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Preface
This manual contains solutions for many of the problems in
Beginning Partial Differential Equations, third edition.
Because solutions for many odd-numbered problems are
included in Chapter Nine of the book, most of the problems
included here are even-numbered. However, particularly in
the case of problems exploring ideas beyond the text
discussion, some odd-numbered solutions are also included.



Chapter 1
First Ideas

1.1 Two Partial Differential Equations
2. Verifying that the function is a solution of the heat
equation is a straightforward exercise in differentiation.
One way to show that  is unbounded is to observe
that if  and , then

and this can be made as large as we like by choosing 
sufficiently close to zero.
4. By the chain rule,

It is routine to verify that .
7. One way to show that the transformation is one to one
is to evaluate the Jacobian

Finally, solve ,  for  and  to obtain the
inverse transformation



8. With , chain rule differentiations
yield:

and, by continuing these chain rule differentiations and
using the product rule,

Now collect terms to obtain

This, coupled with the fact that  transforms
to some function , yields the conclusion.
9. From the solution of problem 8, the transformed
equation is hyperbolic if  because in that case we
can choose  and  to make the coefficients of  and 
vanish. This is done by choosing  and  to be the
distinct roots of

which are the same quadratic equation. For example, we
could choose

If , use the transformation



Now chain rule differentiations yield

We do not need , because  in this case. Now we
obtain

yielding a hyperbolic canonical form

of the given partial differential equation.
10. In this case suppose . Now let

Now

Then



with two terms on the next to last line vanishing because
. This gives the canonical form

for the original partial differential equation when 
.

11. Suppose now that . Let the roots of 
 be . Let

Proceeding as in the preceding two problems, we find
that

Now we need some information about  and . Because
of the way  was chosen,

This gives us

Then

In this case,



and we obtain the canonical form

for this case.
12. The diffusion equation is parabolic and the wave
equation is hyperbolic.
14. , so the equation is hyperbolic. With

the canonical form is

16. With , and , , so the
equation is elliptic. Solve  to get . Thus
use the transformation

to obtain the canonical form

1.2 Fourier Series
2.  is the Fourier series of  on . This
converges to  for .
4. The Fourier series of  on  is



converging to  for . Figure 1.1 compares a
graph of  with the fifth partial sum of the series.
6. The Fourier series is

Figure 1.2 compares a graph of the function with the
fifth partial sum of the series.
8. The Fourier series converges to

10. The series converges to

12. The series converges to



14. Multiply by  to obtain

Integrate term by term:

Then

Upon division by , this yields Parseval's equation.
16. The cosine series is

converging to  for , to  for , and to  at
. Figure 1.3 compares the function to the 100th

partial sum of this cosine expansion. The sine series is

converging to  at the end points and at , and to the
function for  and . Figure 1.4 is the 100th
partial sum of this sine series.


