HTML5
and JavaScript
Projects

Build on your Basic Knowledge of HTML5
and JavaScript to Create Substantial HTML5
Applications

Second Edition

Jeanine Meyer

ApPress:

HTMLS5 and JavaScript
Projects

Build on your Basic Knowledge of
HTML5 and JavaScript to Create
Substantial HTML5 Applications

Second Edition

Jeanine Meyer

Apress’

HTML5 and JavaScript Projects

Jeanine Meyer
New York, USA

ISBN-13 (pbk): 978-1-4842-3863-9 ISBN-13 (electronic): 978-1-4842-3864-6
https://doi.org/10.1007/978-1-4842-3864-6

Library of Congress Control Number: 2018954635

Copyright © 2018 by Jeanine Meyer

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan

Development Editor: James Markham

Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar
Cover image designed by Mattia Serrani on Unsplash

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484238639. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3864-6

To my family, including my parents, who still take care of me

Table of Contents

About the AUthor ... ———————————— Xi
About the Technical REVIEWETccusssssmsssmssmsssmsssmsssssssssssssssssssssssssssssssnsssnsssnsnes Xiii
Acknowledgments.......cccccuuisssnmmmnmmmmmmssssssssssnnnmmmsssssssssssnnnseesssssssssnnnnnnsesssssssnnnnnnnnnnss XV
INtroductioncvimiemismisme s —————————————— Xvii

Chapter 1: Building the HTML5 Logo: Drawing on Canvas with Scaling

and Semantic TaYS ..uuuveeerrrssssnnrmmssssnssesssssnnsssssssnnsssssssnnnssssssnnnssssssnnnssssnnns 1

L C 0T 11T 0 o T 1
Project History and Critical ReqQUIremMentsccccucrierninnninesn s 4
HTML5, CSS, and JavaScript fEAtUIES........ccccvrererierrerreererersesssesessessesssessesessssssessessessssssessessesnes 6
Drawing Paths 0N CanVaS..........ccoceerererrsmsenenesesesessesessesessese s sesssssssssessssesessssesssssssssessssesenns 6
Placing Text on Canvas and in the Body of @ Document............ccoveererrerrnecnnseseresereseens 9
Coordinate TranSfOrmMationsccooeerrncrrenrercrer e 10
Using the Range Input EIemMent ... sessesnens 12
Building the Application and Making It YOUr OWNccoocrrennerereserescsere e 14
Testing and Uploading the AppliCation ... ssessens 21
1] 4= RS 21

Chapter 2: Family Collage: Manipulating Programmer-Defined

Objects 0N @ CaANVAS.....ccuuuusssmmmmsssssnnnmsssssnnnmsssssnnnssssssnnnsssssnnnnsssssnnnnnsssnnns 23
11T 0T 11T 0 o S 23
Critical REQUIFEMENTScoeiiircirere e e e s et e e s 26
AULOPIAY POLICY ...veerereeerreerieesesesesse s sesse e e se s se s sas s s sss e ses s s e e ssa e sensssnssnens 26
HTMLS, CSS, and JavaScript FEAUIEScccviiririne e s se e snes 27
JAVASCHIPL ODJECTS...cvivierircrrre e e 27
USEE INTEITACEc.ceeeeeerree e e p e ne e 46

TABLE OF CONTENTS

Saving the Canvas 10 an IMage ... e 51
Building the Application and Making It YOUr OWN ..o 52
Testing and Uploading the AppliCation ..o sessens 77
SUMIMANY ...ttt e e e b e e e e R e e e R e een e nenRe e be e nr e e nrnre e 77

Chapter 3: Bouncing Video: Animating and Masking HTML5 Video........cccussssssssanss 79
INEFOTUCTION ... e 79
Project History and Critical REQUIrEMENTSccvververereererrerersssessereseesessessessesssssssessessesessensenaes 86
HTML5, CSS, and JavaScript FEAtUrES.........cceverrvrreerererrersee e ressee e re s e ssesesssesnessesnens 87

Definition of the Body and the Window Dimensions..........cccucvvnennnnsnennenssnssessessssessessens 87

ANIMALION ..o e s e e e e e nne e 89

Video Drawing Frames on Canvas or As a Movable Element............ccccovvnnnnniinnnicnniennns 95

Traveling MaSK ..o e 98

LU= 1) T T 101
Building the Application and Making It YOUr OWNccvcrninnsnrcnesssinseses s s sessesnens 102

Making the Application YOUr OWN..........cccoiviinninnnn e s snas 115
Testing and Uploading the Application............cccvrnncniniennnirrne e 116
BT 111 T o SRS 117

Chapter 4: Map Maker: Combining Google Maps and the Canvas.........ccccusseennns 119
INEFOTUCTION ...t 119
Latitude and Longitude and Other Critical ReqUirementsccccvverievvrerverieresessensesesessessenens 131
HTML5, CSS, and JavaScript FEAtUrES.........ccevervrverrererierser e rer s ee s se s e e e se s e s e e s ssesaenns 137

The GO0GIE MAPS APL.......ceeeeee st st sa e e se e ne e 137

02T AT T = o] 1O 140

LT £ P 144

JAVASCHPL EVENTScviecic ittt e et e e e 145

Calculating Distance and Rounding Values for DiSplayc.cccoverernsennnenennsesnsesessesesenns 150
Building the Application and Making It YOUr OWN ... sessesse e sessennens 152
Testing and Uploading the Application............ccvrenninininnnnsne e 165
B30T 111 T o SRS 165

TABLE OF CONTENTS

Chapter 5: Map Portal: Using Google Maps to Access Your Media........cccsrrssnnnnnss 167
1070 1T 0 o 167
Project History and Critical ReqUIremMeNtsc.ccocereinrnininnsnseness s sesesaens 175
HTML5, CSS, and JavaScript FEAtUIEScccuverrrverreereriersersee e sesseessessessessssssessessesssssaessessenns 176

Google Maps API for Map Access and Event Handlingc.coccoveernecnnesesescnnseseseseneenes 176
Project Content in EXtErnal Fileccovovviennenerrssrese s 179
Distances and TOIBIANCES.........c.uererrererrrreresese s nrens 181
Regular Expressions Used to Create the HTMLcoocorerrescrncnreseresesesesese e 182
Dynamic Creation of HTML5 Markup and PoSitioningccccevvennenerenesnsesessenessenesennes 183
T 2T o] TS 186
Building the Application and Making It YOUr OWNcccorenrnnmnncneneses s sessesens 187
The QUIZ APPIICALIONcecererec e ——— 187
Testing and Uploading the Application...........ccccvvererrcninnnnirsene e 201
£ 1§14 R 201

Chapter 6: Add 10 15 GAME......ccvrriremmrrmssssnnnmmssssnnnmssssssssessssssssesssssnnsessssnnnssssssnnnnss 203
L C 070 1T 0 o 203
General Requirements for @ GAME. ... s s 205
HTML5, CSS, and JaVaSCriPL........ccccvverierverreerererserseesesessesssessesessssssessessessssssessessessssssessensnnns 206

SEYIING N CSS ... e 206
JAVASCHIPE AITAYS.ceeeeereer s p e ne e 207
Setting Up the GAME.......cocceeeercrere e 209
Responding t0 @ Player MOVEcccoereerenerereere s e sesss e s e sennes 209
Generating the ComPUEEr MOVE.........coveeerererrererese e 210
Building the Application and Making It YOUr OWNccccorenrnnnnncneneses e 211
Testing and Uploading the AppliCation..........cucccvecernienncsensse s s 221
L1134 R 221

vii

TABLE OF CONTENTS

Chapter 7: Origami Directions: Using Math-Based Line Drawings,

Photographs, and Videoscucccummmsssanmnmsssssssnmssssssssmsssssssnsssssssnsssssnnns 223
11100 1T 0 o SR 223
Critical REQUIFEMENTSc.civeviiiirsere et e e e e e 233
HTMLS5, CSS, JavaScript Features, and Mathematicscccvvvrvrirninsnine s 234

Overall Mechanism fOr SIEPScvvvvrirerr e sae s 234
USEr INTEITACE ...t s 238
Co0rdinate ValUES.........cuveierirrnnsisiss s s 238
Utility FUNCLIONS fOF DISPIAY....ceerrirerreriereninsirere s ses s s e s saesss e ssessessssessesneees 240
Utility Functions for CalCulation..........cuccoveirniennesnese s ssanes 243
Step Line Drawing FUNCHONS........cccccvveniiise s sn e ssases 245
Displaying @ PROTOgraph.........ccoveeiinmnnsesnesessse s s ss s sss s s s sessnnes 254
Presenting and Removing @ VIOc.ccccvvermresernsesnesssese s e ses s ssssessssssesennes 254
Building the Application and Making It YOUr OWNcccvvrierevnsnienesessessesessesessessessessssessesaens 255
Testing and Uploading the Application...........ccccevrvrinni s 288
31111117 o OO 289
Chapter 8: JigSaW Vide0.......ccccurrssssannnrssssannssssssnnnnsssssnnnsssssssnnnssssssnnnsssssnnnssssssnnnnss 291
11100 1T 0 o ST 291
Background and Critical ReqUIrEMENTSccccvvrernserniesenese s ss s sessesenns 297
HTMLS5, CSS, JavaScript, and Programming FEAUIES.......cccvrvvrrrieriernnensessenesessessessesessessesaens 297
Creating the Base PICIUIE.......c.ccovvrvriere st s e s ss e s sne s 298
Dynamically Created EIEMENTS.........ccvierievininienenn s sese s se s ssessssessessesnes 298
Setting Up the GAME........ccvcve e s s nae s 300
Handling Player ACTIONS........ccvcverieriniirieseninsesese s ses e s ses e s s ssssessesaessssessesaesasssssesaesaes 301
Calculating If the Puzzle IS COMPIELEccocervverierrese s 304
Preparing, Positioning, and Playing the Video and Making It Hidden or Visible................... 305
Building the Application and Making It YOUr OWNcccvvvierienensenienesensessesessesessessessessssessesaens 306
Testing and Uploading the Application.........c.cccevirvrinnenininse e 318
£ 11117 O 318

viil

TABLE OF CONTENTS

Chapter 9: US States Game: Building a Multiactivity Game...........ccccvssnenrrssssnnnnns 321
1070 1T 0 o 321
Critical REQUIFEMENTScoueiriircre st 332
HTMLS5, CSS, JavaScript Features, Programming Techniques, and Image Processing 333

Acquiring the Image Files for the Pieces and Determining Offsets.........c.cceevvrrnicnenencns 333
Creating Elements DynamiCally.........c.ccocorenmrnsmsennesenenesensesese s ssseseenes 341
User Interface OVErall...........ccooeoereernenerese s 342
User Interface for Asking the Player to Click a State..........cccvoererrnsnnnesnescrnsesesesenene 343
User Interface for Asking the Player to Name a State ... 344
Spreading Qut the PIBCEScovererercrrcr e 346
Setting Up the JigSaW PUZZIE ..o e 347
Saving and Recreating the State of the Jigsaw Game and Restoring the Original Map...... 349
Building the Application and Making It YOUr OWNcoccorenrnnmnncseneses s sessesens 353
Testing and Uploading the Application............cccvvinnnninnnsnsne s 374
LT 11134 RS 374

Chapter 10: Responsive Design and AccesSibility.......cccuussmmmmrnsssnnnssssssnnsssssssnnns 375
LU0 1T 0 o 375
Critical REQUIFEMENTScoveiiecircre s e e 380

Screen Size and DIMENSION.........cccoeeerrrcrrere e 381
L0 0 TR 381
Screen Reader and TaDS..........ccoveoerenernserenene e ses e 381
HTML, CSS, and JavaScript FEAtUIESccvvvrerrerrerreererersesseesesessesssessessesssessessessesssssaessensenns 382
1123 = T - T TS 382
HTML and CSS Use of Percentages and AUL0cccoveeerenerescrenscsesenese s seses e snssesennes 383
LTSI 1 T - T 384
The HTML alt Attribute and Semantic EIEmMents............ccovevreererrescrrcseeese s 384
a1 T T 385
JavaScript Use of Width and Height Properties........c..ccocvivrnvnininnnsnnnnenn s senennens 385
Creating Elements Dynamically.........c.cccvvvrvnininnnnnn s 386
ChooSing From LiSt......cccoiiiiiririnsine sttt sne s 387
Mouse Events, Touch Events, and Key EVENESccccvcrverieriersenesersensee e sesesseessessessenns 388

TABLE OF CONTENTS

Building the Reveal Application and Making It Your OWn..........ccccvcrinnincnienesnsessesessssesennens 390
Testing and Uploading the Reveal Application...........ccccovvvnvninennsnsnne e 404
Building the Countries/Capitals Quiz and Making It Your Owncccccevvvrnccrnicnernscnnnne, 404

Testing and Uploading the Countries/Capitals Quiz Application...........cccecvvviennsninienssensenenns 414

Testing and Uploading the Jigsaw Turning to Video Application............ccccocvivnnininiennsensennen 414

BT 111 T o SRS 415

INA@X . iiiiisssnnnnnnnnnnnnssssssssnnnnnnnnnessssssssnnnnnnnnesssssssssnnnnnnnnessssssssnnnnnnnnnssssssssnnnnnnnnnnssssssnn 417

About the Author

Jeanine Meyer is a full professor at Purchase College/State
University of New York. She teaches courses to students
majoring in mathematics/computer science and also enjoys
the frequent presence of others in her classes, including new
media, music, dance, economics, and chemistry majors. She
developed and teaches courses satisfying the mathematics
general education requirement, including one on math in

the news and one on origami. The website for her academic
activities is http://faculty.purchase.edu/jeanine.meyer.
Before coming to academia, she was a research staff member and manager at IBM
Research, focusing on robotics and manufacturing research, and she later worked on the
corporate manufacturing staff and as a research consultant at IBM for educational grant
programs.

She has enjoyed working with Apress, including updating the HTML5 books. She
continues with the practice of building programming examples using media featuring
her family and her activities and hopes that inspires readers to create work on topics that
are important to them. Her hobbies and interests include studying Spanish and piano,
playing computer games, doing origami, and volunteering for progressive candidates
and causes. She enjoys her daughter Aviva's cooking while doing some baking herself
and looks forward to travel this year.

http://faculty.purchase.edu/jeanine.meyer

About the Technical Reviewer

Takashi Mukoda is an international student at Purchase
College/State University of New York. He is currently taking
a semester off and back home in Japan. At Purchase College,
he majors in Mathematics/Computer Science and New
Media and has worked as a teaching assistant for computing
and mathematics courses.

Takashi likes playing the keyboard and going on hikes in
the mountains to take pictures. His interest in programming
and art motivates him to create multimedia art pieces. Some

of them are built with Processing and interact with human
motion and sounds.
(See his website at http://www.takashimukoda.com.)

xiii

http://www.takashimukoda.com/

Acknowledgments

Much appreciation to my students and colleagues at Purchase College/State University
of New York. In particular, for Chapter 5, which covers the map portal quiz, I want to
thank Jennifer Douglas, Jeremy Martinez, and Nik Dedvukaj, for the maze video clip
produced in my Robotics class in 2008, which I retained for the new edition. I want also
to thank Takashi Mukoda for his photograph of the Great Torii, in addition to everything
else he has contributed to this and other projects. I re-used an audio recording of my
mother playing piano. Thanks to all my family members (Aviva Meyer, Daniel Meyer,
Annika Meyer, Anne Kellerman, Palmer Agnew, Debbie Torres, and Joshua Torres) for
being the subjects of photographs and videos and for making the photos, video, and
audio. Thanks to Daniel Davis for his HTML5 logo and his technical assistance with the
first edition.

Thanks to the crew at Apress, including Nancy Chen, James Markham, and the
technical reviewer Takashi Mukoda, as well as others I do not know by name.

Introduction

This book continues my exploration of HTML5. My approach in developing the projects
was to combine features such as canvas and video, attempt more intricate drawing by
using mathematics, and use standard programming techniques such as object-oriented
programming and separation of content and logic. I was also interested in building
applications combining HTML5 and JavaScript with other technologies, including
Google Maps.

Each chapter in the book is focused on an application or set of related applications.
This is because my experience as a teacher and a learner has shown that concepts
and mechanics are best understood in the context of actual use. The applications start
off with drawing the HTMLS5 official logo. As you will find out in Chapter 1, the way I
developed this application prompted use of coordinate transformations.

The project in Chapter 2, involving a family collage, was inspired by my growing
family and the desire to teach about object-oriented programming. It is a good
application for you to use as a foundation to create your own, with your own photos
and objects of your own invention. Chapter 3, which shows how to create a bouncing
video, was built on other two-dimensional applications I have created, and features two
different ways to combine canvas and video.

Chapters 4 and 5 demonstrate use of the Google Maps API (Application
Programming Interface), a powerful facility that allows you to incorporate access
to Google Maps as part of your own projects. Chapter 4 presents a user interface
combining map and canvas and includes a custom-designed cursor and the use of alpha
(transparency) in drawing paths. The map quiz in Chapter 5 demonstrates the use of
mapping as a portal to media. The application shows you how to separate content and
logic so you can scale up to various applications (e.g., a tour of a region or a geography
quiz with many locations).

Chapter 6 features a game called Add to 15, which turned out to be an excellent
example of arrays. It also demonstrated the necessity to prepare for bad behavior on the
part of players.

xvii

INTRODUCTION

In Chapter 7, I use the task of producing directions for origami to show how
to combine line drawings, often using mathematical expressions, and video and
photographs. You can use this as a model for your own set of directions for a task in
which drawings, video, or images would be most appropriate. Or you can let the reading
refresh your memory for topics in algebra and geometry. Chapter 8 features a jigsaw
puzzle that is transformed into a video when it’s completed. Chapter 9 is an educational
game with questions on the states of the USA, and it includes the challenge of a jigsaw
puzzle. The jigsaw puzzle includes the feature of saving the puzzle-in-progress using
localStorage.

For Chapter 10, I decided to address challenges of responsive design and
accessibility as being more appropriate for an HTML and JavaScript book than what I
had before. My examples demonstrate ways to incorporate touch in addition to mouse
actions, to respond to different screen dimensions, and to specify tab order to ease the

use of screen readers.

Who Is This Book For?

I do believe my explanations are complete, but I am not claiming, as I did for my
previous book, The Essential Guide to HTML5, that this book is for the total beginner.
This book is for the developer who has some knowledge of programming and who
wants to build (more) substantial applications by combining features of JavaScript and
going beyond the basics. It also can serve as an idea book for someone working with
programmers to get an understanding of what is possible.

How Is This Book Structured?

This book consists of 10 chapters, each organized around an application or type of
application. You can skip around, though there are cross-references between chapters,
indicated in the text. Each chapter starts with an introduction to the application,

with screenshots of the applications in use. The chapters continue with a discussion
of the critical requirements in which concepts are introduced before diving into the
technical details. The next sections describe how the requirements are satisfied, with
specific constructs in HTMLS5, JavaScript, and CSS. I then show the application coding
line by line with comments. You can decide how to read these tables. You may decide

xviii

INTRODUCTION

to use them as a reference when writing your own programs. Each chapter ends
with instructions and tips for testing and uploading the application to a server, and a
summary of what you learned.

The code is included as downloads available from the publisher. Go to

https://github.com/Apress/html-js-projs. In addition, the figures are available as
full-color TIFF files. Of course, you will want to use your own media for the projects. My
media (video, audio, and images) is included with the code and this includes images for
the 50 states for the states game in Chapter 9. You can use the project as a model for a
different part of the world or a puzzle based on an image or diagram. There are extras:
a program for an origami frog included with the code in Chapter 7 and a version of the
jigsaw turning into a video from Chapter 8 adapted for use on devices requiring touch is
included with the source code for Chapter 10.

Let’s get started.

Xix

https://github.com/Apress/html-js-projs

CHAPTER 1

Building the HTMLS
Logo: Drawing

on Canvas with Scaling
and Semantic Tags

In this chapter, you will learn the following:
e Drawing paths on a canvas
e Placing text on a canvas
¢ Coordinate transformations
o Fonts for text drawn on canvas and fonts for text in other elements
o Semantic tags

o Therange input element

Introduction

The project for this chapter is a presentation of the official HTMLS5 logo, with
accompanying text. The shield and letters of the logo are drawn on a canvas element and
the accompanying text demonstrates the use of semantic tags. The viewer can change
the size of the logo using a slider input device. It is an appropriate start to this book, a
collection of projects making use of HTMLS5, JavaScript, and other technologies,

because of the subject matter and because it serves as a good review of basic

© Jeanine Meyer 2018
J. Meyer, HTML5 and JavaScript Projects, https://doi.org/10.1007/978-1-4842-3864-6_1

CHAPTER 1 BUILDING THE HTML5 LOGO: DRAWING ON CANVAS WITH SCALING AND SEMANTIC TAGS

event-driven programming and other important features in HTML5. The way I
developed the project, building on the work of others, is typical of how most of us
work. In particular, the circumstances provide motivation for the use of coordinate
transformations.

The approach of this book is to explain HTML5, Cascading Style Sheets (CSS), and
JavaScript chapters in the context of specific examples. The projects represent a variety
of applications and, hopefully, you will find something in each one that you will learn

and adapt for your own purposes.

Note If you need an introduction to programming using HTML5 and JavaScript,
you can consult my book, The Essential Guide to HTML5 or other books published
by Apress or others. There also is considerable material available online, for
example, at W3Schools.

Figure 1-1 shows the opening screen for the logo project on the Chrome browser. It
is important to realize that browsers can be different. Look ahead to how this appeared
using Firefox when I first wrote this example.

HTML

Scale percentage: J MNote: slider treated as text field in some browsers.

Built on work by Daniel Davig, et al, but don't blame them for the fonts. Check out the use of font-family in the style element and the
fontfamily variable in the script element for safe ways to do fonts. I did the scaling. Note also use of semantic elements.

HTMLS Logo by W3C.

Figure 1-1. Opening screen for HTML5 logo

CHAPTER 1 BUILDING THE HTML5 LOGO: DRAWING ON CANVAS WITH SCALING AND SEMANTIC TAGS

Notice the slider feature, the accompanying text, which contains what appears to
be a hyperlink, and the text in a footer below a yellow line. The footer also includes a
hyperlink. As I will explain later, the function and the formatting of the footer and any
other semantic element is totally up to me, but providing a reference to the owners of the
logo, the World Wide Web Consortium would be deemed an appropriate use.

The viewer can use the slider to change the size of the logo. Figure 1-2 shows the
application after the slider has been adjusted to show the logo reduced to about a third
in width and in height.

HYML

5|

Scale percentage: ‘j Mote: slider treated as text field in some browsers.

Built on work by Daniel Davig, et al, but don't blame them for the fonts. Check out the use of font-family in the style element and the
fontfamily variable in the script element for safe ways to do fonts. I did the scaling. Note also use of semantic elements.

HTMLS Logo by W3C.

Figure 1-2. Logo scaled down

The implementation of HTMLS5 is complete, or pretty close, in all browsers. However,
I want to show you something from the past to illustrate the term graceful degradation.
Figure 1-3 shows the opening screen in the older Firefox. The range input is treated as
text. Notice the initial value is displayed as 100.

CHAPTER 1 BUILDING THE HTML5 LOGO: DRAWING ON CANVAS WITH SCALING AND SEMANTIC TAGS

HTML

Secale percentage: 100 Mote: slider treated as text field in some browsers.

Built on work by Daniel Davis, et al, but den't blame them for the fonts. Check out the use of font-family in the style element and the
fontfamily variable in the script element for safe ways to do fonts. I did the scaling. Note also use of semantic elements.

HTML5 Logo by W3C.

Figure 1-3. Application using Firefox

As will be the practice in each chapter, I now explain the critical requirements of
the application, more or less independent of the fact that the implementation will be in
HTMLS5, and then describe the features of HTML5, JavaScript, and other technologies as
needed that will be used in the implementation. The “Building” section includes a table
with comments for each line of code and guidance for building similar applications. The
“Testing” section provides details for uploading and testing. This section is more critical
in some projects than others. Lastly, there is a “Summary” section that reviews the
programming concepts covered and previews what is next in the book.

Project History and Critical Requirements

The critical requirements for this project are somewhat artificial and not easily stated as
something separate from HTML. For example, I wanted to draw the logo as opposed to
copying an image from the Web. My design objectives always include wanting to practice
programming and prepare examples for my students. The shape of the shield part of

the logo seemed amenable to drawing on canvas and the HTML letters could be done
using the draw text feature. In addition, there are practical advantages to drawing images
instead of using image files. Separate files need to be managed, stored, and downloaded.
The image shown in Figure 1-4 is 90KB. The file holding the code for the program is only
4KB. Drawing a logo or other graphic means that the scale and other attributes can be
changed dynamically using code.

4

CHAPTER 1 BUILDING THE HTML5 LOGO: DRAWING ON CANVAS WITH SCALING AND SEMANTIC TAGS

HTML

Figure 1-4. Image of a logo

Ilooked online and found an example of just the shield done by Daniel Davis,
@ourmaninjapan. This was great because it meant that I did not have to measure a copy
of the logo image to get the coordinates. This begs the question of how he determined
the coordinates. I don’t know the answer, even though we had a pleasant exchange
of emails. One possibility is to download the image and use the grid feature of image
processing programs such as Adobe Photoshop or Corel Paint Shop Pro. Another
possibility is to use (old-fashioned) transparent graph paper.

However, there was a problem with building on Daniel Davis’s work. His application
did not include the HTML letters. The solution to this was to position the letters on the
screen and then move down, so to speak, to position the drawing of the shield using the
coordinates provided in Daniel’s example. The technical term for “moving down the
screen” is performing a coordinate transformation. So the ability to perform coordinate
transformations became a critical requirement for this project.

I chose to write something about the logo and, in particular, give credit and
references in the form of hyperlinks. I made the decision to reference the official source
of the logo as brief text at the bottom of the document below a line. The reference to
Daniel Davis was part of the writing in the body. We exchanged notes on font choices
and I will discuss that more in the next section.

In order to give the viewer something to do with the logo, I decided to present a means
of changing the size. A good device for this is a slider with the minimum and maximum
values and steps all specified. So the critical requirements for this application include
drawing shapes and letters in a specific font, coordinate transformations, formatting a
document with a main section and a footer section, and including hyperlinks.

CHAPTER 1 BUILDING THE HTML5 LOGO: DRAWING ON CANVAS WITH SCALING AND SEMANTIC TAGS

HTML5, CSS, and JavaScript features

I assume that you, the reader, have some experience with HTML and HTML5
documents. One of the most important new features in HTMLS5 is the canvas element
for drawing. I describe briefly the drawing of filled-in paths of the appropriate color and
filled-in text. Next, I describe coordinate transformations, used in this project for the
two parts of the logo itself and for scaling, changing the size, of the whole logo. Lastly, I
describe the range input element. This produces the slider.

Drawing Paths on Canvas

Canvas is a type of element introduced in HTML5. All canvas elements have a property
(aka an attribute) called the 2D context. The context has methods for drawing, which you
will see in use. Typically, a variable is set to this property after the document is loaded:

ctx = document.getElementById('canvas"').getContext('2d");

It is important to understand that canvas is a good name: code applies color to the
pixels of the canvas, just like paint. Code written later can put a different color on the
canvas. The old color does not show through. Even though our code causes rectangles
and shapes and letters to appear, these distinct entities do not retain their identity as
objects to be re-positioned.

The shield is produced by drawing six filled-in paths in succession with the
accumulated results, as shown in Figure 1-5. You can refer to this picture when
examining the code. Keep in mind that in the coordinates, the first number is the
distance from the left edge of the canvas and the second number is the distance from the
top edge of the canvas.

L LE1S)S

Figure 1-5. Sequence of paths for drawing the logo

CHAPTER 1 BUILDING THE HTML5 LOGO: DRAWING ON CANVAS WITH SCALING AND SEMANTIC TAGS

By the way, I chose to show you the sequence with the accumulated results. If I
displayed what is drawn, you would not see the white parts making up the left side of the
five. You can see it because it is two white filled-in paths on top of the orange.

All drawing is done using methods and properties of the ctx variable holding the 2D
context property of the canvas element. The color for any subsequent fill operation is set
by assigning a color to the fillStyle property of the canvas context.

ctx.fillStyle = "#E34C26";

This particular color, given in the hexadecimal format—where the first two hexadecimal
(base 16) digits represent red, the second two hexadecimal digits represent green, and
the last two represent blue—is provided by the W3C website, along with the other colors,
as the particular orange for the background of the shield. It may be counterintuitive, but
in this system, white is specified by the value #FFFFFF. Think of this as all colors together
make white. The absence of color is black and specified by #000000. The pearly gray used
for the right side of the 5 in the logo has the value #EBEBEB. This is a high value, close to
white. It is not necessary that you memorize any of these values, but it is useful to know
black and white, and that a pure red is #FF0000, a pure green is #00FF00, and a pure blue is
#0000FF. You can use the eyedropper/color picker tool in drawing programs such as Adobe
Photoshop, Corel Paint Shop Pro, or the online tool http://pixlr.com/ to find out values of
colors in images or you can use the official designation, when available, for official images.
All drawing is done using the two-dimensional coordinate systems. Shapes are
produced using the path methods. These assume a current location, which you can think
of as the position of a pen or paint brush over the canvas. The critical methods are moving
to alocation and setting up a line from the current location to the indicated location. The
following set of statements draws the five-sided orange shape starting at the lower, left corner.
The closePath method closes up the path by drawing a line back to the starting point.

ctx.fillStyle = "#E34C26";
ctx.beginPath();
ctx.moveTo(39, 250);
ctx.lineTo(17, 0);
ctx.lineTo(262, 0);
ctx.lineTo(239, 250);
ctx.lineTo(139, 278);
ctx.closePath();
ctx.fill();

http://pixlr.com/

CHAPTER 1 BUILDING THE HTML5 LOGO: DRAWING ON CANVAS WITH SCALING AND SEMANTIC TAGS

If you haven’t done any drawing on canvas, here is the whole HTML script needed
to produce the five-sided shape. The onLoad attribute in the <body> tag causes the init
function to be invoked when the document is loaded. The init function sets the ctx
variable, sets the fillStyle property, and then draws the path.

<!DOCTYPE html>
<html>
<head>
<title>HTML5 Logo</title>
<meta charset="UTF-8">
<script>
function init() {
ctx = document.getElementById('canvas"').getContext('2d");
ctx.fillStyle = "#E34C26";
ctx.beginPath();
ctx.moveTo(39, 250);
ctx.lineTo(17, 0);
ctx.lineTo(262, 0);
ctx.lineTo(239, 250);
ctx.lineTo(139, 278);
ctx.closePath();
ctx.fill();
}
</script>
</head>
<body onLoad="init();">
<canvas id="canvas" width="600" height="400">
Your browser does not support the canvas element.
</canvas>
</body>
</html>

Do practice and experiment with drawing on the canvas if you haven’t done so
before, but I will go on. The other shapes are produced in a similar manner. By the way;, if
you see a line down the middle of the shield, this is an optical illusion.

CHAPTER 1 BUILDING THE HTML5 LOGO: DRAWING ON CANVAS WITH SCALING AND SEMANTIC TAGS

Placing Text on Canvas and in the Body of a Document

Text is drawn on the canvas using methods and attributes of the context. The text can
be filled in, using the fillText method or drawn as an outline using the strokeText
method. The color is whatever the current fil1Style property or strokeStyle property
holds. Another property of the context is the font. This property can contain the size

of the text and one or more fonts. The purpose of including more than one font is to
provide options to the browser if the first font is unavailable on the computer running
the browser. For this project, T use

var fontfamily = "65px 'Gill Sans Ultra Bold', sans-serif";
and in the init function
ctx.font = fontfamily;

This directs the browser to use the Gill Sans Ultra Bold font if it is available and if not,
use whatever the default sans serif font on the computer.

I could have put this all in one statement, but chose to make it a variable. You can
decide if my choice of font was close enough to the official W3C logo.

Note There are at least two other approaches to take for this example. One
possibility is not to use text but to draw the letters as filled-in paths. The other is to
locate and acquire a font and place it on the server holding the HTML5 document
and reference it directly using @font-face.

With the font and color set, the methods for drawing text require a string and a
position: x and y coordinates. The statement in this project to draw the letters is

ctx.fillText("HTML", 31,60);

Formatting text in the rest of the HTML document, that is, outside a canvas
element, requires the same attention to fonts. In this project, I choose to make use of
the semantic elements new to HTML5 and follow the practice of putting formatting in
the style element. The body of my HTML script contains two article elements and one
footer elements. One article holds the input element with a comment and the other
article holds the rest of the explanation. The footer element contains the reference to
W3C. Formatting and using these are up to the developer/programmer. This includes

CHAPTER 1 BUILDING THE HTML5 LOGO: DRAWING ON CANVAS WITH SCALING AND SEMANTIC TAGS

making sure the footer is the last thing in the document. If I placed the footer before one
or both articles, it would no longer be displayed at the foot, that is, the bottom of the
document. The style directives for this project are the following:

footer {display:block; border-top: 1px solid orange; margin: 10px; «
font-family: "Trebuchet MS", Arial, Helvetica, sans-serif; font-weight:
bold;}

article {display:block; font-family: Georgia, "Times New Roman", Times,
serif; margin: 5px;}

The styles each set up all instances of these elements to be displayed as blocks. This
puts a line break before and after. The footer has a border on the top, which produces
the line above the text. Both styles specify a list of four fonts each. So the browser first
sees if Trebuchet MS is available, then checks for Arial, then for Helvetica and then,
if still unsuccessful, uses the system default sans serif font for the footer element.
Similarly, the browser checks for Georgia, then Times New roman, then Times and then,
if unsuccessful, uses the standard serif font. This probably is overkill, but it is the secure
way to operate. The footer text is displayed in bold and the articles each have a margin
around them of 5 pixels.

Formatting, including fonts, is important. HTML5 provides many features for
formatting and for separating formatting from structure and content. You do need to
treat the text on the canvas differently than the text in the other elements.

Coordinate Transformations

I have given my motivation for using coordinate transformations, specifically to keep
using a set of coordinates. To review, a coordinate system is the way to specify positions
on the canvas. Positions are specified as distances from an origin point. For the two-
dimensional canvas, two coordinates are necessary: the first coordinate governs the
horizontal and is often called the x and the second coordinate governs the vertical and
is called the y. A pesky fact is that when drawing to screens, the y axis is flipped so the
vertical is measured from the top of the canvas. The horizontal is measured from the left.
This means that the point (100,200) is further down the screen than the point (100,100).
In the logo project, I wrote code to display the letters HTML and then moved the
origin to draw the rest of the logo. An analogy would be that I know the location of my
house from the center of my town and so I can give directions to the center of town and
then give directions to my house. The situation in which I draw the letters in the logo and

10

CHAPTER 1 BUILDING THE HTML5 LOGO: DRAWING ON CANVAS WITH SCALING AND SEMANTIC TAGS

“move down the screen” requires the translate transformation. The translation is done

just in the vertical. The amount of the translation is stored in a variable I named offsety:

var offsety = 80;

ctx.fillText("HTML", 31, 60);
ctx.translate(0, offsety);

Since I decided to provide a way for the viewer to change the size of the logo, I used
the scale transformation. Continuing the analogy of directions, this is equivalent to
changing the units. You may give some directions in miles (or kilometers) and other
directions in yards or feet or meters or, maybe, blocks. The scaling can be done separately
for each dimension. In this application, there is a variable called factorvalue that is set
by the function invoked when the input is changed. The statement

ctx.scale(factorvalue, factorvalue);

changes the units for both the horizontal and vertical direction.

HTMLS5 provides a way to save the current state of the coordinate system and restore
what you have saved. This is important if you need your code to get back to a previous
state. The saving and restoring is done using what is termed a stack: last in first out.
Restoring the coordinate state is termed popping the stack and saving the coordinate
state is pushing something onto the stack. My logo project does not use this in its full
power, but it is something to remember to investigate if you are doing more complex
applications. In the logo project, my code saves the original state when the document
is first loaded. Then before drawing the logo, it restores what was saved and then saves
it again so it is available the next time. This is overkill for this situation, but it is a good
practice just in case I add something in the future. Do your own experiments! The code
at the start of the function dologo, which draws the logo, starts as follows:

function dologo() {

var offsety = 80 ;

ctx.restore();

ctx.save();
ctx.clearRect(0,0,600,400);
ctx.scale(factorvalue,factorvalue);
ctx.fillText("HTML", 31,60);
ctx.translate(0,offsety);

11

CHAPTER 1 BUILDING THE HTML5 LOGO: DRAWING ON CANVAS WITH SCALING AND SEMANTIC TAGS

// 5 sided orange background

ctx.
ctx.
ctx.
ctx.
ctx.
ctx.
ctx.
ctx.
ctx.

fillStyle = "#E34C26";
beginPath();
moveTo(39, 250);
lineTo(17, 0);
lineTo(262, 0);
lineTo(239, 250);
lineTo(139, 278);
closePath();

i11();

// right hand, lighter orange part of the background

ctx.
ctx.
ctx.
ctx.

ctx

ctx.
ctx.

ctx

fillStyle = "#F06529";
beginPath();
moveTo(139, 257);
lineTo(220, 234);
.1lineTo(239, 20);
lineTo(139, 20);
closePath();

Fi11();

Note that the canvas is cleared (erased) of anything that was previously drawn.

Using the Range Input Element

The input device, which I call a slider, is the new HTMLS5 input type range, and is

placed in the body of the HTML document. Mine is placed inside an article element.

The attributes of this type and other input elements provide ways of specifying the initial
value, the minimum and maximum values, the smallest increment adjustment, and the

action to take if the viewer changes the slider. The code is

<input id="slide" type="range" min="0" max="100" value="100"+
onChange="changescale(this.value)" step="10"/>

using percentage and since I did not want the logo to get bigger than the initial value or

The min, max, (initial) value, and step can be set to whatever you like. Since I was

deal with negative values, I used 0 and 100.

12

CHAPTER 1 BUILDING THE HTML5 LOGO: DRAWING ON CANVAS WITH SCALING AND SEMANTIC TAGS

In the proper implementation of the slider, the viewer does not see the initial value
or the maximum or minimum. My code uses the input as a percentage. The expression
this.value is interpreted as the value attribute of this element, emphasis given to
convey the switch to English! The term this has special meaning in JavaScript and
several other programming languages. The changescale function takes the value,
specified by the parameter given in the assignment to the onChange attribute, and uses
it to set a global variable (a variable declared outside of any function so it persists and is
available to any function) named factorvalue.

function changescale(val) {
factorvalue = val / 100;
dologo();

It is part of the specification of HTMLS5 that the browsers will provide form validation,
that is, browsers will check that the conditions specified by attributes in the input
elements are obeyed. This can be a significant productivity boost in terms of reducing
the work programmers need to do and a performance boost since the checking probably
would be faster when done by the browser. In the HTMLS5 logo project, an advantage of
the slider is that the viewer does not need to be concerned with values but merely moves
the device. There is no way to input an illegal value. Figure 1-6 shows the results of
entering a value of 200 in the input field.

HTML

Scale percentage: 200| Mote: slider treated as text field in some browsers.

Built on work by Daniel Davis, et al, but don'’t blame them for the fonts. Check out the use of font-family in the style element and the
fontfamily variable in the script element for safe ways to do fonts. I did the scaling. Note also use of semantic elements.

HTMLS Logo by W3C.

Figure 1-6. Display in Firefox of scale of 200
13

CHAPTER 1 BUILDING THE HTML5 LOGO: DRAWING ON CANVAS WITH SCALING AND SEMANTIC TAGS

The canvas is of fixed width and height and drawing outside the canvas, which is
what is done when the scaling is done to accept numbers and stretch them out to twice
the original value, is ignored.

Building the Application and Making It Your Own

The project does one thing, it draws the logo. A function, dologo, is defined for this
purpose. Informally, the outline of this program is

1. init:Initialization

2. dologo: Draw the logo starting with the HTML letters and then the
shield

3. changescale: Change the scale

Table 1-1 shows the relationship of the functions. The dologo function is invoked
when the document is first loaded and then whenever the scale is changed.

Table 1-1. Functions in the HTML5 Logo Project

Function Invoked/Called By Calls
init Invoked by action of the onLoad attribute in the <body> tag dologo
dologo Invoked by init and changescale

changescale Invoked by action of the onChange attribute in the <input dologo

type="range"...> tag

The coding for the dologo function puts together the techniques previously
described. In particular, the code brings back the original coordinate system and clears
off the canvas.

The global variables in this application are

var ctx;
var factorvalue = 1;
var fontfamily = "65px 'Gill Sans Ultra Bold', sans-serif";

As indicated earlier, it would be possible to not use the fontfamily but use the string
directly in the code. It is convenient to make ctx and factorvalue global.

14

