Developers Conference (WWDC) was the

announcement — a surprise to many attendees — of a

new development language for iOS and OS X devices.

Called Swift, it was presented as the language of the

future for Apple’s developers, but it was made very clear

that it would co-operate with the existing basic

development language — Objective-C.

This book gets you started developing with Swift. You’ll

quickly see how to create projects in Swift from the built-

in templates that are part of the Xcode development tool.

From there, you’ll delve into features of the languages

ranging from the basics to the advanced features that

are unique to Swift as well as some features of Swift that

may be familiar to you from other modern programming

languages.

Swift and Objective-C are the languages most often used

in building apps for iOS and OS X. Combined with the

Cocoa (OS X) and Cocoa Touch (iOS) frameworks and

Xcode, these languages allow you to develop just about

anything you can dream of. It is hard to find an app that

can’t be written with these tools: OS X and iOS apps as

well as other Apple products such as Pages, Keynote, and

Numbers are developed using Xcode and the Cocoa

frameworks. Most of the language work for these



products is in Objective-C or Swift, although some

sections are still in C++. Apps developed with these

technologies are native apps.

If you don’t want to go the native route, you can consider

using other (non-Apple) frameworks. Three widely used

frameworks are Titanium Appcelerator, PhoneGap, and

HTML5, which is frequently used as a development tool

without being a framework. In the world of Titanium

Appcelerator, you typically write in JavaScript, whereas

in PhoneGap you use Javascript, HTML, and CSS.

HTML5, of course, is itself a language, which you can

use in conjunction with JavaScript as well as other

languages.

The advantages of using these non-native frameworks

center around two features:

With these frameworks, the development process may

be faster than the native-app framework.

Using these frameworks can help you develop cross-

platform apps.

The biggest disadvantage is that non-native frameworks

are third-party tools and as such aren’t guaranteed to

support new (or even all current) features of Apple’s

operating systems and hardware.

The cost of developing a native app for iOS, OS X,

Android, or even Windows is likely to be significantly

higher than that of using one of the tools listed here.

Before making a decision, you may want to explore tools

such as FileMaker (a wholly-owned subsidiary of Apple),

which is designed for use by non-programmers.

Originally a database application, FileMaker now has

become a key tool for people who may never write a line

of code in their life but are comfortable (and happy!)


