

f . a2
a2

Dateianlage
cover.gif

Berger Automating with STEP 7 in STL and SCL

Automating with
STEP7 in STL and SCL
Programmable Controllers
SIMATIC S7-300/400

by Hans Berger

6th revised and enlarged edition, 2012

Publicis Publishing

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available in the Internet at http://dnb.d-nb.de.

ISBN 978-3-89578-412-5
6th edition, 2012

Editor: Siemens Aktiengesellschaft, Berlin and Munich
Publisher: Publicis Publishing, Erlangen
© 2012 by Publicis Erlangen, Zweigniederlassung der PWW GmbH

This publication and all parts thereof are protected by copyright. Any use of it outside the
strict provisions of the copyright law without the consent of the publisher is forbidden and will
incur penalties. This applies particularly to reproduction, translation, microfilming or other
processing‚ and to storage or processing in electronic systems. It also applies to the use of
individual illustrations or extracts from the text.

Printed in Germany

This book contains one Trial DVD. “SIMATIC STEP 7 Professional, Edition 2010 SR1, Trial
License” encompasses: SIMATIC STEP 7 V5.5 SP1, S7-GRAPH V5.3 SP7, S7-SCL V5.3 SP6,
S7-PLCSIM V5.4 SP5 and can be used for trial purposes for 14 days.

This Software can only be used with the Microsoft Windows XP 32 Bit Professional Edition SP3
or Microsoft Windows 7 32/64 Bit Professional Edition SP1 or Microsoft Windows 7 32/64 Bit
Ultimate Edition SP1 operating systems.

Additional information can be found in the Internet at:
http://www.siemens.com/sce/contact
http://www.siemens.com/sce/modules
http://www.siemens.com/sce/tp

The programming examples concentrate on describing the STL and SCL functions and providing
SIMATIC S7 users with programming tips for solving specific tasks with this controller.

The programming examples given in the book do not pretend to be complete solutions or to be
executable on future STEP 7 releases or S7-300/400 versions. Additional care must be taken in order
to comply with the relevant safety regulations.

The author and publisher have taken great care with all texts and illustrations in this book.
Nevertheless, errors can never be completely avoided. The publisher and the author accept no liability,
regardless of legal basis, for any damage resulting from the use of the programming examples.

The author and publisher are always grateful to hear your responses to the contents of the book.

Publicis Publishing
P.O. Box 3240
91050 Erlangen
E-mail: publishing-distribution@publicis.de

Internet: www.publicis-books.de

Preface

5

Preface

The SIMATIC automation system unites all the
subsystems of an automation solution under a
uniform system architecture to form a homoge-
neous whole from the field level right up to pro-
cess control. This Totally Integrated Automa-
tion (TIA) enables integrated configuring and
programming, data management and communi-
cations throughout the complete automation
system.

As the basic tool for SIMATIC, STEP 7 plays
an integrating role in Totally Integrated Auto-
mation. STEP 7 is used to configure and pro-
gram the SIMATIC S7, SIMATIC C7 and
SIMATIC WinAC automation systems. Micro-
soft Windows has been chosen as the operating
system to take advantage of the familiar user
interface of standard PCs as also used in office
environments.

For block programming STEP 7 provides pro-
gramming languages that comply with DIN EN
6.1131-3: STL (statement list; an Assembler-
like language), LAD (ladder logic; a represen-
tation similar to relay logic diagrams), FBD
(function block diagram) and the S7-SCL
optional package (Structured Control Lan-
guage, a Pascal-like high-level language). Sev-
eral optional packages supplement these lan-
guages: S7-GRAPH (sequential control), S7-
HiGraph (programming with state-transition
diagrams) and CFC (connecting blocks; similar
to function block diagram). The various meth-
ods of representation allow every user to select
the suitable control function description. This
broad adaptability in representing the control
task to be solved significantly simplifies work-
ing with STEP 7.

This book describes the STL and SCL program-
ming languages for S7-300/400. As a valuable
supplement to the description of the languages,
and following an introduction to the S7-300/
400 automation system, it provides valuable,
practice-oriented information on the basic han-

dling of STEP 7 when configuring, networking
and programming SIMATIC PLCs. The
description of the “Basic Functions” of a binary
control, such as logic operations or latching/
unlatching functions, makes it particularly easy
for first-time users or users changing from relay
contactor controls to become acquainted with
STEP 7. The digital functions explain how dig-
ital values are combined; for example, basic
calculations, comparisons or data type conver-
sion.

The book shows how you can control program
processing (program flow) and design struc-
tured programs. In addition to the cyclically
processed main program, you can also incorpo-
rate event-driven program sections as well as
influence the behavior of the controller at
startup and in the event of errors/faults.

One section of the book is dedicated to the
description of the SCL programming language.
SCL is especially suitable for programming
complex algorithms or for tasks in the data
management area, and it supplements STL
towards higher-level programming languages.
The book concludes with the description of a
program for converting STEP 5 programs to
STEP 7 programs, and a general overview of
the system functions and the function set for
STL and SCL.

The contents of this book describe Version 5.5
of the STEP 7 programming software and Ver-
sion 5.3 SP5 of the S7-SCL optional package.

Nuremberg, May 2012

Hans Berger

6

The Contents of the Book at a Glance

Overview of the S7-
300/400 programma-
ble logic controller

PLC functions compa-
rable to a contactor
control system

Numbers, manipulat-
ing the contents of the
accumulators

Program run control,
block functions

Introduction

1 SIMATIC S7-300/
400 Programmable
Controller

Structure of the Pro-
grammable Controller
(Hardware Components
of S7-300/400);
Memory Areas;
Distributed I/O
(PROFIBUS DP);
Communications
(Subnets);
Modules Addresses;
Addresses Areas

2 STEP 7 Program-
ming Software

Editing Projects;
Configuring Stations;
Configuring the Net-
work; Symbol Editor;
STL Program Editor;
SCL Program Editor;
Online Mode;
Testing the Program

3 SIMATIC S7
Program

Program Processing;
Block Types;
Programming STL and
SCL Code Blocks;
Programming Data
Blocks;
Addressing Variables,
Constant Representa-
tions, Data Types
(Overview)

Basic Functions

4 Binary Logic
Operations

AND, OR and
Exclusive OR
Functions;
Nesting Functions

5 Memory
Functions

Assign, Set and Reset;
Edge Evaluation;
Example of a
Conveyor Belt
Control System

6 Move Functions

Load Functions,
Transfer Functions;
Accumulator
Functions;
System Functions for
Data Transfer

7 Timer Functions

Start SIMATIC Timers
with Five Different
Types;
IEC Timers

8 Counter Functions

SIMATIC Counters;
Count up, Count
down, Set, Reset and
Scan Counters;
IEC Counters

Digital Functions

9 Comparison
Functions

Comparison Accord-
ing to Data Types INT,
DINT and REAL

10 Arithmetic
Functions

Four-function Math
with INT, DINT and
REAL numbers;
Adding Constants,
Decrementing and
Incrementing

11 Math Functions

Trigonometric
Functions;
Arc Functions;
Powers, Logarithm

12 Converting
Functions

Data Type Conversion;
Complement Forma-
tion

13 Shift Functions

Shifting and Rotating

14 Word Logic

AND, OR,
Exclusive OR

Program Flow
Control

15 Status Bits

Binary Flags,
Digital Flags;
EN/ENO
Mechanism

16 Jump
Functions

Unconditional Jump;
Jumps Conditional on
the RLO, BR and the
Digital Flags;
Jump Distributor,
Loop Jump

17 Master Control
Relay

MCR Dependency,
MCR Area,
MCR Zone

18 Block Functions

Block Call,
Block End;
Temporary and Static
Local Data;
Data Addresses

19 Block
Parameters

Formal Parameters,
Actual Parameters;
Declarations,
Assignments and
“Parameter Passing”

7

Processing the user
program

Working with complex
variables, indirect
addressing

Description of the
Programming
Language SCL

S5/S7 Converter,
block libraries,
overviews

Program
Processing

20 Main Program

Program Structure;
Scan Cycle Control
(Response Time, Start
Information, Back-
ground Scanning);
Program Functions;
Communications via
Distributed I/O and
Global Data;
S7 and S7-Basic
Communications

21 Interrupt
Handling

Time-of-Day Inter-
rupts; Time-Delay In-
terrupts; Watchdog
Interrupts; Hardware
Interrupts; DPV1 In-
terrupts; Multiproces-
sor Interrupt; Handling
Interrupts

22 Restart
Characteristics

Cold Restart,
Hot Restart,
Warm Restart;
STOP, HOLD,
Memory Reset;
Parameterizing
Modules

23 Error Handling

Synchronous Errors;
Asynchronous Errors;
System Diagnostics

Variable Handling

24 Data Types

Structure of the
Data Types,
Declaration and
Use of Elementary and
Complex Data Types;
Programming of User
Defined Data Types
UDT

25 Indirect
Addressing

Area Pointer,
DB Pointer,
ANY Pointer;
Indirect Addressing
via Memory and
Register (Area-internal
and Area-crossing);
Working with Address
Registers

26 Direct Variable
Access

Load Variable
Address
Data Storage of
Variables in the
Memory;
Data Storage when
Transferring Parame-
ters; “Variable” ANY
Pointer;
Brief Description of
the “Message Frame
Example”

Structured Control
Language SCL

27 Introduction,
Language
Elements

Addressing,
Operators,
Expressions,
Value Assignments

28 Control
Statements

IF, CASE, FOR,
WHILE, REPEAT,
CONTINUE, EXIT,
GOTO, RETURN

29 SCL Block
Calls

Function Value; OK
Variable, EN/ENO
Mechanism, Descrip-
tion of Examples

30 SCL Functions

Timer Functions;
Counter Functions;
Conversion and Math
Functions;
Shifting and Rotating

31 IEC Functions

Conversion and Com-
parison Functions;
STRING Functions;
Date/Time-of-Day
Functions;
Numerical Functions

Appendix

32 S5/S7
Converter

Preparations for
Conversion;
Converting STEP 5
Programs;
Postprocessing

33 Block
Libraries

Organization Blocks;
System Function
Blocks;
IEC Function Blocks;
S5-S7 Converting
Blocks;
TI-S7 Converting
Blocks;
PID Control Blocks;
DP Functions

34 STL Operation
Overview

Basic Functions;
Digital Functions;
Program Flow Control;
Indirect Addressing

35 SCL Statement
and Function
Overview

Operators;
Control Statements;
Block Calls;
Standard Functions

8

The Programming Examples

The present book provides many figures repre-
senting the use of the STL and SCL program-
ming languages. All programming examples
can be downloaded from the publisher’s web-
site www.publicis-books.de. There are two li-
braries, one for STL examples (STL_Book) and
one for SCL examples (SCL_Book). When
dearchived with the Retrieve function, these li-
braries occupy approximately 2.9 or 1.7 MB
(dependent on the PG/PC file system used).

The library STL_Book contains eight programs
that are essentially illustrations of the STL
method of representation. Two extensive exam-
ples show the programming of functions, func-
tion blocks and local instances (Conveyor Ex-
ample) and the handling of data (Message
Frame Example). All the examples exist as
source files and contain symbols and com-
ments.

The library SCL_Book contains five programs
with representations of the SCL statements and

Library STL_Book

Basic Functions
Examples of STL representation

Program Processing
Examples of SFC Calls

FB 104 Chapter 4: Binary Logic Operations
FB 105 Chapter 5: Memory Functions
FB 106 Chapter 6: Transfer Functions
FB 107 Chapter 7: Timer Functions
FB 108 Chapter 8: Counter Functions

FB 120 Chapter 20: Main Program
FB 121 Chapter 21: Interrupt Handling
FB 122 Chapter 22: Restart Characteristics
FB 123 Chapter 23: Error Handling

Digital Functions
Examples of STL representation

Variable Handling
Examples of Data Types and Variable Processing

FB 109 Chapter 9: Comparison Functions
FB 110 Chapter 10: Arithmetic Functions
FB 111 Chapter 11: Math Functions
FB 112 Chapter 12: Conversion Functions
FB 113 Chapter 13: Shift Functions
FB 114 Chapter 14: Word Logic

FB 124 Chapter 24: Data Types
FB 125 Chapter 25: Indirect Addressing
FB 126 Chapter 26: Direct Variable Access
FB 101 Elementary Data Types
FB 102 Complex Data Types
FB 103 Parameter Types

Program Flow Control
Examples of STL representation

Conveyor Example
Examples of Basic Functions and Local Instances

FB 115 Chapter 15: Status Bits
FB 116 Chapter 16: Jump Functions
FB 117 Chapter 17: Master Control Relay
FB 118 Chapter 18: Block Functions
FB 119 Chapter 19: Block Parameters
Source File Block Programming (Chapter 3)

FC 11 Conveyor Belt Controller
FC 12 Counter Control
FB 20 Feed
FB 21 Conveyor Belt
FB 22 Parts Counter

Message Frame Example
Handling Data examples

General Examples

UDT 51 Data Structure Header
UDT 52 Data Structure Message Frame
FB 51 Generate Message Frame
FB 52 Save Message Frame
FC 61 Clock Check
FC 62 Generate Checksum
FC 63 Convert Date

FC 41 Range Monitor
FC 42 Limit Value Detection
FC 43 Compound Interest Calculation
FC 44 Double-Word-Wise Edge Evaluation
FC 45 Converting S5 Floating-Point to S7 REAL
FC 46 Converting S7 REAL to S5 Floating-Point
FC 47 Copy Data Area (ANY Pointer)

9

the SCL functions. The programs “Conveyor
Example” The library SCL_Book contains five
programs with representations of the SCL state-
ments and the SCL functions. The programs
“Conveyor Example” and “Message Frame Ex-
ample” and “Message Frame Example” show
the same functions as the STL examples of the
same name. The program “General Examples”
contains SCL functions for processing complex
data types, data storage and – for SCL program-

mers – a statement for programming simple
STL functions for SCL programs.

To try the programs out, set up a project corre-
sponding to your hardware configuration and
then copy the program, including the symbol
table from the library to the project. Now you
can call the example programs, adapt them for
your own purposes and test them online.

Library SCL_Book

27 Language Elements
Examples of SCL Representation (Chapter 27)

30 SCL Functions
Examples of SCL Representation (Chapter 30)

FC 271 Delimiter Example
OB 1 Main Program for the Delimiter Example
FB 271 Operators, Expressions, Assignments
FB 272 Indirect Addressing

FB 301 Timer Functions
FB 302 Counter Functions
FB 303 Conversion Functions
FB 304 Math Functions
FB 305 Shifting and Rotating

28 Control Statements
Examples of SCL Representation (Chapter 28)

31 IEC Functions
Examples of SCL Representation (Chapter 31)

FB 281 IF Statement
FB 282 CASE Statement
FB 283 FOR Statement
FB 284 WHILE Statement
FB 285 REPEAT Statement

FB 311 Conversion Functions
FB 312 Comparison Functions
FB 313 String Functions
FB 314 Date/Time-of-day Functions
FB 315 Numerical Functions

29 SCL Block Calls
Examples of SCL Representation (Chapter 29)

General Examples

FC 291 FC Block with Function Value
FC 292 FC Block without Function Value
FB 291 FB Block
FB 292 Example Calls for FC and FB Blocks
FC 293 FC Block for EN/ENO Example
FB 293 FB Block for EN/ENO Example
FB 294 Calls for EN/ENO Examples

FC 61 DT_TO_STRING
FC 62 DT_TO_DATE
FC 63 DT_TO_TOD
FB 61 Variable Length
FB 62 Checksum
FB 63 Ring Buffer
FB 64 FIFO Register
STL Functions for SCL Programming

Conveyor Example
Examples of Basic Functions and Local Instances

Message Frame Example
Handling Data examples

FC 11 Conveyor Belt Controller
FC 12 Counter Control
FB 20 Feed
FB 21 Conveyor Belt
FB 22 Parts Counter

UDT 51 Data Structure Header
UDT 52 Data Structure Message Frame
FB 51 Generate Message Frame
FB 52 Save Message Frame
FC 61 Clock Check

Automating with STEP 7

10

Automating with STEP 7

This double page shows the ba-
sic procedure for using the
STEP 7 programming software.

Start the SIMATIC Manager
and set up a new project or open
an existing project. All the data
for an automation task are
stored in the form of objects in
a project. When you set up a
project, you create containers
for the accumulated data by set-
ting up the required stations
with at least the CPUs; then the
containers for the user pro-
grams are also created. You can
also create a program container
direct in the project.

In the next steps, you configure
the hardware and, if applicable,
the communications connec-
tions. Following this, you cre-
ate and test the program.

The order for creating the auto-
mation data is not fixed. Only
the following general regula-
tion applies: if you want to pro-
cess objects (data), they must
exist; if you want to insert ob-
jects, the relevant containers
must be available.

You can interrupt processing in
a project at any time and con-
tinue again from any location
the next time you start the
SIMATIC Manager.

Automating with STEP 7

11

Table of Contents

12

Table of Contents

Preface 5

Automating with STEP 7 10

Introduction 21

1 SIMATIC S7-300/400
Programmable Controller 22

1.1 Structure of the
Programmable Controller 22

1.1.1 Components 22
1.1.2 S7-300 Station 22
1.1.3 S7-400 Station 24
1.1.4 Fault-Tolerant SIMATIC 25
1.1.5 Safety-related SIMATIC 26
1.1.6 CPU Memory Areas 27

1.2 Distributed I/O. 30

1.2.1 PROFIBUS DP 30
1.2.2 PROFINET IO. 32
1.2.3 Actuator/Sensor Interface 33
1.2.4 Routers. 35

1.3 Communications. 37

1.3.1 Introduction 37
1.3.2 Subnets 39
1.3.3 Communications Services 42
1.3.4 Connections 44

1.4 Module Addresses 44

1.4.1 Signal Path. 44
1.4.2 Slot Address 45
1.4.3 Logical Address 46
1.4.4 Module Start Address 46
1.4.5 Diagnostics Address 46
1.4.6 Addresses for Bus Nodes 47

1.5 Address Areas 47

1.5.1 User Data Area 47
1.5.2 Process Image 48
1.5.3 Consistent User Data 49
1.5.4 Bit Memories 50

2 STEP 7 Programming Software 51

2.1 STEP 7 Basic Package 51

2.1.1 Installation 51
2.1.2 Automation License Manager . . 51
2.1.3 SIMATIC Manager 52
2.1.4 Projects and Libraries 53
2.1.5 Multiprojects 55
2.1.6 Online Help 56

2.2 Editing Projects 56

2.2.1 Creating Projects 56
2.2.2 Managing, Rearranging and

Archiving 58
2.2.3 Project Versions 58
2.2.4 Creating and Editing Multiprojects 59

2.3 Configuring Stations 60

2.3.1 Arranging Modules 62
2.3.2 Addressing Modules 62
2.3.3 Parameterizing Modules 63
2.3.4 Networking Modules with MPI . 63
2.3.5 Monitoring and Modifying

Modules. 64

2.4 Configuring the Network 64

2.4.1 Configuring the Network View . 66
2.4.2 Configuring Distributed I/O with

the Network Configuration 66
2.4.3 Configuring Connections 67
2.4.4 Network Transitions 70
2.4.5 Loading the Connection Data . . 71
2.4.6 Adjusting Projects in the

Multiproject. 71

2.5 Creating the S7 Program 73

2.5.1 Introduction. 73
2.5.2 Symbol Table 73
2.5.3 STL-Program Editor 75
2.5.4 SCL Program Editor 80
2.5.5 Rewiring 83
2.5.6 Address Priority 83
2.5.7 Reference Data 84
2.5.8 Language Settings 86

Table of Contents

13

2.6 Online Mode 87

2.6.1 Connecting a PLC 87
2.6.2 Protection of the user program. . 88
2.6.3 CPU Information. 89
2.6.4 Loading the User Program into

the CPU 89
2.6.5 Block Handling 90

2.7 Testing the Program 92

2.7.1 Diagnosing the Hardware 92
2.7.2 Determining the Cause of a STOP 93
2.7.3 Monitoring and Modifying

Variables 93
2.7.4 Forcing Variables 95
2.7.5 Enabling Peripheral Outputs . . . 96
2.7.6 Test and process mode 97
2.7.7 STL Program Status 97
2.7.8 Monitoring and Controlling Data

Addresses 99
2.7.9 Debugging SCL Programs 100

3 SIMATIC S7 Program 102

3.1 Program Processing 102

3.1.1 Program Processing Methods . . 102
3.1.2 Priority Classes 103
3.1.3 Specifications for Program

Processing 105

3.2 Blocks 106

3.2.1 Block Types 106
3.2.2 Block Structure 108
3.2.3 Block Properties 108
3.2.4 Block Interface 111

3.3 Addressing Variables 113

3.3.1 Absolute Addressing of
Variables 113

3.3.2 Indirect Addressing 115
3.3.3 Symbolic Addressing of

Variables 115

3.4 Programming Code Blocks
with STL 116

3.4.1 Structure of an STL Statement. . 116
3.4.2 Programming STL Code Blocks

Incrementally 117
3.4.3 Overview Window 118
3.4.4 Programming Networks 119
3.4.5 Source-oriented programming

of an STL code block 120

3.5 Programming Code Blocks
with SCL 122

3.5.1 Structure of an SCL Statement . 122
3.5.2 Programming SCL Code Blocks 124

3.6 Programming Data Blocks . . . 127

3.6.1 Programming Data Blocks
Incrementally 127

3.6.2 Source-Oriented Data Block
Programming 131

3.7 Variables and Constants 133

3.7.1 General Remarks Concerning
Variables 133

3.7.2 General Remarks Regarding
Data Types 134

3.7.3 Elementary Data Types 134
3.7.4 Complex Data Types 137
3.7.5 Parameter Types 137

Basic Functions 138

4 Binary Logic Operations . . . 139

4.1 Processing a Binary Logic
Operation 139

4.2 Elementary Binary Logic
Operations. 141

4.2.1 AND Function 142
4.2.2 OR Function 142
4.2.3 Exclusive OR Function 142

4.3 Negating the Result of the
Logic Operation 144

4.4 Compound Binary Logic
Operations. 145

4.4.1 Processing Nesting Expressions 145
4.4.2 Combining AND Functions

According to OR 146
4.4.3 Combining OR and Exclusive OR

Functions According to AND. . 146
4.4.4 Combining AND Functions According

to Exclusive OR. 147
4.4.5 Combining OR Functions and

Exclusive OR Functions 148
4.4.6 Negating Nesting Expressions . 148

5 Memory Functions. 149

5.1 Assign 149

5.2 Set and Reset 149

5.3 RS Flipflop Function 151

5.3.1 Memory Functions with Reset
Priority 151

Table of Contents

14

5.3.2 Memory Function with Set
Priority. 151

5.3.3 Memory Function in a Binary
Logic Operation 151

5.4 Edge Evaluation 152

5.4.1 Positive Edge 153
5.4.2 Negative Edge 154
5.4.3 Testing a Pulse Memory Bit . . . 154
5.4.4 Edge Evaluation in a Binary

Logic Operation 154
5.4.5 Binary Scaler 155

5.5 Example of a Conveyor Belt
Control System 155

6 Move Functions. 159

6.1 General Remarks on Loading
and Transferring Data 159

6.2 Load Functions 161

6.2.1 General Representation of a
Load Function 161

6.2.2 Loading the Contents of Memory
Locations 161

6.2.3 Loading Constants 162

6.3 Transfer Functions. 163

6.3.1 General Representation of a
Transfer Function 163

6.3.2 Transferring to Various Memory
Areas. 163

6.4 Accumulator Functions 164

6.4.1 Direct Transfers Between
Accumulators 164

6.4.2 Exchange Bytes in Accumulator 1 165

6.5 System Functions for Data
Transfer 166

6.5.1 Copying Memory Area 166
6.5.2 Uninterruptible Copying of

Variables. 167
6.5.3 Initializing a Memory Area . . . 167
6.5.4 Copying STRING Variables . . 168
6.5.5 Reading from Load Memory . . 168
6.5.6 Writing into the Load Memory . 169

7 Timer Functions 171

7.1 Programming a Timer 171

7.1.1 Starting a Timer 171
7.1.2 Specifying the Time 172
7.1.3 Resetting a Timer 173

7.1.4 Enabling a Timer 173
7.1.5 Checking a Timer. 173
7.1.6 Sequence of Timer Instructions . 174
7.1.7 Clock Generator Example 174

7.2 Pulse Timers 175

7.3 Extended Pulse Timers 177

7.4 On-Delay Timers 179

7.5 Retentive On-Delay Timers . . . 181

7.6 Off-Delay Timers. 183

7.7 IEC Timer Functions 185

7.7.1 Pulse Generation SFB 3 TP . . . 185
7.7.2 On Delay SFB 4 TON 186
7.7.3 Off Delay SFB 5 TOF 186

8 Counter Functions 187

8.1 Setting and Resetting Counters . . 187

8.2 Counting 188

8.3 Checking a Counter. 189

8.4 Enabling a Counter 189

8.5 Sequence of Counter Instructions 190

8.6 IEC Counter Functions 191

8.6.1 Up Counter SFB 0 CTU 191
8.6.2 Down Counter SFB 1 CTD. . . . 191
8.6.3 Up-Down Counter SFB 2 CTUD. 192

8.7 Parts Counter Example 192

Digital Functions 196

9 Comparison Functions 197

9.1 General Representation of a
Comparison Function. 197

9.2 Description of the Comparison
Functions 198

9.3 Comparison Function in a Logic
Operation 199

10 Arithmetic Functions 201

10.1 General Representation of an
Arithmetic Function 201

10.2 Calculating with Data Type INT . 202

10.3 Calculating with Data Type DINT 203

10.4 Calculating with Data Type
REAL 204

Table of Contents

15

10.5 Successive Arithmetic Functions 205

10.6 Adding Constants to
Accumulator 1 206

10.7 Decrementing and Incrementing . 206

11 Math Functions 208

11.1 Processing a Math Function . . . 208

11.2 Trigonometric Functions. 209

11.3 Arc Functions 209

11.4 Other Math Functions 209

12 Conversion Functions 211

12.1 Processing a Conversion
Function 211

12.2 Converting INT and DINT
Numbers 212

12.3 Converting BCD Numbers. . . . 212

12.4 Converting REAL Numbers . . . 213

12.5 Other Conversion Functions . . . 214

13 Shift Functions 216

13.1 Processing a Shift Function . . . 216

13.2 Shifting. 217

13.3 Rotating 219

14 Word Logic 221

14.1 Processing a Word Logic
Operation. 221

14.2 Description of the Word Logic
Operations 223

Program Flow Control 224

15 Status Bits 225

15.1 Description of the Status Bits . . 225

15.2 Setting the Status Bits and the
Binary Flags 227

15.3 Evaluating the Status Bit. 229

15.4 Using the Binary Result 231

16 Jump Functions 233

16.1 Programming a Jump Function . 233

16.2 Unconditional Jump 234

16.3 Jump Functions with RLO and
BR. 234

16.4 Jump Functions with
CC0 and CC1 235

16.5 Jump Functions with
OV and OS 237

16.6 Jump Distributor 237

16.7 Loop Jump 238

17 Master Control Relay 239

17.1 MCR Dependency 239

17.2 MCR Area. 240

17.3 MCR Zone 240

17.4 Setting and Resetting I/O Bits . 241

18 Block Functions 243

18.1 Block Functions for Code Blocks 243

18.1.1 Block Calls: General 244
18.1.2 CALL Call Statement 244
18.1.3 UC and CC Call Statements . . 245
18.1.4 Block End Functions 246
18.1.5 Temporary Local Data 246
18.1.6 Static Local Data 249

18.2 Block Functions for Data Blocks 251

18.2.1 Two Data Block Registers . . . 251
18.2.2 Accessing Data Addresses . . . 252
18.2.3 Open Data Block 254
18.2.4 Exchanging the Data Block

Registers 255
18.2.5 Data Block Length and Number 255
18.2.6 Special Points in Data Addressing 255

18.3 System Functions for Data Blocks 257

18.3.1 Creating a Data Block in the
Work Memory 257

18.3.2 Creating a Data Block in the
Load Memory 257

18.3.3 Deleting a Data Block. 259
18.3.4 Testing a Data Block 259

18.4 Null Operations 259

18.4.1 NOP Statements. 259
18.4.2 Program Display Statements . . 260

19 Block Parameters 261

19.1 Block Parameters in General . . 261

19.1.1 Defining the Block Parameters . 261

Table of Contents

16

19.1.2 Processing the Block Parameters 261
19.1.3 Declaration of the Block

Parameters 262
19.1.4 Declaration of the Function Value 263
19.1.5 Initializing Block Parameters . . 264

19.2 Formal Parameters. 264

19.3 Actual Parameters 267

19.4 “Passing On” Block Parameters . 270

19.5 Examples 271

19.5.1 Conveyor Belt Example 271
19.5.2 Parts Counter Example 272
19.5.3 Feed Example 272

Program Processing 276

20 Main Program 277

20.1 Program Organization 277

20.1.1 Program Structure 277
20.1.2 Program Organization 278

20.2 Scan Cycle Control 279

20.2.1 Process Image Updating. 279
20.2.2 Scan Cycle Monitoring Time . . 281
20.2.3 Minimum Scan Cycle Time,

Background Scanning 282
20.2.4 Response Time 283
20.2.5 Start Information 283

20.3 Program Functions 285

20.3.1 Time 285
20.3.2 Read System Clock 287
20.3.3 Run-Time Meter 287
20.3.4 Compressing CPU Memory . . . 289
20.3.5 Waiting and Stopping 289
20.3.6 Multiprocessing Mode. 289
20.3.7 Determining OB Program

Execution Time 290
20.3.8 Changing the Program Protection 292

20.4 Communication via
Distributed I/O. 294

20.4.1 Addressing PROFIBUS DP . . . 294
20.4.2 Configuring PROFIBUS DP . . 298
20.4.3 Special Functions for

PROFIBUS DP 307
20.4.4 Addressing PROFINET IO . . . 312
20.4.5 Configuring PROFINET IO . . . 315

20.4.6 Special functions for
PROFINET IO 321

20.4.7 System Blocks for the
Distributed I/O 329

20.5 Global Data Communication . . . 337

20.5.1 Fundamentals 337
20.5.2 Configuring GD Communication 339
20.5.3 System Functions for GD

Communication. 341

20.6 S7 Basic Communication. 342

20.6.1 Station-Internal
S7 Basic Communication 342

20.6.2 System Functions for Data
Interchange within a Station . . . 343

20.6.3 Station-External
S7 Basic Communication 344

20.6.4 System Functions for Station-
External S7 Basic Communication 345

20.7 S7 Communication 347

20.7.1 Fundamentals 347
20.7.2 Two-Way Data Exchange 349
20.7.3 One-Way Data Exchange. 351
20.7.4 Transferring Print Data 352
20.7.5 Control Functions. 352
20.7.6 Monitoring Functions. 353

20.8 IE Communication 356

20.8.1 Fundamentals 356
20.8.2 Establishment and Cancellation

of Connections 358
20.8.3 Data Transmission with TCP

Native or ISO-on-TCP 360
20.8.4 Data Transmission with UDP . . 361

20.9 PtP Communication with
S7-300C 363

20.9.1 Fundamentals 363
20.9.2 ASCII Driver and 3964(R)

Procedure 364
20.9.3 RK512 Computer Link 366

20.10 Configuration in RUN 368

20.10.1 Preparation of Modifications
to Configuration. 369

20.10.2 Changing the Configuration . . 370
20.10.3 Loading the Configuration . . . 371
20.10.4 CiR Synchronization Time . . . 371
20.10.5 Effects on Program Execution . 371
20.10.6 Controlling the CiR Procedure . 372

Table of Contents

17

21 Interrupt Handling 373

21.1 General Remarks. 373

21.2 Time-of-Day Interrupts 374

21.2.1 Handling Time-of-Day Interrupts 375
21.2.2 Configuring Time-of-Day

Interrupts with STEP 7. 376
21.2.3 System Functions for Time-of-Day

Interrupts 376

21.3 Time-Delay Interrupts 378

21.3.1 Handling Time-Delay Interrupts . 378
21.3.2 Configuring Time-Delay

Interrupts with STEP 7. 379
21.3.3 System Functions for Time-Delay

Interrupts 379

21.4 Watchdog Interrupts 380

21.4.1 Handling Watchdog Interrupts. . 381
21.4.2 Configuring Watchdog Interrupts

with STEP 7 382

21.5 Hardware Interrupts 382

21.5.1 Generating a Hardware Interrupt 382
21.5.2 Servicing Hardware Interrupts . . 383
21.5.3 Configuring Hardware Interrupts

with STEP 7 384

21.6 DPV1 Interrupts 384

21.7 Multiprocessor Interrupt 386

21.8 Synchronous Cycle Interrupts . . 387

21.8.1 Processing Synchronous Cycle
Interrupts 387

21.8.2 Isochronous Updating of Process
Image. 388

21.8.3 Programming of Synchronous
Cycle Interrupts with STEP 7 . . 389

21.9 Handling Interrupts 389

21.9.1 Disabling and Enabling Interrupts 389
21.9.2 Delaying and Enabling Delayed

Interrupts 390
21.9.3 Reading Additional Interrupt

Information. 391

22 Restart Characteristics 393

22.1 General Remarks. 393

22.1.1 Operating Modes. 393
22.1.2 HOLD Mode 394
22.1.3 Disabling the Output Modules . . 394
22.1.4 Restart Organization Blocks . . . 394

22.2 Power-Up 395

22.2.1 STOP Mode 395
22.2.2 Memory Reset. 395
22.2.3 Restoration of Delivery State . . 396
22.2.4 Retentivity 396
22.2.5 Restart Parameterization 396

22.3 Types of Restart. 397

22.3.1 START-UP Mode. 397
22.3.2 Cold Restart 397
22.3.3 Warm Restart 399
22.3.4 Hot Restart 400

22.4 Ascertaining a Module Address 400

22.5 Parameterizing Modules 403

22.5.1 General Remarks on
Parameterizing Modules 403

22.5.2 System Blocks for Module
Parameterization 405

22.5.3 Blocks for Data Record Transfer 407

23 Error Handling 409

23.1 Synchronous Errors 409

23.2 Synchronous Error Handling . . 411

23.2.1 Error Filters 411
23.2.2 Masking Synchronous Errors . . 412
23.2.3 Unmasking Synchronous Errors 412
23.2.4 Reading the Error tab 412
23.2.5 Entering a Substitute Value . . . 413

23.3 Asynchronous Errors 414

23.4 System Diagnostics 416

23.4.1 Diagnostic Events and Diagnostic
Buffer 416

23.4.2 Writing User Entries in the
Diagnostic Buffer 416

23.4.3 Evaluating Diagnostic Interrupts 417
23.4.4 Reading the System Status List . 419

23.5 Web Server 420

23.5.1 Activate Web Server 420
23.5.2 Reading Web Information . . . 420
23.5.3 Web Information 420

Variable Handling 422

24 Data Types 423

24.1 Elementary Data Types 423

24.1.1 Declaration of Elementary Data
Types 423

Table of Contents

18

24.1.2 BOOL, BYTE, WORD,
DWORD, CHAR 424

24.1.3 Number Representations 425
24.1.4 Time Representations 427

24.2 Complex Data Types 428

24.2.1 DATE_AND_TIME. 429
24.2.2 STRING 429
24.2.3 ARRAY 430
24.2.4 STRUCT. 432

24.3 User-Defined Data Types 434

24.3.1 Programming UDTs
Incrementally 434

24.3.2 Source-File-Oriented
Programming of UDTs 434

25 Indirect Addressing 436

25.1 Pointers 436

25.1.1 Area Pointer 436
25.1.2 DB Pointer 436
25.1.3 ANY Pointer. 438

25.2 Types of Indirect Addressing
in STL 439

25.2.1 General 439
25.2.2 Indirect Addresses 439
25.2.3 Memory-Indirect Addressing . . 440
25.2.4 Register-Indirect Area-Internal

Addressing. 442
25.2.5 Register-Indirect Area-Crossing

Addressing. 442
25.2.6 Summary 442

25.3 Working with Address Registers 443

25.3.1 Loading into an Address Register 443
25.3.2 Transferring from an Address

Register 443
25.3.3 Swap Address Registers 443
25.3.4 Adding to the Address Register . 445

25.4 Special Features of Indirect
Addressing. 446

25.4.1 Using Address Register AR1 . . 446
25.4.2 Using Address Register AR2 . . 446
25.4.3 Restrictions with Static Local

Data 446

26 Direct Variable Access 449

26.1 Loading the Variable Address . . 449

26.2 Data Storage of Variables 450

26.2.1 Storage in Global Data Blocks . 450

26.2.2 Storage in Instance Data Blocks . 451
26.2.3 Storage in the Temporary Local

Data 451

26.3 Data Storage when Transferring
Parameters 454

26.3.1 Parameter Storage in Functions . 454
26.3.2 Storing Parameters in Function

Blocks 456
26.3.3 “Variable” ANY Pointer 456

26.4 Brief Description of the Message
Frame Example 458

Structured Control Language (SCL) . 465

27 Introduction, Language
Elements 466

27.1 Integration in SIMATIC 466

27.1.1 Installation 466
27.1.2 Setting Up a Project 466
27.1.3 Editing the SCL Source 466
27.1.4 Completing the Symbol Table . . 467
27.1.5 Compiling the SCL Program . . . 468
27.1.6 Loading SCL Blocks 468
27.1.7 Testing SCL Blocks 468
27.1.8 Addresses and Data Types 468
27.1.9 Data Type Views 470

27.2 Addressing 471

27.2.1 Absolute Addressing 471
27.2.2 Symbolic Addressing 471
27.2.3 Indirect Addressing in SCL . . . 472

27.3 Operators 473

27.4 Expressions 474

27.4.1 Arithmetic Expressions 475
27.4.2 Comparison Expressions 475
27.4.3 Logical Expressions 476

27.5 Value Assignments 476

27.5.1 Assignment for Elementary
Data Types 476

27.5.2 Assignment of DT and STRING
Variables 476

27.5.3 Assignment of Structures 476
27.5.4 Assigning Fields 477

28 Control Statements 478

28.1 IF Statement 478

28.2 CASE Statement 479

Table of Contents

19

28.3 FOR Statement 479

28.4 WHILE Statement 480

28.5 REPEAT Statement 480

28.6 CONTINUE Statement 481

28.7 EXIT Statement 481

28.8 RETURN Statement 481

28.9 GOTO Statement. 481

29 SCL Blocks 483

29.1 SCL Blocks – General 483

29.2 Programming SCL Blocks 483

29.2.1 Function FC without a Function
Value 484

29.2.2 Function FC with Function
Value 484

29.2.3 Function Block FB 484
29.2.4 Temporary Local Data 485
29.2.5 Static Local Data 486
29.2.6 Block Parameters 486
29.2.7 Formal Parameters 487

29.3 Calling SCL Blocks 487

29.3.1 Function FC without Function
Value 488

29.3.2 Function FC with Function Value 488
29.3.3 Function Block with its Own

Data Block 488
29.3.4 Function Block as Local Instance 489
29.3.5 Actual Parameters 489

29.4 EN/ENO Mechanism 490

29.4.1 OK Variable 490
29.4.2 ENO Output 490
29.4.3 EN Input 491

30 SCL Functions 492

30.1 Timer Functions 492

30.2 Counter Functions 493

30.3 Math Functions 494

30.4 Shifting and Rotating 494

30.5 Conversion Functions 495

30.5.1 Implicit Conversion Functions. . 495
30.5.2 Explicit Conversion Functions. . 495

30.6 Numerical Functions 498

30.7 Programming Your Own
Functions with SCL 499

30.8 Programming Your Own
Functions with STL 501

30.9 Brief Description of the SCL
Examples 502

30.9.1 Conveyor Example 502
30.9.2 Message Frame Example 503
30.9.3 General Examples. 503

31 IEC functions 505

31.1 Conversion Functions 505

31.2 Comparison Functions 507

31.3 STRING Functions 508

31.4 Date/Time-of-Day Functions . . 510

31.5 Numerical Functions 511

Appendix 513

32 S5/S7 Converter 514

32.1 General 514

32.2 Preparation 515

32.2.1 Checking Executability on
the Target System (PLC) 515

32.2.2 Checking Program Execution
Characteristics 515

32.2.3 Checking the Modules 516
32.2.4 Checking the Addresses. 516

32.3 Converting 518

32.3.1 Creating Macros 518
32.3.2 Preparing the Conversion 519
32.3.3 Starting the Converter. 519
32.3.4 Convertible Functions. 520

32.4 Post-Editing 521

32.4.1 Creating the STEP 7 Project . . 521
32.4.2 Non-convertible Functions . . . 522
32.4.3 Address Changes 522
32.4.4 Indirect Addressing 523
32.4.5 Access to “Excessively Long”

Data Blocks 525
32.4.6 Working with Absolute

Addresses 525
32.4.7 Parameter Initialization 525
32.4.8 Special Function Organization

Blocks 525
32.4.9 Error Handling 525

Table of Contents

20

33 Block Libraries 528

33.1 Organization Blocks 528

33.2 System Function Blocks. 529

33.3 IEC Function Blocks 532

33.4 S5-S7 Converting Blocks 533

33.5 TI-S7 Converting Blocks 534

33.6 PID Control Blocks 535

33.7 Communication Blocks 535

33.8 Miscellaneous Blocks 535

33.9 SIMATIC_NET_CP. 536

33.10 Redundant IO MGP V31 537

33.11 Redundant IO CGP V40. 537

33.12 Redundant IO CGP V51. 537

34 STL Operation Overview . . . 538

34.1 Basic Functions 538

34.1.1 Binary Logic Operations 538
34.1.2 Memory Functions 539
34.1.3 Transfer Functions. 539
34.1.4 Timer Functions 539
34.1.5 Counter Functions 539

34.2 Digital Functions 539

34.2.1 Comparison Functions. 539

34.2.2 Math Functions 540
34.2.3 Arithmetic Functions 540
34.2.4 Conversion Functions 540
34.2.5 Shift Functions 540
34.2.6 Word Logic Operations. 540

34.3 Program Flow Control 541

34.3.1 Jump Functions 541
34.3.2 Master Control Relay. 541
34.3.3 Block Functions 541

34.4 Indirect Addressing 541

35 SCL Statement and
Function Overview 542

35.1 Operators 542

35.2 Control Statements 542

35.3 Block Calls 542

35.4 SCL Standard Functions 543

35.4.1 Timer Functions 543
35.4.2 Counter Functions 543
35.4.3 Conversion Functions 543
35.4.4 Math functions 544
35.4.5 Shift and Rotate. 544

Index. 545

Abbreviations 553

Introduction

21

Introduction

This section of the book provides an overview
of the SIMATIC S7-300/400.

The S7-300/400 programmable controller is
of modular design. The modules with which it
is configured can be central (in the vicinity of
the CPU) or distributed without any special set-
tings or parameter assignments having to be
made. In SIMATIC S7 systems, distributed I/O
is an integral part of the system. The CPU, with
its various memory areas, forms the hardware
basis for processing of the user programs. A
load memory contains the complete user pro-
gram: the parts of the program relevant to its
execution at any given time are in a work mem-
ory whose short access times are the prerequi-
site for fast program processing.

STEP 7 is the programming software for S7-
300/400 and the automation tool is the
SIMATIC Manager. The SIMATIC Manager is
an application for the Windows operating sys-
tems from Microsoft and contains all functions
needed to set up a project. When necessary, the
SIMATIC Manager starts additional tools, for
example to configure stations, initialize mod-
ules, and to write and test programs.

You formulate your automation solution in the
STEP 7 programming languages. The
SIMATIC S7 program is structured, that is to
say, it consists of blocks with defined functions
that are composed of networks or rungs. Differ-
ent priority classes allow a graduated interrupt-
ibility of the user program currently executing.
STEP 7 works with variables of various data
types starting with binary variables (data type
BOOL) through digital variables (e.g. data type
INT or REAL for computing tasks) up to com-
plex data types such as arrays or structures
(combinations of variables of different types to
form a single variable).

The first chapter contains an overview of the
hardware of the S7-300/400 automation system
and the second chapter contains the same over-

view of the STEP 7 programming software.
The basis of the description is the functional
scope for STEP 7 Version 5.5.

Chapter 3 “SIMATIC S7 Program” serves as an
introduction to the most important elements of
an S7 program and shows the programming of
individual blocks in the programming lan-
guages STL and SCL. The functions and state-
ments of STL and SCL are then described in the
subsequent chapters of the book. All the
descriptions are explained using brief exam-
ples.

1 SIMATIC S7-300/400
Programmable Controller
Structure of the programmable controller;
distributed I/O; communications; module
addresses; address areas

2 STEP 7 Programming Software
SIMATIC Manager; processing a project;
configuring a station; configuring a net-
work; writing programs (symbol table,
program editor); switching online; testing
programs

3 SIMATIC S7 Program
Program processing with priority classes;
program blocks; addressing variables;
programming blocks with STL and SCL;
variables and constants; data types (over-
view)

1 SIMATIC S7-300/400 Programmable Controller

22

1 SIMATIC S7-300/400 Programmable Controller

1.1 Structure of the
Programmable Controller

1.1.1 Components

The SIMATIC S7-300/400 is a modular pro-
grammable controller comprising the following
components:

b Racks;
Accommodate the modules and connect
them to each other

b Power supply (PS);
Provides the internal supply voltages

b Central processing unit (CPU);
Stores and processes the user program

b Interface modules (IMs);
Connect the racks to one another

b Signal modules (SMs);
Adapt the signals from the system to the
internal signal level or control actuators via
digital and analog signals

b Function modules (FMs);
Execute complex or time-critical processes
independently of the CPU

b Communications processors (CPs)
Establish the connection to subsidiary net-
works (subnets)

b Subnets
Connect programmable controllers to each
other or to other devices

A programmable controller (or station) may
consist of several racks, which are linked to one
another via bus cables. The power supply, CPU
and I/O modules (SMs, FMs and CPs) are
plugged into the central rack. If there is not
enough room in the central rack for the I/O
modules or if you want some or all I/O modules
to be separate from the central rack, expansion
racks are available which are connected to the
central rack via interface modules (Figure 1.1).

It is also possible to connect distributed I/O to a
station (see Chapter 1.2.1 “PROFIBUS DP”).

The racks connect the modules with two buses:
the I/O bus (or P bus) and the communication
bus (or K bus). The I/O bus is designed for
high-speed exchange of input and output sig-
nals, the communication bus for the exchange
of large amounts of data. The communication
bus connects the CPU and the programming
device interface (MPI) with function modules
and communications processors.

1.1.2 S7-300 Station

Centralized configuration

In an S7-300 controller, as many as 8 I/O mod-
ules can be plugged into the central rack.
Should this single-tier configuration prove
insufficient, you have two options for control-
lers equipped with a CPU 313 or a more
advanced CPU:

b Either choose a two-tier configuration (with
IM 365 up to 1 meter between racks)

b or choose a configuration of up to four tiers
(with IM 360 and IM 361 up to 10 meters
between racks)

You can operate a maximum of 8 modules in a
rack. The number of modules may be limited by
the maximum permissible current per rack,
which is 1.2 A.

The modules are linked to one another via a
backplane bus, which combines the functions
of the P and K buses.

Local bus segment

A special feature regarding configuration is the
use of the FM 356 application module. An
FM 356 is able to “split” a module's backplane
bus and to take over control of the remaining
modules in the split-off “local bus segment”

1.1 Structure of the Programmable Controller

23

Figure 1.1 Hardware Configuration for S7-300/400

Single-tier configuration Two-tier configuration
with IM 365

Four-tier configuration
with IM 360 and IM 361

Modular design
of an S7-300 station

Modular design
of an S7-400 station

Far range
up to 600 m
without
5V transmission
(IM 461-4)

Close range
up to 1.5 m
with 5V transmission
(IM 461-1)

In the controller rack:
IM 460-1
IM 460-0
IM 460-3
IM 460-4
IM 463-2

Close range
up to 5 m
without
5V transmission
(IM 461-0)

Far range
up to 100 m
without
5V transmission
(IM 461-3)

Far range
up to 600 m for
S5 expansion
devices (IM 314)

SIEMENS SIEMENS SIEMENS

1 SIMATIC S7-300/400 Programmable Controller

24

itself. The limitations mentioned above regard-
ing the number of modules and the power con-
sumption also apply in this case.

Standard CPUs

The standard CPUs are available in different
versions with regard to memory size and pro-
cessing speed. They range from the “smallest”
CPU 312 for smaller applications with moder-
ate processing speed requirements up to the
CPU 319-3 PN/DP with a large program mem-
ory and fast program execution for cross-sector
automation tasks. Equipped with the corre-
sponding interfaces, some CPUs can be used as
the central controller for the distributed I/O
over PROFIBUS and PROFINET.

A micro memory card (MMC) is required for
using the standard CPUs – as is the case with all
innovated S7-300 CPUs. This memory medium
opens up new application possibilities com-
pared to the previously used memory card (see
Chapter 1.1.6 “CPU Memory Areas”).

The now discontinued CPU 318 can be re-
placed by the CPUs 317 or 319.

Compact CPUs

The 3xxC CPUs permit a compact design for
mini programmable controllers. Depending on
the version, they already contain:

b Integral I/O
Digital and analog inputs/outputs

b Integral technological functions
Counting, measurement, control, position-
ing

b Integral communications interfaces
PROFIBUS DP master or slave, point-to-
point coupling (PtP)

The technological functions are system blocks
which use the onboard I/Os of the CPU.

Technology CPUs

The CPUs 3xxT combine open-loop control
functions with simple motion control functions.
The control section is designed as with a stan-
dard CPU. It is configured, parameterized and
programmed using STEP 7. The technology
objects and the motion control section require
the S7-Technology option package that is inte-

grated in the SIMATIC Manager following the
installation.

The technology CPUs have a PROFIBUS DP
interface which permits use as a DP master or
DP slave. The CPUs are used for cross-sector
automation tasks in series machine construc-
tion, special machine construction, and plant
construction.

Fail-safe CPUs

The CPUs 3xxF are used in production plants
with increased safety requirements. Corre-
sponding PROFIBUS and PROFINET inter-
faces allow use of safety-related distributed I/O
with the PROFIsafe bus profile (see “S7 Dis-
tributed Safety” under 1.1.5 “Safety-related
SIMATIC”). Standard modules for normal
applications can be used parallel to safety-
related operation.

SIPLUS

The SIPLUS product family offers modules
that can be used in harsh environments. The
SIPLUS components are based on standard de-
vices which have been specially converted for
the respective application, for example for an
extended temperature range, increased resis-
tance to vibration and shock, or voltage ranges
differing from the standard. Please therefore
note the technical data for the respective SIP-
LUS module. In order to carry out the configu-
ration with STEP 7, use the equivalent type (the
standard module on which it is based); this is
specified, for example, on the module's name-
plate.

1.1.3 S7-400 Station

Centralized configuration

The controller rack of the S7-400 is available in
the versions UR1 (18 slots), UR2 (9 slots) and
CR3 (4 slots). UR1 and UR2 can also be used
as expansion racks. The power supply and the
CPU also occupy slots in the racks, possibly
even two or more per module. If necessary, the
number of available slots can be increased
using expansion racks: UR1 and ER1 have 18
slots each, UR2 and ER2 have 9 slots each.

1.1 Structure of the Programmable Controller

25

Using the IM 460-1 and IM 461-1 interface
modules, one expansion rack per interface can
be located up to 1.5 m away from the controller
rack, and the 5 V supply is also transmitted. Up
to 4 expansion ranks can also be operated via
IM 460-0 and 461-0 in the local range up to
5 m. For longer distances, the IM 460-3 and
IM 461-3 or the IM 460-4 and 461-4 enable up
to 4 expansion racks to be operated up to 100 m
or 600 m away.

A maximum of 21 expansion racks can be con-
nected to a central rack. To distinguish between
racks, you set the number of the rack on the
coding switch of the receiving IM.

The backplane bus consists of a parallel P bus
and a serial K bus. Expansion racks ER1 and
ER2 are designed for “simple” signal modules
which generate no process interrupts, do not
have to be supplied with 24 V voltage via the P
bus, require no back-up voltage, and have no K
bus connection. The K bus is in racks UR1,
UR2 and CR2 either when these racks are used
as central racks or expansion racks with the
numbers 1 to 6.

Connecting segmented rack

A special feature is the segmented rack CR2.
The rack can accommodate two CPUs with a
shared power supply while keeping them func-
tionally separate. The two CPUs can exchange
data with one another via the K bus, but have
completely separate P buses for their own sig-
nal modules.

Multiprocessor mode

In an S7-400, as many as four specially
designed CPUs in a suitable rack UR can take
part in multiprocessor mode. Each module in
this station is assigned to only one CPU, both
with its address and its interrupts. See Chapters
20.3.6 “Multiprocessing Mode” and 21.7 “Mul-
tiprocessor Interrupt” for more details.

Connection of SIMATIC S5 modules

The IM 463-2 interface module allows you to
connect S5 expansion units (EG 183U, EG
185U, EG 186U as well as ER 701-2 and ER
701-3) to an S7-400, and also allows central-
ized expansion of the expansion units. An

IM 314 in the S5 expansion unit handles the
link. You can operate all analog and digital
modules allowed in these expansion units. An
S7-400 can accommodate as many as four
IM 463-2 interface modules; as many as four
S5 expansion units can be connected in a dis-
tributed configuration to each of an IM 463-2's
interfaces.

1.1.4 Fault-Tolerant SIMATIC

For applications with high fault tolerance
demands for machines and processes, there are
two versions of SIMATIC S7 fault-tolerant pro-
grammable controllers with a redundant
design: software redundancy and S7-400H/FH.

Software redundancy

Using SIMATIC S7-300/400 standard compo-
nents, you can establish a software-based
redundant system with a master station control-
ling the process and a standby station assuming
control in the event of the master failing.

Fault tolerance through software redundancy is
suitable for slow processes because transfer to
the standby station can require several seconds
depending on the configuration of the program-
mable controllers. The process signals are “fro-
zen” during this time. The standby station then
continues operation with the data last valid in
the master station.

Redundancy of the input/output modules is im-
plemented with distributed I/O (ET 200M with
IM 153-2 interface module for redundant PRO-
FIBUS DP). The software redundancy can be
configured with STEP 7 Version 5.2 and higher.

Fault-tolerant SIMATIC S7-400H

The SIMATIC S7-400H is a fault-tolerant pro-
grammable controller with redundant configu-
ration comprising two central racks, each with
an H CPU and a synchronization module for
data comparison via fiber optic cable. Both
controllers operate in “hot standby” mode; in
the event of a fault, the intact controller
assumes operation alone via automatic bump-
less transfer. The UR2-H rack with 2x9 slots
offers the possibility for also installing a fault-
tolerant system in one single rack.

1 SIMATIC S7-300/400 Programmable Controller

26

The I/O can have normal availability (single-
channel, single-sided configuration) or en-
hanced availability (single-channel, switched
configuration with ET 200M). Communication
takes place with a single or redundant bus.

The user program is the same as for a non-re-
dundant device; the redundancy function is pro-
vided exclusively by the hardware that is used
and is kept hidden from the user. The software
package required for configuration is included
in STEP 7 from V5.3. The provided standard li-
braries Redundant IO contain blocks for sup-
porting the redundant I/O.

1.1.5 Safety-related SIMATIC

Fail-safe programmable controllers control
processes in which the safe state can be
achieved by direct switching-off. They are used
in plants with increased safety requirements.

The safety functions are mainly located in the
safety-related user program of a corresponding-
ly designed CPU and in the failsafe input and
output modules. An F-CPU complies with the
safety requirements up to AK 6 in accordance
with DIN V 19250/DIN V VDE 0801, up to SIL
3 in accordance with IEC 61508, and up to Cat-
egory 4 in accordance with EN 954-1. Safety
functions can be executed parallel to a non-safe-
ty-related user program in the same CPU.

Safety-related communication over PROFIBUS
DP – also over PROFINET IO with S7 Distrib-
uted Safety – uses the PROFIsafe bus profile.
This permits transmission of safety-related and
non-safety-related data on a single bus cable.

Safety Integrated for the manufacturing
industry

S7 Distributed Safety is a failsafe automation
system for the protection of machines and per-
sonnel mainly for applications with machine
controls and in the process industry.

Controllers from the SIMATIC S7-300, S7-
400, and ET 200S ranges are available as F-
CPUs. The safety-related I/O modules are con-
nected to S7-400 over PROFIBUS DP or PRO-
FINET IO using the safety-related PROFIsafe
bus profile. With S7-300 and ET 200S, use of
safety-related I/O modules is additionally possi-
ble in the central rack.

The hardware configuration and programming
of the non-safety-related user program are car-
ried out using the standard applications of
STEP 7.

The SIMATIC S7 Distributed Safety option
package is required to program the safety-relat-
ed parts of the program. With this option pack-
age you can use the F-LAD or F-FBD program-
ming languages to create the blocks which con-
tain the safety-related program. Interfacing to
the I/O is carried out using the process image as
with the standard program. S7 Distributed
Safety also includes a library with TÜV-certi-
fied safety blocks. There is an additional library
available with F-blocks for press and burner
controls.

The safety-related user program can be execut-
ed parallel to the standard user program. If an
error is detected in the safety-related part of the
program, the CPU enters the STOP state.

Safety Integrated for the process industry

S7 F/FH Systems is a failsafe automation sys-
tem based on S7-400 mainly for applications in
the process industry. The safety-related I/O
modules are connected over PROFIBUS DP
using the safety-related PROFIsafe bus profile.

An S7-400 F-CPU is provided with the safety-
related control functions by application of an S7
F Systems Runtime license. A non-safety-relat-
ed user program can be executed parallel to the
safety-related plant unit.

In addition to fail-safety, the S7-400FH also
provides increased availability. If a detected
fault results in a STOP of the master CPU, a re-
action-free switch is made to the CPU running
in hot standby mode. The S7 H Systems option
package is additionally required for operation
as S7-400FH.

The hardware configuration and programming
of the non-safety-related user program are car-
ried out using the standard applications of
STEP 7.

The S7 F Systems option package is additional-
ly required for programming the safety-related
program parts, and additionally the CFC option
package V5.0 SP3 and higher and the S7-SCL
option package V5.0 and higher.

1.1 Structure of the Programmable Controller

27

The safety-related program is programmed us-
ing CFC (Continuous Function Chart). Pro-
grammed, safety-related function blocks from
the supplied F-library can be called and inter-
connected in this manner. Alongside functions
for programming safety functions, they also in-
clude fault detection and fault reaction func-
tions. This ensures that if there are failures or
errors, the F-system can be stopped in or trans-
ferred to a safe mode. If a fault is detected in the
safety program, the safety-related part of the
plant is switched off, whereas the remaining
part can continue to operate.

Fail-safe I/O

Failsafe signal modules (F-modules or F-sub-
modules) are required for safety operation. The
fail-safety is achieved through the integrated
safety functions and the corresponding wiring
of sensors and actuators.

The F-modules can also be used in standard
applications with enhanced diagnostics require-
ments. Redundant F-modules can be used with
S7 F/FH systems to increase the availability
both in standard and safety-related operation.

The failsafe I/O is available in various versions:

b The fail-safe signal modules in S7-300 de-
sign are used in the ET 200M distributed I/O
device or – with S7-Distributed Safety – al-
so centrally.

b Failsafe I/O modules are available for the
distributed I/O devices in the designs ET
200S, ET 200pro, and ET 200eco.

b Failsafe interface modules are also available
as F-CPUs for the ET 200S and ET 200pro
distributed I/O devices.

b Failsafe DP standard slaves and – with S7-
Distributed Safety also IO standard devices
– can be used which can handle the PRO-
FIsafe bus profile.

Failsafe CPUs and signal modules are also
available in SIPLUS design.

1.1.6 CPU Memory Areas

Figure 1.2 shows the memory areas in the pro-
gramming device, in the CPU, and in the signal
modules which are important for your program.

The programming device contains the off-line
data. These consist of the user program (pro-
gram code and user data), the system data (e.g.
hardware configuration, network and connec-
tion configuration) and further project-specific
data such as e.g. the symbol table and com-
ments.

The online data consists of the user program
and the system data on the CPU, stored in two
storage areas: the load memory and the work
memory. In addition, the system memory is also
present here.

Finally, the I/O modules contain memories for
the signal statuses of the inputs and outputs.

The central processing units have a slot for a
plug-in memory module. This memory module
also contains the load memory, or parts thereof
(see “Physical design of CPU memory”, further
below). The memory module is designed as
memory card (S7-400-CPUs) or as micro mem-
ory card (S7-300 CPUs and derived ET 200
CPUs). A firmware update for the CPU operat-
ing system can also be performed via the mem-
ory module.

Memory card

The memory submodule for the S7-400 CPUs
is the memory card (MC). There are two types
of memory card: RAM cards and flash EPROM
cards.

If you only want to expand the load memory,
use a RAM card. A RAM card allows you to
modify the entire user program online. This is
necessary, for example, for larger programs
when testing and during commissioning. RAM
memory cards lose their contents when
unplugged.

If you want to protect your user program
against power failure following testing and
commissioning, including configuration data
and module parameters, use a flash EPROM
card. In this case, load the entire program
offline onto the flash EPROM card with the
card plugged into the programming device.
With the relevant CPUs, you can also load the
program online with the memory card plugged
into the CPU.

1 SIMATIC S7-300/400 Programmable Controller

28

Micro memory card

The memory submodule for the newer S7-300
CPUs is a micro memory card (MMC). The
data on the MMC are non-volatile, but can be
read, written and deleted just like with a RAM.
This response permits data backup without a
battery.

The MMC contains the complete load memory,
so that an MMC is always required for opera-
tion. The MMC can be used as a portable stor-
age medium for user programs or firmware
updates. Using special system functions, you
can read or write data blocks on the MMC from
the user program, e.g. read recipes from the
MMC, or create a measured-value archive on
the MMC and provide it with data.

Load memory

The entire user program, including configura-
tion data, is in the load memory (system data).
From the programming device, the user pro-
gram is always initially loaded into the load
memory and from there into the work memory.
The program in the load memory is not exe-
cuted as the control program.

With a CPU 300 and a CPU ET200, the load
memory is present completely on the micro
memory card. Thus the contents of the load
memory are retained even if the CPU is de-en-
ergized.

If the load memory with a CPU 400 consists of
an integrated RAM or RAM memory card, a
backup battery is required in order to keep the
user program retentive. With an integrated

Figure 1.2 Memory areas on the CPU

1.1 Structure of the Programmable Controller

29

EEPROM or a plug-in flash EPROM memory
card as the load memory, the CPU can be oper-
ated without battery backup.

From STEP 7 V5.1 and with appropriately
equipped CPUs, you can save all the project
data as a compressed archive file in the load
memory (see Chapter 2.2.2 “Managing, Rear-
ranging and Archiving”).

Work memory

Work memory is designed in the form of high-
speed RAM fully integrated in the CPU. The
operating system of the CPU copies the “execu-
tion-relevant” program code and the user data
into the work memory. “Relevant” is a charac-
teristic of the existing objects and does not
mean that a particular code block will necessar-
ily be called and executed. The “actual” control
program is executed in the work memory.

Specific to the product, the work memory can
be either a coherent area or divided according
to program and data memories, where the latter
is also divided into retentive and non-retentive
parts.

When writing back the user program into the
programming device, the blocks are fetched
from the load memory, supplemented by the cur-
rent values of the data addresses from the work
memory (further information available in Chap-
ters 2.6.4 “Loading the User Program into
the CPU” and 2.6.5 “Block Handling”).

System memory

System memory contains the addresses (vari-
ables) that you access in your program. The
addresses are combined into areas (address
areas) containing a CPU-specific number of
addresses. Addresses may be, for example,
inputs used to scan the signal states of momen-
tary-contact switches and limit switches, and
outputs that you can use to control contactors
and lamps.

The system memory on a CPU contains the fol-
lowing address areas:

b Inputs (I)
Inputs are an image (“process image”) of
the digital input modules.

b Outputs (Q)
Outputs are an image (“process image”) of
the digital output modules.

b Bit memories (M)
are information stores which are directly ac-
cessible from any point in the user program.

b Timers (T)
Timers are locations used to implement
waiting and monitoring times.

b Counters (C)
Counters are software-level locations,
which can be used for up and down count-
ing.

b Temporary local data (L)
Locations used as dynamic intermediate
buffers during block processing. The tem-
porary local data are located in the L stack,
which the CPU occupies dynamically dur-
ing program execution.

The letters enclosed in parentheses represent
the abbreviations to be used for the different
addresses when writing programs. You may
also assign a symbol to each variable and then
use the symbol in place of the address identifier.

The system memory also contains buffers for
communication jobs and system messages
(diagnostics buffer). The size of these data buf-
fers, as well as the size of the process input
image, the process output image and the L
stack, are parameterizable on certain CPUs.

Physical design of CPU memory

The physical design of the load memory differs
according to the type of CPU (Figure 1.3).

A CPU 300 or CPU ET 200 does not have an
integrated load memory. A micro memory card
containing the load memory must always be in-
serted to permit operation. The load memory
can be written and read like a RAM. The phys-
ical design means that the number of write op-
erations is limited (no cyclic writing by user
program). You can use the menu command CO-
PY RAM TO ROM to transfer the current values
of the data operands from the work memory to
the load memory.

With a CPU 300 with firmware version V2.0.12
or later, the work memory for the user data con-
sists of a retentive part and a non-retentive part.

