<74’ "

The Definitiv
Guide to Securit
in Jakarta EE

Securing Java-based Enterprise
Applications with Jakarta Security,
Authorization, Authentication and More

Arjan Tijms
Teo Bals
Werner Keil

Apress:

The Definitive Guide to
Security in Jakarta EE

Securing Java-based Enterprise
Applications with Jakarta Security,
Authorization, Authentication
and More

Arjan Tijms
Teo Bais
Werner Keil

Apress’

The Definitive Guide to Security in Jakarta EE: Securing Java-based Enterprise
Applications with Jakarta Security, Authorization, Authentication and More

Arjan Tijms Teo Bais
AMSTERDAM, Noord-Holland, The Netherlands Utrecht, Utrecht, The Netherlands
Werner Keil

Bad Homburg vdH, Hessen, Germany

ISBN-13 (pbk): 978-1-4842-7944-1 ISBN-13 (electronic): 978-1-4842-7945-8
https://doi.org/10.1007/978-1-4842-7945-8

Copyright © 2022 by Arjan Tijms, Teo Bais, and Werner Keil

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Laura Berendson

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image by Vincent Law on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (www.github.com). For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-7945-8

Table of Contents

About the AUtROIS.......c.cccesmiimsmmsnsrns s n s XV
About the Technical ReVIEWETccssesssnssssnsssassssnsssassssassssasssansssasssssssssnsssassssanssas xvii
Chapter 1: Security HiStOrycccccusmmmmnnssmmmmmmsssmmmmsssnmmmssssssmmssssssmssssssssssssssnnnns 1
THE BEUINNMING .c.veveerererie e se s e s se s e s s sssse s saesaesa s e s sae s e s e s s aesa e e e e saesae e s e naesaenannnnaesnens 1
Enter JAKArTA EE ... 3
Enter Jakarta AUTNOFIZAtION..........coocreereerere e 5
Enter Jakarta AUtNENtiCALION.ccoveecereeee e 6
Foreshadowing Shiro Part | - IL DRBACcccvenermsmsenenmsenessnsssesesessssessssssesssssssssssssssssssssssssnens 8
ENter SPring SECUMLYccovverriisirese s 11
Where is Jakarta Authentication? Enter JAULH ... 18
Foreshadowing Shiro Part Il - JSECUNLYc.ccevveririerever s s s e se e s s s e ssesnes 19
Jakarta Authentication - EAQiNg CIOSENccccviererirrinse e rcer et r s se e seessesaessenns 22
Jakarta Authentication - Finally in Jakarta EE..............c.ccooninninnninnnnnsnc s 28
ENter OMNISECUNLYcovecerereeree s e 29
Enter Jakarta SECUNLYccovieeresrrcsrese s 36
Chapter 2: Jakarta EE Foundationsccccunsemmmmnsssssnmmssssssnmnssssssnsnsssssssssssssssssnns 41
o)T [0 IS T o O 4
TEChNOIOGICAl SECUNTY ...cvvevreierrerere s s s a e e sresr e se e nesae e e e naennens 42
ApPPLICALION SECUNTY.....cccuieeeecrire st sesae e 42

08 SECUNTY ...veeeeeereree e e se s e s r e s e e e e e e re e e e e 43
NELWOIK SECUNTYceeveerercserese s s ne e nr s 43
POlICieS and PrOCEAUIES.........cuueerrererrsscsrsresesrese s sr s se e s sn e ssnsesnns 43
Key PriNCIples Of SECUKILYcovvirrerererirsiriere e sesse s se s s s se e se s s s sse e s e saesaesesensesnes 44

iii

TABLE OF CONTENTS

iv

Features of a Security MEChANISMcccvcereveienieriere s s ss e s saeseesesesnesnes 45
Distributed Multitiered Applications.........cccueriinsnini s 46
Single-Tier vs. Multitiered Applications.........cccocvvvnininnnrr e 46
The Jakarta EE APPrOaCh...........ccueriviinieninin st se s st ss s 47
Security in JaKarta EE ..o s 48
Simple Application Security WalKthrough ... sessesse s 49
T2 T 21T T O 53
AUTNENTICALION.......ccieicecee e e 53
SOMEThING YOU KNOW........ceierereirire st 54
SOMEhiNG YOU HAVE........cv e e 54
SOMETNING YOU AT ...ttt 54
Latest Trends in Authentication Methodsccoucvnnnesnns s 55
Authentication EXamples in PractiCe........cccvvirveriersnniene e sesesse e sessessessesessessesees 56
AUTNOFIZALION......cvccrircire e e 58
ACCESS CONLIOI LSS ...cvviecuccreresssssesesesessssssesessssssssssessssssssssssssssssssssssssesssssssssssesssssnsasssens 59
ACCESS CONLIOI MOUEIScveecerecereee e enaene s 60
RBAC (Role-Based ACCeSS CONTIOI).......cccueeerrererrnenerenesesesese e se s senns 63
Benefits Of RBACcccoieirnesrrese s s s s s s ss s s e e s s 63
RBAG — KEY PriNCIPIES ...ccuerteirireresisserese s s e ses e s sse s e ssesaesasssssessesaessssessesaesessssnesneses 64
RBAC in JaKarta EE............ooecs e 65
D10y =T 1) = 67
What Is a Digital Certificatecccurvmrnininnnnn e snes 68
INTrOdUCEION 10 TLS ... e e 68
Who Can ISSue CertifiCates?........cocuvunrnrrnnninenernessese s s se s sessssssssnens 70
LOOKING ANBAMccceeeerreerieesissessse e sr s sr s se s sn s p e nr e r s 72
Authentication MEChaNISMS...........couvcivniii e 73
What Is an Authentication MechaniSm? ... 73
What Does an Authentication Mechanism Specify?.........cccovvvrvnriesnnrnnseses e, 74
Jakarta EE Authentication MechaniSmscocooorerrnnrnnenesene e 74

TABLE OF CONTENTS

(02T 4] (0] - 82
What Is an Identity STOre? ... 83
What Is the Purpose of an ldentity StOre? ... 83
Identity Store and Jakarta EE ..o 83
LOOKING ANBAMccceueerreerisesessesessse s ss s e sr s s sr s sr s sr s s e s 90

Chapter 3: Jakarta Authenticationcccccvnnemnmnnnennmnnseenssn—————— 91

What Is Jakarta AuthentiCation? ... s 91

Jakarta Authentication in Jakarta EE..............ccovonnnnnnnns s 93

The Authentication MECRANISM...........com s 97
The Basic Authentication MeChaniSm ..o 98
The Form Authentication MeChaniSm..........cccovereernrenres s 99

Jakarta Authentication’s ServerAuthMOdUIE..........ccoveeevereresernsesrn e 102
Example ServerAUtNMOTUIEcocvvrieriererirrerere s sae s sesse s s saessese s saesassassesaesnes 106
Example ServerAuthModule — GIaSSFiSh.........ccccciivrniennnnnns s 112
Example ServerAuthModule — TOMCAL..........ccciiriinin e 113
Example ServerAuthModule — BaSiCcccveeverenernnesenesssesess s e sessessssssessnses 114
Example ServerAuthModule — Basic with Container Identity Store..........coccocvvvierieverieniennen 121

Obtaining Key Stores and Trust STOres.........coucvvrninnsni s 125

Semi-auto RegiSTer SESSION........cccvveerrrirrrese s 130
(0 LT 0T T T= LT (0] o S 130
CONtINUING @ SESSI0N ...cveireiererrereerersere e sss e s s ssese s sse e ss s e ssesaesae e s e saesaesa s e ssesaesassessesneses 131

Using a Custom PrinCIpal..........coucvirinnininisssinsse s ss s st snens 133

Wrapping the Request and RESPONSEcocvvvrerininsinie s s s sse s 137

The MESSAQE POLICYcccerverreieriereresissere s s s s s s s s e saesae e s s saess s e s saesae e s e saesaesee e s e snees 140

The AUtRCONTIGPIOVILEcveceriereerrertrrereressesessersessessssessessessesesessesaessssessesaesaessssesassaesesssnsesseres 141

Case Study — Implementation-Specific ldentity StOres.........ccoooreernenriesrerrree e 147
L0 1 ST R 149
JBHY e —————————————————— 152
L0100 =T (0 T 156
JBOSS EAP/WIILFIY......ccoeeierereecceeessssssss s sssssss s s s e e e s e s s s sssssssssssssssssssssnsnnns 158

TABLE OF CONTENTS

22 N 163
6 TS] T 167
L0 4T3 I 0T o T 174
L1112 o] I (3O 177

Chapter 4: Jakarta Authorizationcccccevinnnnmseennmsssssssnnsssssssssseees 179

What Is Jakarta AUtNOFZation? ..o 179
Jakarta Authorization in Jakarta EE............c..ccorvnninnnn s 180
JAVA SE TYPES USEAevereerirerire sttt st st 184
JAVa.SECUNITY.COUBSOUICTEeverrerreircre st s r e s 184
java.security.ProtectionDomain ..o 184
JAVA.SECUNTY.POIICY ...covreeereeerercrenee s s nne s 185
java.security.PermissionColIECLION..........cccvrereresernsesrrese s 185
The Authorization MOTUIE ..o e 185
PolicyConfigurationFACTOrY........cccovvrvrierererrirere s s s se e s sae e enes 186

o0 T 00T o0 L] 188
POLICY ..vveerirtre iR e e 202
Transforming Security Constraints t0 PEermissions..........ccccocvnnnininnnnnnennsnsessessess s 213
Authorization QUEKIEScoceueeereecrerere e sr e e s e nne e 216
GEL AN USEIS ROIES ...t 217
HAS ACCESS ...eoueiuereereesersessesese s e s s s sre e e s re e e e e e ae e e e e e e aesre e e nnnnnnes 220
3T L= T 11§ RS 221
ARRErnative MapPingsS........cocvvrrereririrn s s a e s s n e e e 223
Chapter 5: Jakarta SeCUrity.......cccussmrmssanmmssansmssanssssansssssnsesssnnssssnsssssnnssssnnssssnnssssas 227
What IS JaKarta SECUIILY?ccueriiniriress s e s s e s 227
Jakarta Security in Jakarta EE..............ccoroonirerrncsreses e 228
The HitpAuthenticationMechaniSm.........c..coevrvrinenncni 230
Example HitpAuthenticationMechanisSm.............cccvvvernrennisnnsnnesse s 233
EXample 1dentitySIOrecoovcvvrierinrirrere s s e s s se e s saesn s nnes 240
SECUILY FIOW ..vververeetrererrereesessessesse e s e ssesaesas e ssessesae s ssessessesa s s ssesassassssnessesaessssessesassassssnensensen 245

TABLE OF CONTENTS

Default Authentication MeChaniSms ... 260
The Basic Authentication MeChaniSm ..o 262
The Form Authentication MeChaniSm..........ccovcoreeirerrncrr e 264
The Custom Form Authentication Mechanism............ccccoveininnesrssrnseserese s 268

Default Identity STOrESccovvirenrese s 281
The Database Identity STOrecccviviininin s 283
The LDAP [dentity STOrE.....cccceveverreriererirserserese s sesessessesessessessessssessessessessssessessesssssssessesaes 285
Identity Stores Using Application SEIVICES......ccvvrrrrieriererserserersssessese e ssssessessessssessessees 285

Authentication Mechanism INTErCePIOrs ..o 286
AULO APPIY SESSIONcviirirerierir st e e e 286
REMEMDET ME.....ccecececerieer e e r e 288
Activating Remember-Me SErVICEccvveernrerenesisese s 289

[T o114 o 0| OO 293

LT 0100 o 4T 0 R 294

Jakarta Security and TOMCAL ..o 301

Simplified Custom Authorization RUIES ... 305

Dynamically Adding an Interceptor to a Built-in CDI Bean...........c.cccoveenerescrnscnesnenesenesenenenns 315

Chapter 6: Java SE Underpinningsccuuseusmssssssnsmssssssnssssssssssssssssssssssssssssssssssnnnss 319

Java Authentication and Authorization Service (JAAS)covvrvrrerennrnsenesesessesesesessessessenes 319
COMMON CIASSEScuererrrrirsresessssssssse e se s sr s sa s se s 320
JAAS AULNENTICALIONc.cerereecece e 323
JAAS AUTNOIZALION ... e 333

Introduction t0 Cryptographycccoecrrernrenesesern s 339
Key Concepts in Cryptography ..o s sesss s ssssesssssssssssessnses 340
Two Basic Encryption MEethodscccovirvrinnnniniene s sessesessessssessessesees 340
SYMMELTiC ENCIYPLION ...c.veevere ettt re s s s sa e e saesae e s naenne e 340
ASymmetric ENCrYPlioNcoce oottt s 342
Symmetric vs. ASymmetric ENCryption.........ccccovvrininininnnsni s sesennens 343

vii

TABLE OF CONTENTS

X.509 Digital CertifiCatescvrrerrerrrerierierrsensersesesssserse e sesse e ssssessessesessessessessessssessessees 343
Key Features of an X.509 Certificatecccvriirrininininnnssns s senaes 344
Common Applications 0f X.509.........cccrniinininnrnes s s 344
Key Pairs and SigNatUresc.coocoeerrnresennesenesese s sessnns 345
Certificate File Name EXIENSIONS.......c.cuecerrenernsmsrsesesesessssesssss s s sessessssesessesesessssssssssssnnes 345
Certificate ChaiNs ... s 347
Anatomy of an X.509 CertifiCate........ccvrvrrrerieriererserreriene s s sss s e sessesessessesessessesnes 350

JOE PrOVIUEIScceiriiccceresss e 361
The Need for JCE PrOVIAEISccovoceereereereeeresese e see e e 362
Available JCE PrOVIAEIScccvecrercrereeree s sesesesse e s sesssessesessssessssesensessnsenens 363
How 10 Install @ JCE PrOVILENcccoeeerreerireseree s s sesse s nenses 366
HOW JCE Providers WOIKccocueeerenernsessnesssssesssesssesssssessssessssesssssssssssssssssssssssssssnessanes 368
BOUNCY CaASTIE ... civeieerererterirer e res et s e s st s ae b e ae e e e naennen 373

Key Generation and Key Agreement (Public Key Infrastructure (PKI)) and Message

Authentication COUE..........cuurererererneerereres e sa e 380
HOW PKIWOTKS ... s se s s n e s 380
KEY GENEIALIONcveeeerreerrnesese e s e s s e e nr s e s nne e 381
Elliptic Curve Cryptographycccueeernsesrnsesessse s ssssesesssse e sessesssssssssssessssessssssssssssssases 384
KEY AQIrBEIMENTeiiiiecte st r e s s e e b b e e e n e ae s aenanan 387
Message Authentication COUEScuvvrerererrrrerererer e s se e s s ssese s saesaesassesaesaes 390
PKI CONCIUSIONScvenceeresssseeesesessssssssesessssssssse e s sssssssssesssssssssssssessssssssssssessssssssssssens 393

TLS in JaVa @n0 TLS 1.3...eeeee e 394
WRAL IS TLS.....cecccireisis st ne e 394
Why TLS IS IMPOFEANT.......cciecereerrereneere e s snenens 394
Benefits OF TLS 1.3 ..ot s 395
HOW TLS WOTKS......covivicicnirisissssse s ss s s ss e s sssssessssssssssens 396
TLS Protocol DEtailSccccoerereriiiserinisssssse s se s sssesens 397
TLS INM JAVA .verrieccresisee s e e se s s mn e 401
TaKEAWAYS ON TLS ..o s s s sre e e s e nnenens 406

Java SE Underpinnings QULI0.......c.ccoreeernsenenenenssesssesessssessssssesssssssssessssessssssssssssssssssesssssssenens 406

viii

TABLE OF CONTENTS

RETBIBNCES ...t 406
Appendix A. Commonly Used AuthPermissions in JAASccocvrnrnnnnnnnsesnsesessesessssesenses 408
Appendix B. Supported Algorithms Provided by SunJCE (Bundled JCE Provider)............ccceuen. 409
Appendix C. Supported Algorithms by Bouncy Castle...........cccccvvrirnininnninnsnsenese s 410
Chapter 7: Jakarta EE Implementations...........ccccinnsemmmmmnssssmnmnsssssnnmssssssssmsssssnnns 413
OVBIVIBW ...veveesrsseesse e sse e se e se e a e e e e R e R e e e R e R e b e nen R e b e e e e e 413
SPECITICALION USAQE......corieererierierirririe st sese s e s s sse s sae e se s s saese s saesaessssennennens 413
CONHIDULION ACHIVITY .evvevverrecerere s sersere s s s s a e saesa e s aesre e e e e nne s 418
Implementation USAQE.........c.ccueriinnninesn s s s sr s e 421
Implementation COMPONENLS ... 426
LTS T O 428
AUNENTICALIONveeevccceccre e nr e e ne e 428
(0 - T 434

£ 0] (=] - 444
Example Configurationccccveevierenneriererenseneressssessessesessessessessessssessessesssssssessesasssssensesaes 449
WILFIY oot bbb e e e e 452
AULNENTICALION ... s e e e nne e 452
AULNOFIZALION ... r e rnne s 455

R TET T] OSSOSO 457
Open Liberty/WebSphere LIDEIYccccvvrievrnriere s ses e s ssssessessessesessessesnes 457
LT =0 1) 1 S 458
LTPA KBYS ... teeruerresisessesses e sis e s sse st s e s s s s e e e s e e st s a e b e e e R b e R R e e e e R e Re b e e e R e 459
REST API ACCESS ROIES ..o s s 459
Jakarta EE Security Packages USEd..........covceeererernnmreneneneserssesesesesss e sesse s sessesenns 460
Develop Dependent FEAtUIESccccvcrieniiinirnse s sn e s 461

e 11101 A o] o) o L O 461
TOMCA/TOMEE ... s 466
AULNENTICALION ... e 466
AULNOTIZALION ... e nne e 470
11 11 473

TABLE OF CONTENTS

Chapter 8: MicroProfile JWT.......cccuccummmmsssnnnmsssssnnsssssssnssssssssnnsssssssnnssssssssnssssssnnnnss 475
WRAL IS JWT? ... bbb np e 475
USE CASES ...ecuereeucerueerseeseeeresesessesesse e ses e s e e sse e ses e e s se e sse e see e sesse e sas e s se e se s e e nseessanenennssenns 475
WhY DO WE NEEU JWT? ... e se s s s s sensssennsnens 476
HOW DOES IEWOIK? ...t s 479
JWT STIUCTUIE .ottt 481
3 72 T 481
PAYIOAAoveeieeeeeeseeee e R pnp e e e e 483

“iSS” (ISSUBK) ClAIM.....ccceeirriirere s a e e ens 483
“SUD” (SUDJECT) CIAIMc.eeceecercer e 484
“aud” (AUAIENCE) ClAIMc.cceeereeereere e 484
“exp” (Expiration TIMe) Claim.........cccuurinrernieneneserese s ssnses 484
“nbf” (Nt BEfOre) ClaiM.......ccccerererirreriere s sere s ses s se e s sr e s sae e e saeenes 484
B Ll (T 1T 7Y o 0T o 484
“JH” (JWT ID) ClAIM..eririereeeeeseeeesssssssssssssssssssss e s e e e se s s s ss s s sssssssssssssssnsnsssnsnsnenes 485
SHONALUNE ... e e e e e p e e R e ene s 485
The Trouble With HS256..........cccoirerereeresernesese s sessssessenens 485
Obtaining the PUDIIC KEYccceveerisirncsenese e se s e s s ssnnes 487
MicroProfile in Relation to Jakarta EE.............ccovnmmnnnnsss s 487
MP-JWT As an Authentication Mechanism for Jakarta EE...............ccoovivinnnnnnsncncnesenneenes 490
Why Do We Need MICroProfile JWT?ccvviererernerreressssensesesesssssssessessessssessessesssssssessesaes 490
Using JWT Bearer Tokens 0 Protect SErviCescuumvmininnsnnnncsnsnsesess s sesesnens 502
Mapping MP-JWT Tokens to Jakarta EE Container APISccccvvrennnnsnnennnsnsenesessssesennens 503
CDI Injection REQUIrEMENESccceeeerrnesesese s neases 503
Jakarta REST Container APl INtegrationccccvivvennennnnnnsessesess s s sens 509
jakarta.ws.rs.core.SecurityContext.getUserPrinCipal()ccvvevverererrerseriennsensersessesessensenees 509
jakarta.ws.rs.core.SecurityContext#isUserinRole(String).......cccevrevrrerrerierenserserseresessessenees 509
Using Jakarta ANNOations.........cccccvvrieienninine s s se s 509
Other Jakarta EE INtegration ..o s s sss e s s 509
JAKAMA SEIVIEL ... s 511

TABLE OF CONTENTS

Example APPlICALIONcceieviiriere e 511
310 (=3 o = 141011 T OSSOSO 515
RUNNING the TESTSviciieiccccir s e e 518
Future IMProvemMeNts ... s e e e 518

[0 1 e 1T OSSO 518
Appendix A: SPring SeCUritY.....ccccruumissnnmmssssnnmmsssssnnmsssssnsnssssssnsnssssssnnnssssssnnnssssnnns 521
What IS SPring SECUNTY?......ccvvreresr e sr e e nne e 521
3T 0 1] (0] SO S 521
OVEBIVIBW ...t se e se s e e e s s e ne bR e e R e e e e s n e s 522
0] 1 (0T OSSOSO 522
Spring Security REACLIVEcccovveeerererrcrercse e 532
Example APPlICALION. ... e e 534
SEIVIEL ...t —————————————————————— 534

2= T TS 536
Comparison to Jakarta EE SECUNLY.......cccvievererreriereserserse s ves s s e sesse s ssssessessessssessesaesees 538
Appendix B: APache SHir0c.cccesrsssssnnsmsssssssmsssnsnsssssnns 541
WREL IS SNIFO?..... e ne e e nnn e 541
3T T=3 5 1Y o] TS 541
OVEBIVIBW ...evveieeses e e s bbb e e R e e Re b e e e e e Re e b e e e e e 542
RS 1 o O 542
Lo 10T 1 V0T OO 542
22T T 543

LT 1= T 543
Primary FEALUIEScoeoereece e 544
ComPAriSON 10 JAAS ...t e b e e nn 550
Using Shiro with Jakarta EE..........c.ccocuvrinininninnens s sesese s sessessessssessessessessssessessens 551
SEIVIBLS ... 551

2= 0= 00 L] g O 554
Behavior on Session EXPIrationcccovivnininnsinsne s s snes 555

xi

TABLE OF CONTENTS

Synchronous POST Without Remember ME........coovvvvvrrenennnsenens s sesessessessessssessessees 555
Synchronous POST with Remember Me........ccocvrrnnnrnnnne s sessenes 556
Asynchronous POST Without Remember Me.........cccccvinininnnnnsn e 556
Asynchronous POST with Remember Me ..o sessesessenens 556
USING @ JSF FOIM ...t s s 556
ProgrammatiC LOGiNcccccvvierierierinninierie s s s e s e s e e s s sss e s snesssses e saesasssssensesaes 558
Programmatic LOGOUL..........cccvcerierierenieriereserseresse e ses e sse e ses e ssesaessssessesaessssessessesaessssensesaes 562
MakKe Shiro JSF AJaX AWAIE......cccerererrerrerserseserersessessssessesssssssessessesssssssessesssssssessesssssssessesses 563
Configuring JDBC Realm ..ot s s s sns e sne s 565
JPA Model and EJB SEIVICE......c.ccourerererrrcresesesresesessesessesessssessssesessssessssessssesssssnsssssssessssenns 567
3= O] g 0T SRS 570
Hashing the PaSSWOI...........ccovirerinernesrnesene s s se s sr s s 573
USing Shiro With SPriNGcoceiiririrerr e s sre s se e ene e 574
RS [0 TS U O 574
01T R 576
Appendix C: Identity Management..........cccccemmmmnmmmmssssssssssnmmmsssssssssssssssssssssssssssnnnns 577
JAVA LAENTIEY APLL.....eeeeeeee s nne e 577
AVery Brief HISTOrY........ucoiecreernesisesessse s ss s ss s sessessssssessssesesssssssenens 577
Why Was [t NEEABU?.......cvcerererersere sttt se s sre s s e sae s se s ssesae e e s saesae e s e saesnes 578
Overview of Java Identity APlcccrevririnere e s s snessssessesne s 578
Usage of the [dentity AP ... e s 581
Lessons Learned from the ldentity APl..........ccorinrnininnsns s 584
G2 [0 L S 584
What IS KEYCIOAK?ccveeeeeeecerieesisesesese e se s sre e s s nnenens 584

3T TS T (0] RS 584
OVErVIEW OF KBYCIOAKeoveerereerirsersere s s s ses e s e s s s s e s saesae s s e saesaesssesaesnessssesnesnees 585
Using Keycloak with Jakarta EEc.ccooerirvrrenerinren s s ses e e e ssee s enneas 598
Using Keycloak With SPring........ccvcviennininnesinsesse s s s sse s ssssessesne s 609

xii

TABLE OF CONTENTS

ShIDDOIETN ... ————————————— 616
What IS SHIDDOIETN?........eeect s 616
0rigin Of the TEIM ..o e e 616
3T T= 3 5 1Y o] TS 616
Overview of ShIDDOIETN ..o ——————— 617
Using Shibboleth with Jakarta EE ... ssesse s 619

£ 1134 RS 626

INO@X uuenisssnnnsssnnnsssnnnsssnnssssanssssanssssanssssannssssnnssssnnssssnnssssnnssssnnssssnnssssnnssssnnssssnnnsssnns 627

xiii

About the Authors

Arjan Tijms was a JSF (JSR 372) and Security API (JSR 375) EG member and is currently
project lead for a number of Jakarta projects including Jakarta Security, Authentication,
Authorization, and Faces and Expression Language. He is the cocreator of the popular
OmniFaces library for JSF that was a 2015 Duke’s Choice Award winner and has
coauthored two books: The Definitive Guide to JSF in Java EE 8 and Pro CDI 2 in Java
EE 8. Arjan holds an MSc degree in computer science from the University of Leiden,

the Netherlands. He has been involved with Jakarta EE Security since around 2010, has
created a set of tests that most well-known vendors have used (IBM, Oracle, Red Hat)

to improve their offerings, was part of the JSR 375 (EE Security) EG, and has been the
main architect of the security API and its initial RI implementation Soteria. Arjan has
also written and certified the MicroProfile JWT implementation for Payara. He has been
mentored by Sun’s (later Oracle’s) security expert Ron Monzillo. He has written a large
series of blog posts about EE Security that have attracted a lot of views. As such, writing a
book about Jakarta EE Security is very natural to him.

Teo Bais is a software development manager, Scrum master, and programmer who
contributes to the prosperity of the (software) community in several ways. He is the
founder and leader of Utrecht Java User Group, which counts over 2600 members and
has hosted over 45 events and amazing speakers (James Gosling, Uncle Bob, and over 20
Java Champions, among others), and is running three programs: Devoxx4kids, Speaker
Incubator, and uJCP. Teo served JSR-385 (JSR of the Year 2019) as an EG member and
was nominated as JCP Participant of the Year in 2019. Teo Bais enjoys sharing his
knowledge as a public speaker to help others achieve their goals in career and life.

Werner Keil is a cloud architect, Eclipse RCP, and Microservices expert for a large
bank. He helps Global 500 Enterprises across industries and leading IT vendors. He
worked for over 30 years as IT manager, PM, coach, SW architect, and consultant for
the finance, mobile, media, transport, and public sectors. Werner develops enterprise
systems using Java, Java/Jakarta EE, Oracle, IBM, Spring or Microsoft technologies,
JavaScript, Node.js, Angular, and dynamic or functional languages. Werner is Committer

XV

ABOUT THE AUTHORS

at the Apache Foundation and the Eclipse Foundation, Babel Language Champion,
UOMo Project Lead, and active member of the Java Community Process in JSRs like 321
(Trusted Java), 344 (JSF 2.2), 354 (Money, also Maintenance Lead), 358/364 (JCP.next),
362 (Portlet 3), 363 (Unit-API 1), 365 (CDI 2), 366 (Java EE 8), 375 (Java EE Security), 380
(Bean Validation 2), and 385 (Unit-API 2, also Spec Lead), and was the longest serving
Individual Member of the Executive Committee for nine years in a row till 2017. Werner
is currently the community representative in the Jakarta EE Specification Committee.
He was among the first five Jakarta EE ambassadors when it was founded as Java EE
Guardians and is a member of its Leadership Council.

About the Technical Reviewer

Yogesh Shetty works as a senior software engineer for a European financial institution
based in Amsterdam. He is currently involved with designing and developing
applications in the payments area. He loves to connect problems in the business
domain with technologies in the solution domain - mainly using the Java/JEE suite of
technologies.

When not working, he unwinds by cycling through the idyllic Dutch countryside or
with a book in hand.

Xvii

CHAPTER 1

Security History

This chapter describes the history of security in Jakarta EE, starting from its early
conception and ending where we are today at the moment of writing. We'll take a look
at how the security APIs themselves evolved, how various frameworks were created in
response to restrictions and shortcomings in Jakarta EE security APIs, and who some

of the people were that were involved in this. Note that we’ll be mostly using the term
“EE” throughout this chapter, even for those moments in time where it was called “Java
2 Enterprise Edition (J2EE),” or “Java EE.” Likewise we’ll be using Jakarta Authentication
for the moment in time where it was called “JMAC” (Java Message Authentication

SPI for Container(s)) or JASPIC (Java Authentication SPI for Containers) and use
“Jakarta Authorization” for when it was called JACC (Jakarta Authorization Contract for

Containers).

The Beginning

The story of security in Jakarta EE starts with how security in Java SE itself was conceived.
Java was originally designed to support embedded usage such as running inside set-

top boxes. At the time of its introduction, this shifted to so-called applets, which were
small applications embedded in web pages that executed on the computer of the user
visiting such web page. In that environment, the applet code is foreign and potentially
hostile to the user. The local JVM on the user’s computer therefore employs a security
model that protects the user and the computer against this downloaded code doing
anything harmful. In broad lines, this works by a system of permissions being assigned
to downloaded application code, like a java.io.FilePermission that gives that code
permission to access only certain files instead of permission to read and write all files on
the file system. This kind of security is often called “code-based security.”

© Arjan Tijms, Teo Bais, and Werner Keil 2022
A. Tijms et al., The Definitive Guide to Security in Jakarta EE, https://doi.org/10.1007/978-1-4842-7945-8_1

https://doi.org/10.1007/978-1-4842-7945-8_1

CHAPTER 1 SECURITY HISTORY

Security in Jakarta EE, and actually Jakarta EE itself, started with the release of the
Servlet API in November 1998. At that time, there was no Jakarta EE yet, and Servlet was
a stand-alone API. It was based on the work pioneered by early Java servers such as the
Kiva Enterprise Server from January 1996, which later became the Netscape Application
Server (and even later, eventually, became GlassFish), and more directly by the Java Web
Server, which was released in December 1996.

In November 1998, the first version of Servlet backed by a specification, Servlet
2.1, was released. It did not contain much, if any, security provisions. The only thing
present that remotely had any association with security was the HttpServietRequest.
getRemoteUser() method. This originated from the time when there was barely such a
thing as a Servlet application, let alone a .war archive. At that time, Servlets were akin to
CGlI scripts, which were called by a separate HTTP server. This HTTP server would carry
out authentication itself if needed (mostly BASIC or DIGEST) and, when succeeded,
would set the environment variable REMOTE_USER before calling the CGI script, or in
this case, the Servlet. It’s this CGI era variable that HttpServletRequest.getRemoteUser()
corresponds to.

Around April 1999, on the Javasoft website, operated by Sun Microsystems, the first
mention of a new security extension library for Java appeared:

We welcome comments and suggestions regarding the newly proposed
Java™ Authentication and Authorization Service (JAAS) APIs. The JAAS
Jframework augments the Java™2 Platform with support for both user-based
authentication and user-based access controls.

During the JavaOne 99 conference held between June 15 and 19, 1999, a software
engineer working for Sun Microsystems called Charlie Lai held a presentation about
that new security extension library for Java. Four years earlier at Sun, in 1995, Lai had
been one of the people defining and developing the Pluggable Authentication Modules
(PAM) library for Unix and Unix-like systems. PAM is a general API for authentication
services. It allows a system administrator to add new identity stores (such as for the
Unix password database, NIS, LDAP, and Radius) by means of installing new PAM
modules. Central to PAM is the ability to modify authentication policies by editing
configuration files.

The new security extension Lai was presenting about was essentially a Java-based
implementation of PAM indeed called Java Authentication and Authorization Service
(JAAS). Lai explained that Java 1.0 security was about downloaded code and sandbox
restricted access, Java 1.1 adding signing to downloaded code and Java 2 adding a security

CHAPTER 1 SECURITY HISTORY

policy and domains. JAAS adds the concept of users and allows one to add permissions
to a user via “running as” in a policy file, in addition to “code location” (where the code
was downloaded from) and “code signers” (who signed the code). JAAS also adds “action
code” as source next to “downloaded code.” Action code here means a segment of code
that is passed to a specific method as an (inner) class. To model this new user in code,
JAAS introduced a new type: Subject. Its name is taken from the X.509 public key certificate
that uses the Subject term for any kind of entity (not just persons). More specifically, a
Subject is a bag of Principals and Credentials. At this early date, people asked why Subject
had no explicit support for the Role concept. The answer given by Lai was that Roles
should be specific types of Principals; to be in a role means having a Principal matching
that role in this bag of Principals. Unfortunately, nobody at the time asked how one can
determine that a specific Principal is in fact a role Principal. A seemingly trivial thing that
would come to haunt Jakarta EE for well over 20 years to come. The identity stores that
PAM just called modules are called login modules in JAAS. They came with a somewhat
controversial concept at the time called a Callback, which is a very open-ended interface
without methods (a marker interface) which the login module can use to communicate
with its environment. When asked about this, the JAAS team responded that it allows for
extensibility and that this design allows for a less painful evolution going forward.
Around October that year, the JAAS 1.0 Early Access class libraries were made
available for download, allowing developers to get an early glimpse of the technology.

Enter Jakarta EE

Two months later, in December 1999, just before the turn of the millennium, the first
version of Jakarta EE, EE 1.2, was released, containing Servlet 2.2 with a minimal
but functioning security framework that seems to have been inspired by the way the
aforementioned CGI servers worked; security is largely configured outside of the
application. This is either fully outside the application by means of configuring the
server on which the application runs or semi-outside the application by means of a
deployment descriptor (xml file) that is stored inside the application archive, the latter
often being split in two parts: a standard one such as web.xml and ejb-jar.xml and a
nonstandard one such as sun-web.xml.

This type of security was soon after dubbed “container security,” as it was the
container (server) that was configured, as opposed to the application containing code
to set up and check security. With it came two other terms as well: “declarative security”

CHAPTER 1 SECURITY HISTORY

and “programmatic security.” In declarative security, one defines in a configuration

file (typically an XML file) that a resource such as a URL or a method on an EJB bean is
constrained (secured). In programmatic security, the code does explicit checks at certain
places using the Jakarta APIs.

This initial version of Jakarta EE has a concept of security roles that are used to
declaratively constrain URL patterns in web.xml or EJB bean methods in ejb-jar.xml.
For the web layer, it introduces four authentication mechanisms, BASIC, DIGEST,
FORM, and CLIENT-CERT, which can be set in the web.xml file. Furthermore, there
are four main methods for programmatic security: HttpServletRequest.isUserInRole(),
HttpServletRequest.getUserPrincipal(), EJBContext.isCallerInRole(), and EJBContext.
getCallerPrincipal (and two variants involving the deprecated java.security.

Identity type).

A few things are quite striking in this initial release. For starters, there’s no explicit
concept of the “identity store” (database of user details and roles). This is implied to be
an implementation detail. Furthermore, it’s not possible to extend the authentication
mechanisms and neither is there any type or interface defined for the authentication
mechanisms that are there. Striking is also the mirroring of essentially the same
methods in the HttpServletRequest and EJBContext this early on. It is indicative of a
fundamental problem in Jakarta EE where Jakarta EE is both a platform as a whole,
where users would like to see a single getUserPrincipal() for the entire platform, and
the desire to use specifically Servlet stand-alone (outside Jakarta EE). In other words, if
a platform applicable method is in a class that’s not part of Servlet, then a stand-alone
container like Jetty would not implement it. However, if it’s in Servlet-only class that’s not
applicable to other contexts, it needs to be duplicated.

That same month Lai together with others from Sun Microsystems and IBM
published a paper about JAAS titled “Making Login Services Independent of
Authentication Technologies.” In it, using JAAS for servers and enterprises is mentioned,
though there’s no explicit reference to Jakarta EE.

Shortly after the release of EE 1.2, the work for EE 1.3 was started in February 2000.
As for security enhancements, the plan states that “[...] 1.2 defines a basic architecture
for declarative authentication and authorization. There have been requests to provide
more flexible control of these in [...] 1.3”

Around March 1, 2000, JAAS 1.0 was released as a stand-alone companion library
alongside JDK 1.2.1 and two months later for JDK 1.3.

CHAPTER 1 SECURITY HISTORY

Enter Jakarta Authorization

On April 3, 2001, Ron Monzillo, a security expert working for Sun Microsystems, became
the spec lead of a new JSR filed by Sun: Java Authorization Contract for Containers (later
simply called “Jakarta Authorization”). This JSR started before EE 1.3 was released but,
due to the anticipated amount of work, targeted the next version of EE, EE 1.4. Its aim

is to provide a much more rigid specification of the authorization aspects in security.
Specifically, Jakarta Authorization has the aim to map declarative security constraints
(such as auth-constraint in web.xml) to java.security. Permission instances, store these
in a repository, and make these available to an authorization module. Furthermore,
existing authorization queries in both Servlet and Enterprise Beans, like “has user
access to URL’ and “is user in role,” can be answered by this authorization module by
presenting these queries as checks for permissions.

On September 24, 2001, EE 1.3 came out, including Servlet 2.3 and Enterprise Beans
2.0, and the new Connectors 1.0. Connectors 1.0 has an elaborate security model and
API. Specifically, it depends on JAAS, which at the time was still an independent framework.
This dependency is, however, quite minimal, as the requirement consists merely of using
the javax.security.auth.Subject type. Furthermore, Connectors 1.0, recommends (but
does not mandate) that an application server uses JAAS modules (instances of javax.
security.auth.spi.LoginModule, a.k.a. identity stores, a.k.a. authentication modules) for
predominantly outbound security. There’s unfortunately no concrete specification of
how the JAAS modules should be developed, and the Connectors spec even says they are
typically specific to an application server. Likewise, the configuration of a JAAS module
is left to be specific to an application server as well. Because of Connectors, EE 1.3 has an
official dependency on JAAS, but in practice, there’s barely anything specified for it. For
Servlet and Enterprise Beans, there’s even nothing specified at all.

Among EE users, there’s some confusion at the time about this, and this confusion
would never really go away. Specifically, it results in the belief that the EE Servlet security
elements such as security-constraint in web.xml and HttpServletRequest.isUserInRole()
are part of JAAS, which is of course not the case. Not rarely people would report in, for
example, support forums that they’re using JAAS to secure their application while in
reality only using Servlet security. As an example, the Wikipedia page for JAAS had for
many years a section on Servlet’s FORM authentication, stating that it was a part of JAAS.

On February 6, 2002, JDK 1.4 was released. The former stand-alone JAAS 1.0 library
is now integrated into it, meaning later versions of Jakarta EE that depend on JDK 1.4 or
higher would no longer need to have the explicit JAAS 1.0 dependency.

CHAPTER 1

SECURITY HISTORY

Enter Jakarta Authentication

With the Authorization JSR still in the works, on October 22, 2002, Ron Monzillo started
on a JSR called the Java Authentication Service Provider Interface for Containers,

later simply Jakarta Authentication. This JSR specifically aims to standardize the

authentication mechanism concept, specifically the interface that must be implemented

by an authentication mechanism and how to add this to a container. Like Jakarta

Authorization, Jakarta Authentication from the onset targets both Servlet and Enterprise

Beans. Also working on this JSR is Charlie Lai.

The JSR mentions that the authentication mechanism interface could be used to

create, for example, a Liberty SSO authentication mechanism. This causes a little row,

and eventually IBM votes against the JSR with the following comment related to this:

1)

Potential for adding the Liberty Bindings/Profiles into J2EE.

We do understand that Liberty is only one of many potential input
specifications into this JSR. We feel that such a decision may have
enormous implications and it is too big to be left to an individual
expert group to make. The significance is such that the EC should
give some direction, as a subset of major J2EE licensees support
the WS-Security approach, and potentially a subset support the
Liberty Alliance. One solution could be for the JSR to only deal
with defining a provider interface for the establishment (process
of authentication i.e validating authentication data like userid/
password, or tokens) of an authenticated identity. Therefore, it
would be authentication mechanism agnostic.

But it’s not just Liberty that concerns IBM, the scope of the JSR also doesn’t sit quite

well with them:

2)

Over-broad scope for this JSR.

a) The 1st major bullet has a sub bullet that is out of scope “the binding of
received transport specific security credentials to authentication modules”
as this should be “the binding of received transport mechanism to
authentication modules” We feel that we should not mandate semantics in
this JSR.

CHAPTER 1 SECURITY HISTORY

b) The 2nd major bullet opens up the scope:

“validating mechanism specific credentials received from
container transport mechanisms”:

*

This is out of scope and should be left up to the modules.

The following bullets also talk about “run-as” and this JSR is
performing identity and credential mapping / translation.

*

This is out of scope for a “Authentication Service Provider
Interface” JSR, this should be done in a separate JSR.

“creating transport specific responses as necessary to
implement authentication mechanisms”

* This is also out of scope as this JSR should not be defining any
new transport specific mechanisms.

A very early Spring user, Isabelle Muszynski, asked in April 2003 whether JAAS,
with its pluggable authentication and authorization, would be a viable API to support
in Spring. At that point, the Spring mailing list had just been opened a few months ago,
and it would be almost a year until Spring 1.0 was released. Rod Johnson, the founder of
the Spring framework, agreed it might be interesting. Though Spring at that point didn’t
have any security infrastructure yet, Johnson already had experience with security from
his work on Spring’s predecessor, the MVC framework he wrote for the FT group, making
him knowledgeable on the subject.

Jirgen Holler in May of that same year took a look at Jakarta Authorization, but it left
him somewhat disappointed. The main value that Jakarta Authorization adds, providing
a repository of permissions based on, for instance, constraints in web.xml, isn’t that
much needed according to Holler. What he needs above all is an API for portable
authentication. In a conversation with Muszynski and others, he argued that an “identity
store” (which he called an “authenticator”) is now always vendor specific. (Most servers
ship with say a ready to use identity store backed by an XML file containing users and
roles, but creating a custom one, especially one that’s owned by the application, requires
the use of vendor specific APIs.)

Here, Holler essentially very early on drew the conclusion that the J2EE security
model is essentially targeted at integrating applications into an intranet situation, where
a few user types such as admin and employee are centrally managed and shared by
different, typically externally obtained, applications used by an office. The opposite

CHAPTER 1 SECURITY HISTORY

situation, a single rich web application with a tightly integrated application user base,
where those users subscribe via the Internet and are fully handled by the application,
doesn’t fit this model very well. Rod Johson agrees security in J2EE is not really
standardized well.

Foreshadowing Shiro Part | - IL DRBAC

Somewhere later that month, Les Hazlewood, a J2EE enterprise architect working

at Transdyn Controls, Inc., was plowing through Google and tons of security books

in a quest to find a suitable security framework for an enterprise application he was
working on. This particular application has very strict but at the same time very dynamic
security requirements. After a long search, he ended up finding very little to his liking.
Disappointed, Hazlewood started to think about creating something himself and came
up with a system he called “Instance-Level, Dynamic Role-Based Access Control (IL
DRBAC).” Although intended to run on J2EE, it totally avoids using its existing security
system. In his system, there are users having one or more roles, which are each mapped
to java.security.Permissions. Permissions give access to instances of a resource, for
instance, a web page. Incidentally, this is exactly what JACC does, though it’s not clear
whether Hazlewood is aware of it at that moment. Hazlewood’s system specifically
emphasizes dynamic behavior, in that all these elements can be created and modified
during the runtime of an application and are immediately applied, even if users are
already logged in.

In August 2003, a discussion took place among Tomcat users and committers. The
topic of discussion was the almost mythical “j_security_check’, which is the path the
FORM authentication mechanism in Jakarta EE listens to. A Tomcat user, Al Sutton,
was convinced Servlet filters should be invoked when mapped to paths containing this,
but legendary Tomcat committer and Servlet EG member Craig McClanahan wasn’t
easily convinced. In that discussion, John T. Bell, who was writing the J2EE Open Source
Toolkit book at that time, pointed out that the current state of security in Jakarta EE
Security is too limited. Bell provided the following examples of limitations to make his
point clear:

¢ Logins that require more than just user id and password.

e Support for optional login or login directly from a home page form

CHAPTER 1 SECURITY HISTORY

o Logins supporting a “remember me” feature

o Situations that require logging and retrieval or recording of
information upon each login

Tomcat committer Remy Maucherat pointed out that Tomcat can be extended to
accommodate this using Tomcat APIs such as Realm, Authenticator, and the Valve. Bell
didn’t buy this, however, and argued that this is hardly a valid way, as they are Tomcat-
specific APIs. What was needed according to him was a standard API to do those things.
Near the end of that month, Servlet spec lead Yutaka Yoshida provided a clarification:

In regards to this issue, servlet EG had a consensus that Filter must not be
applied for j_security_check. We believe the application component should
not be involved in the container-managed security. Although we under-
stand why people are using filter to manipulate the authentication mecha-
nism, it doesn’t solve all issues related to the security and must be addressed
in a larger scope of the portable authentication mechanism, which I expect
to have in the next version of the specification.

There are a few interesting things to note here besides just the actual clarification
regarding j_security_check. The first is that in 2003, the Servlet EG was firmly believing
in the total separation between security code and application code, which would be a
recurring issue for years to come. Secondly, we see here that the Servlet EG had a plan to
introduce portable authentication mechanisms in the Servlet spec. Eagle-eyed readers
of the Servlet could have noticed this on April 17, 2003, in the Proposed Final Draft 3 for
the Servlet 2.4 spec, where the following somewhat cryptic change note appeared in the
appendix:

HttpSession.logout method was removed. The portable authentication

mechanism will be addressed in the next version of this specification and
logout will also be discussed in that scope.(12.10)

On November 24, 2003, EE 1.4 was released, which included Servlet 2.4 and
Authorization 1.0. There were no major security features added to Servlet, though the
work on Authorization, and specifically the work to translate the existing constraints to
the new set of permissions, resulted in various clarifications:

o C(larification that the security model is also applied to filter (12.2)

e Change the status code from 401 to 200 when FORM authentication is
failed as there is no appropriate error status code in HTTP/1.1 (12.5.3)

CHAPTER 1 SECURITY HISTORY

e Clarification: “run-as” identity must apply to all calls from a servlet
including init() and destroy() (12.7)

o (larification of security constraints, especially in the case of
overlapping constraints (12.8)

e Change the word “auth constraint” to “authorization
constraint” (12.8)

o Clarification of “overlapping constraint” (12.8.1, 12.8.2)
o Login/Logout description added (12.10)

Authorization 1.0 itself greatly enriches the security framework in Jakarta EE. Having
a permission store available makes for a much more powerful authorization model,
and having pluggable authorization modules, which can essentially make any kind of
authorization decision transparently to the applications running on a server, is indeed
powerful. However, not all is well. The fixation on the concept of container security,
where security is strictly separated from the application, has led to a setup where
authorization modules can only be plugged in at the server level, or actually, only at the
JVM level. Furthermore, the specification mentions system properties and a classpath
to place authorization module jars on, but for modular servers, it’s not clear at all
which location a server considers its classpath (if there even is such a location). More
problematic is the fact that authorization modules are an all-or-nothing approach;
they completely replace the existing authorization structure and are thus not able to
simply add some additional rules. As if these issues aren’t problematic enough, there
are even more serious issues in practice. Though the specification states that a default
authorization module should both be present, as well as actually used in a Jakarta
implementation, in practice, implementations ignore this. Some implementations
don’t have a default authorization module present at all, just seeing it as an extension
point to the server, while others have such authorization module but then by default
use their own authorization code and have server specific switches to enable Jakarta
Authorization.

Jakarta Authorization also suffers from the opposite problem we saw with
HttpServletRequest.getUserPrincipal(), which was duplicated all over the place. Jakarta
Authorization is a single, separate, spec that Servlet containers can use to enrich their
security model. Except, they don’t.

10

CHAPTER 1 SECURITY HISTORY

Painfully missing from the EE 1.4 release is the highly anticipated Jakarta
Authentication. In fact, nothing has ever been heard of it. According to the plan, a
Community Draft would have to be delivered earlier in the year, followed by a Public
Draft and a Proposed Final Draft, but nothing happened.

Enter Spring Security

In the same month that EE 1.4 was released, November 2003, Ben Alex, the managing
director of his own company, Acegi Technology, looked at the new, at the time not yet
officially released, framework sitting on top of Servlets called Spring. Alex inquired about
its security features, but its creators, Ron Johnson and Juergen Hoeller, didn’t have the
time yet to fully look into it. Alex then started writing his own security code using Spring
right away. He proposed it a month later but initially didn’t get any response.

The following months, Alex gave his proposal more thoughts and struggled with
questions such as whether to use JAAS or not, whether to use the authentication data
from the container (the principal and its roles) or let the application populate some
object for this, and more.

In February 2004 when people asked again about security and Spring, both Alex
and Hazlewood seized the opportunity to pitch their work as a base for a Spring security
initiative. Alex was very proactive and sent his work in a zip file to Johnson and Héller,
proposing it to be simply called “Spring Security,” and made a case for it to be part of
Spring. At that time, however, Spring committers were frequently debating about the
focus of Spring: Should it remain a small DI container, or should it include higher-level
frameworks? For the time being, it was decided to develop “Spring Security” outside
Spring as Acegi Security, after Alex’s company.

On March 3, 2004, the initial public release of Acegi, Acegi 0.1, was presented to the
world. At this early point, source code wasn'’t available from version control yet.

On March 6, 2004, Alex mentioned on the JBoss forum that for Acegi Security, he
needed to write security adapters specifically for JBoss, since there was still no standard
API for many security-related things. For instance, in this JBoss adapter, Alex obtained
an import security object called the “Subject” in a nonstandard way using a JNDI lookup
for “java:comp/env/security/subject” and then iterated over all the principles in this
Subject until he found the Acegi one. Scott Stark replied that JBoss now marks the caller
principal specifically by putting it in a group called “CallerPrincipal,” although this is still
JBoss specific and not standardized. More than 16 years later, this issue would still not be

11

CHAPTER 1 SECURITY HISTORY

solved in what’s then called Jakarta EE, and Soteria, a Jakarta Security implementation,

would use this exact same server-specific knowledge to obtain the caller principal.
Less than two weeks later, on March 17, 2004, Alex checked the code he

had developed offline into version control. Its central class for authentication is

AuthenticationManager:

/*
* The Acegi Security System for Spring is published under the terms
* of the Apache Software License.
*

* Visit http://acegisecurity.sourceforge.net for further details.
*/

package net.sf.acegisecurity;

ek

* Processes an {@link Authentication} request.

*

* @author Ben Alex

* @version Id

*/

public interface AuthenticationManager {

/**
* Attempts to authenticate the passed {@link Authentication} object,

returning a fully populated <code>Authentication</code> object
(including granted authorities) if successful.

*
*
*
* (exceptions omitted for brevity)
*
* @param authentication the authentication request object
* @return a fully authenticated object including credentials
* @throws AuthenticationException if authentication fails
*/
Authentication authenticate(Authentication authentication)
throws AuthenticationException;

12

CHAPTER 1 SECURITY HISTORY
The Authentication class it uses doubles as a credential, and an authentication
outcome:
/**

Represents an authentication request.

<p>
An <code>Authentication</code> object is not considered

EEE S

authenticated until
it is processed by an {@link AuthenticationManager}.
</p>

<p>
Stored in a request {@link net.sf.acegisecurity.context.SecureContext}.
</p>

* K X X X ¥ X X

@author Ben Alex

* @version Id

*/

public interface Authentication {

//~ Methods ==

public void setAuthenticated(boolean isAuthenticated);

/x*

* Indicates whether or not authentication was attempted by the {@link
* net.sf.acegisecurity.SecurityInterceptor}. Note that classes should
* not rely on this value as being valid unless it has been set by a

* trusted <code>SecurityInterceptor</code>.

*

* @return true if authenticated by the <code>SecurityInterceptor</code>
*/

public boolean isAuthenticated();

/**

* Set by an <code>AuthenticationManager</code> to indicate the
authorities
* that the principal has been granted. Note that classes should not rely

13

