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Introduction
COMPUTERS AREN'T JUST beige square things we use
for work, they're everything that has a programmable
processing unit at its heart. Games consoles, smartphones,
GPS units, tablets and a mind-boggling range of other
devices all work in the same way. They're all computers,
and they've taken over the world. They're the things we use
for work, for communications, and for relaxation. In fact,
it's hard to think of an area that hasn't been taken over by
computers.
Marketing people like to tell you that devices with
embedded computers are smart (smartphones, smart TVs,
smart watches, and so on), but the truth is they're not. The
processing units are just bits of silicon that follow a set of
instructions. The “smart” in a smartphone doesn't come
from the computer chips, but from the people who program
them.
Computers are the most powerful tools mankind has ever
created, yet they're under-utilised because few people
know how to unleash their full potential. In a world where
everything is a computer, the most important people are
the programmers who can realise their full power.
Programming, then, is an essential skill that's only going to
become more and more important in the future.

What Is Programming?
Computers, as we've said, aren't smart. They just follow a
simple list of instructions one-by-one until they reach the
end. That list of instructions is a program. Programming,
then, is the process of taking a task, splitting it up into
steps, and writing it down in a language the computer can
understand.



The Raspberry Pi can understand many languages, but in
this book, you'll learn about Python 3. It's a powerful
language, and easy to learn.
This book is for people who want to learn about computer
programming and who have a Raspberry Pi. You don't need
any special skills or prior experience to work your way
through this book, and it doesn't matter if you're not a
classic geek who reads comics and watches Sci-Fi, and it
doesn't matter if you are. As long as you fit those two basic
criteria, this is the book is for you.
By the end of this book, you'll have a good grasp of Python
3, and you'll be familiar with many of the most useful
modules (add-ons). Using these, you'll be able to control
almost every aspect of your Pi. You'll make it interact with
the world around through the General Purpose Inputs and
Outputs (GPIOs), and communicate over the Internet. You'll
give it vision so it can snap photos and know what it's
looking at. You'll make games and manipulate three-
dimensional worlds. In short, this is a book about how to
utilise your Raspberry Pi to its fullest potential.

Why the Raspberry Pi?
There are a few things that make the Raspberry Pi a great
device on which to learn programming. Firstly it's cheap.
At around a tenth of the price of a low-end PC, it's cheap
enough to have in addition to your main computer. This is
useful because programmers tend to tinker with their
development machine, and tinkering can break things.
Generally this doesn't damage the machine itself, but it can
require you to reinstall the system, which can mean a bit of
lost data, and it can put the machine out of action for a few
hours. If you have a Pi that's used just for development, this
isn't a problem; however, if your only computer is shared
with a few other people, they may be a bit put out by this.



Secondly, the Pi is raw. It doesn't come hidden away in a
box, or in a complete system. This means that you get to
decide what sort of system you want to make. You can
enclose it in a case should you wish, or you can run it
naked. You have access to GPIOs that many machines don't
have. Most computers come pre-packaged for a particular
purpose (a tablet for surfing the web or playing games, a
games console for watching movies or playing games, a
laptop for working or playing games, and so on). A
Raspberry Pi can turn its hand to any of these things with
just a little technical know-how.
Thirdly, the Raspberry Pi runs Linux. This is an operating
system a bit like Windows or Mac OS X. It provides a
windowing system and a text-based interface for
controlling the Pi. If you haven't used Linux before, you'll
notice a few differences between it and the system you're
used to. For budding programmers, though, the most
important difference is that Linux is far more flexible than
the alternatives. Just as the physical design of the
Raspberry Pi encourages experimentation, so does the
operating system.



How Does this Book Work?
Chapters 1–3 are all about getting started with Python on
your Raspberry Pi. At the end of them, you'll have a pretty
good idea of what Python programming is about. The rest
of the book is split into chapters that deal with different
uses, such as games or multimedia. These chapters deal
with different areas of Python, so generally, you don't need
to have read one chapter to understand the next (there are
a couple of times where we refer back to something, but we
make it clear what's going on when we do).
This means that you can go through this second part of the
book in whatever order you want. For example, if you have
a particular interest in multimedia, you can skip ahead to
that, and then come back and read the others later.
Learning to program is all about actually getting your
hands dirty and programming. This means that you can't
learn it by just sitting down and reading a book; you
actually have to do some yourself. Throughout this book we
challenge you to put what you've learned to the test.
Sometimes it's through specific exercises designed to train
your skills, other times it's through taking the programs
we've introduced and adding your own features to them. An
important part of programming is the creativity to decide
what you want the program to do, so you don't have to
follow our suggestions. In fact, we encourage you to treat
our suggestions and code as a starting point to creating
your own digital works of art.



Chapter 1
Getting Up and Running
WELCOME TO Learning Python with Raspberry Pi. In this
book, you'll learn how to unlock the full power of the tiny
computer, from 3D graphics to games programming to
controlling electronics to tweeting. You'll see what's going
on under the hood and learn how to create programs that
take advantage of every feature of this minuscule
computer.

Setting Up Your Raspberry Pi
To follow this book, you'll need a few bits of equipment:

Raspberry Pi
USB keyboard
USB mouse
SD card
Monitor
Power supply

There are also a few optional bits of kit that may help:

Powered USB hub (highly recommended)
Camera module
USB webcam
USB WiFi dongle

It is possible to do everything in this book with a model A
Raspberry Pi. The real advantage of a model B as far as
programming is concerned is the network port. This port



will make it easier to connect to the Internet, which you'll
need to do to install some software.
Any USB keyboard and mouse should work fine. Most SD
cards should work, although there are a few that will cause
problems. If you're unsure, buy one from a Raspberry Pi
online shop (there are links to a few on
http://raspberrypi.org).
The Raspberry Pi has a HDMI (high-definition multimedia
interface) video output, but most monitors have VGA or DVI
input. If at all possible, use a monitor that has DVI or HDMI
input. A HDMI-to-DVI converter should cost only a few
pounds/dollars and shouldn't detract from the image
quality. HDMI-to-VGA converters are available, but they're
more expensive and can cause problems, so use them only
if you have no other option.
Most micro USB power supplies from reputable
manufacturers should work; however, some cheap ones
from no-name companies have caused problems, so if
possible, don't skimp too much on this. You could use a
USB cable from a normal computer to power your Pi.
Powered USB hubs are recommended for the power-related
problems described later in this chapter. Not all USB hubs
are powered, so make sure that whatever one you get plugs
into the mains electricity to get extra power.
We talk more about camera options in Chapter 9 on
multimedia. The only thing to say here is that if you do
choose to get a USB webcam, make sure it's compatible
with the Raspberry Pi. There's a partial list of working web
cams at http://elinux.org/RPi_USB_Webcams.
You'll need to connect your Pi to the Internet to install the
software you need in this book. You can do this either by
plugging your Pi into your router with a network cable or

http://raspberrypi.org/
http://elinux.org/RPi_USB_Webcams


by using a USB wireless dongle, which will add WiFi
connectivity.

Solving Problems
The most common problems with the Raspberry Pi are
power-related issues. Not all micro USB power sources can
provide enough power, and it becomes more of a problem
as you connect peripherals to your Pi, or when you
overclock it (see Chapter 5 for more details). Power-related
problems will usually manifest themselves as the computer
crashing, so if you find that your Pi becomes unstable, this
is the best place to start. A good way to get around such
issues is to connect your Pi to one power source and
connect all the peripherals (keyboard, mouse, and so on)
via a powered USB hub.
The second most common cause of problems with Pis is the
SD card. These issues can be caused by power supply
problems, or they can be problems with the cards
themselves. It's important to take preventative measures
here to ensure that your data is safe, and that means
backups! You can use a service such as Google Drive
(although this runs slowly on the Pi), or you can simply
keep extra copies of any work on a USB memory stick. SD
card issues will usually manifest themselves by the Pi
displaying error messages when you try to start it. Most of
the time you can solve the problem by reinstalling
Raspbian, but if this doesn't work, you'll need to get a new
SD card.
If neither of these help, then you'll need to dig a little
deeper. The most useful places to look are the kernel buffer
and the system log file. The kernel buffer is usually best if
you're having problems with hardware, such as a USB
device not working. If you open LXTerminal and type:



dmesg

It will output all the messages from the Linux Kernel. The
last ones are the most recent and should show any
problems.
The system log file (often called syslog) can be displayed
with:

cat /var/log/syslog

Again, the most recent messages will be at the end. The
information in both of these can be somewhat cryptic. If
you still can't work out the problem after reading these, the
best place to go is the Raspberry Pi forums at
www.raspberrypi.org/phpBB3/. There's a community of
helpful people who should be able to point you in the right
direction.

A Quick Tour of Raspbian
This is a book about programming, not about generally
using Raspbian, so we won't dwell on it too much, but you'll
find it useful to know a bit about what's going on.
There are a few operating systems available for the
Raspberry Pi, but the instructions in this book are all based
on Raspbian, which is the default operating system, and the
best choice for a new user. If you have some experience
with Linux, you could use Arch or Fedora if you like, but
you'll have to change the apt-get commands to ones
suitable for your package manager.
The easiest way to install Raspbian on your Pi is using
NOOBS, which is available from
www.raspberrypi.org/downloads. You'll also find a quick
start guide at that website that will tell you everything you
need to know to get up and running.

http://www.raspberrypi.org/phpBB3/
http://www.raspberrypi.org/downloads


There are two different ways of interacting with Raspbian—
from the terminal and using the graphical system (LXDE).

Using LXDE (Lightweight X11
Desktop Environment)
The Lightweight X11 Desktop Environment is the standard
windowing system for Raspbian. Its basic setup is the same
as most versions of Windows pre-Windows 8. There's a
button in the bottom-left side of the screen that opens an
applications menu, and currently running applications are
displayed in the bar along the bottom (see Figure  1-1).

Figure 1-1:   The LXDE desktop with the menu open.

If you get a black screen with white text asking you to log
in when you boot up your Pi, it means that you haven't set
it up to start LXDE automatically. Don't worry; just log in
with the username pi and the password raspberry, and
then type the following:

startx

You can set it up to boot into LXDE automatically using
raspi-config (see the next section).

Using the Terminal



LXDE is great for many tasks, but sometimes you'll need to
use the command line. This is an incredibly powerful
interface that's accessed through the terminal. In LXDE,
that means opening the LXTerminal application.
When you open LXTerminal, you should see the following
line:

pi@raspberrypi~$

This signifies that you are using the username pi on a
computer called raspberrypi, and you are in a directory
called ~.
In Linux, all directories start from / or root. This is the
base of the directory tree and every directory is located in
some subdirectory of this. You can move between
directories using the cd (change directory) command. Start
by moving to this root directory with:

cd /

You should now seen that the command prompt has
changed to

pi@raspberrypi/$

You can list the contents of this directory with the
command ls. One of the subdirectories is called home. This
is where every user on the system has his home directory.
Move into it and view its contents with:

cd home
ls

There should only be one directory called pi. The command
prompt should now have changed to show that you're in the
directory /home. Move into the only subdirectory with:

cd pi



Now the command prompt will have reverted to:

pi@raspberrypi~$

This is because the character ~ is a shorthand for the
current user's home directory. When you type ~ in the
terminal, the computer converts it to /home/pi.
There is much more to learn about the command line. So
much so that it would take another book this size to cover it
with any semblance of completeness. However, you don't
need to know everything to start using it, and whenever we
tell you to use LXTerminal, we tell you exactly what to type.

Tip
If you are interested in learning more about the Raspberry Pi, or Linux in
general, the command line is an excellent place to start, and there's loads of
information about it both online and in print. The Linux command-line book,
which you can browse for free online, is an excellent place to start. See
http://linuxcommand.org/tlcl.php.

We'll leave you with two pieces of advice. Firstly, don't be
afraid of the terminal. It can be a bit daunting at first, but
the only way to learn how to use it is to use it. Secondly,
almost all commands have built-in help that you can access
using the flag ––help. For example, if you want to learn
more about how to use the command ls, you can enter:

ls --help

This will output:

Usage: ls [OPTION]... [FILE]...
List information about the FILEs (the current
directory by
default). Sort entries alphabetically if none of -
cftuvSUX nor 
--sort is specified.

http://linuxcommand.org/tlcl.php


It then goes on to list all the various flags you can use with
the command.

Changing Configurations with Raspi-
Config
Raspbian comes with a tool to help you set up the hardware
on your Raspberry Pi; it's called raspi-config. To start it,
open LXTerminal and type:

sudo raspi-config

Here, you'll find options to start LXDE automatically when
you boot up, overclock your Pi, and other things.
Overclocking your Pi will make a few things in this book
run a little better, most notably, installing new software.

Installing Software
You can install new software on your Raspberry Pi using
the apt-get command in the terminal. Before installing
anything, it's a good idea to update all your software to the
latest version. You can do this with:

sudo apt-get update
sudo apt-get upgrade

Then you can use apt-get to install whatever you want. For
example, if you want to use iceweasel (a re-branded
version of Firefox), you need to open LXTerminal and type:

sudo apt-get install iceweasel

If you prefer to do this using a graphical program, you can
get the program synaptic with:

sudo apt-get install synaptic

When you want to install something, you can start it with:

sudo synaptic



From there you'll be able to search for whatever you want.

Note
Whenever you install software, you need to use the word sudo before the
command. It tells the computer that you want to make a system-wide change
and gives the program sufficient permissions to do this.

Python 3
In this book, you'll learn how to use the Python 3
programming language. In Raspbian, there are a couple of
ways to use this language.

The Python Interpreter
There are two ways of using Python, from the shell and
saved programs. The shell executes each instruction as you
type it, which means it's a really good way of trying out
things and doing experiments. Saved programs are bits of
Python code that are saved in a text file and run all at once.
It's easy to tell which environment you're in because in the
shell, all the lines will start with three chevrons:

>>>

Most of the time in this book, we'll deal with saved
programs, but there are some occasions (particularly early
on) when we tell you to use the shell. To make it clear
which bits of code are for which, we've started every bit of
code for the shell with three chevrons.

Running Python Programs
There are two different ways you can write programs for
Python. You can create text files that contain the code, and
then run these files with Python, or you can use an
Integrated Development Environment (IDE) such as IDLE



3. Either way will result in the code being run in the same
way and it's just a matter of personal preference.
If you want to write the programs as text files, you need to
use a text editor such as Leafpad. A word processor such as
LibreOffice's Writer is unsuitable because the various
formatting it uses will confuse Python. As an example, open
Leafpad and create a new file that just has the line:

print("Hello World!")

Once you've created your file, just save it with the
extension .py; for example testfile.py. You can then run
it by opening LXTerminal and navigating to where the file is
saved. Then you run python <filename>. You can use the
cd command to move to different directories. For example,
if you save the file in a folder called programming in your
home directory, you could run it by typing the following into
LXTerminal:

cd programming
python3 testfile.py

If everything has worked correctly, you should see the
following line appear on the screen:

Hello World!

The second way is a little simpler. Using an IDE, the text
editor and Python interpreter are in the same program. For
example, open IDLE 3 (make sure to use the one with the
3), and go to File⇒New Window. In the new window, enter
this code:

print("Hello IDLE")

Then go to Run⇒Run Module. It will prompt you to save the
module, so select a filename. Once you've done this, it will



switch back to the Python interpreter and display the
following:

Hello IDLE

It doesn't really matter which one you use, so just go with
the way you feel most comfortable with.

Summary
After reading this chapter, you should understand the
following a bit better:

You'll need a few extra bits of hardware to get the most
out of your Raspberry Pi.
Insufficient power is the most common cause of
problems.
If you're having problems, dmesg  and syslog are the
best places to find out what's going on.
Raspbian uses the LXDE desktop environment.
The terminal provides the most powerful way of
interacting with the underlying operating system.
The raspi-config  tool lets you configure your
Raspberry Pi.
Use apt-get  to install new software.
You can run Python either through the interpreter or by
running saved programs.



Chapter 2
A Really Quick
Introduction to Python
IN THIS CHAPTER, you'll dive right into some code
examples. Don't expect to grasp all the details yet. This
chapter is meant to give you a taste of programming. You'll
learn how to draw on the screen, and even how to make a
simple game. Along the way you'll pick up some basic
programming concepts, but don't worry if you don't
understand every line of every program you create in this
chapter. You'll learn more about the details in later
chapters.

Drawing Picture with Turtles
It's time to get programming! We strongly recommend that
you enter the code into IDLE 3 as you read along, as it will
help you understand what's happening. So, without further
ado, open IDLE 3, go to File⇒New Window, and enter the
following:

import turtle
window = turtle.Screen()
babbage = turtle.Turtle()
babbage.left(90)
babbage.forward(100)
babbage.right(90)
babbage.circle(10)
window.exitonclick()

Then go to Run⇒Run Module or press F5 to execute the
program. A dialog will open and ask you to provide a


