Building Games
with Ethereum
Smart Contracts

Intermediate Projects for Solidity
Developers

Kedar lyer
Chris Dannen

ApPress’



Building Games with
Ethereum Smart
Contracts

Kedar lyer
Chris Dannen

Apress’



Building Games with Ethereum Smart Contracts

Kedar Iyer Chris Dannen
Brooklyn, New York, USA Brooklyn, New York, USA
ISBN-13 (pbk): 978-1-4842-3491-4 ISBN-13 (electronic): 978-1-4842-3492-1

https://doi.org/10.1007/978-1-4842-3492-1
Library of Congress Control Number: 2018943122
Copyright © 2018 by Kedar Iyer and Chris Dannen

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image, we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC, and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484234914.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper


https://doi.org/10.1007/978-1-4842-3492-1

Table of Contents

About the AUthOrS.........ccccmmmsmmmmssnssmssnssssssssssssss s ssns s snsssssnnsnssnnnnns ix
About the Technical ReVIEWEr .......ccvcusssesssssssssnsssassssnsssssssssssssnsssassssass xi
Acknowledgments.......cccermssssssssnnnnsmmsssssssssssnnsssssssssssssnssnnsssssssssnnnnnns Xiii
What Is Ethereum? .........cccucmmsmmmssnmsssmmssmssasssssssssnsssssssssssssnsssassssasssas Xv
Chapter 1: Conceptual Introduction..........cccccusseemrrnssssnnnnnssssnsnssssssnsssens 1
2o 6 1
1 T T 2
BT T (0] 1S 3
Ethereum Virtual Maching (EVM)........c.ccoverrnsenmnesnnse s se s ssssesenns 3
AR TrB ... ————————————— 5
WED3 EXPIAINEM ....ccevereerrererere s ressere s se e e s sa s e saesa s e saesnesassesnesaens 6
What’s New with Ethereum..........cco e 7
Bitcoin vS. EXNEreUM.......coveeeeceee e 8
Addresses and KEYPAIrS........ccocuererereeserensesesesessssesessesessssessssesessssesssssssssssssssnsssenes 9
Contracts and External ACCOUNTS ........ccveeerrererensesesessssnsesessesesse e sessesessesessssesenns 10
Programs in Ethereum ... 10
Digging into SONAITY ......cccvverrerieriririere e sr e snens 11
Y10 P2 T L T 12
BIOCK EXPIOTEIS ...ccueieieirerie st se s s e sn e s e sne s sss s e ssesnens 13

iii



TABLE OF CONTENTS

Useful Smart CONtracts.........coouvererermnnsnmssssssssse s sessssssas 14
Pros and Cons of Ethereum Gaming ..........cccoceerevrniennencnesennsesesseses e sesesesenns 14
People t0 FOIIOW.........cocrrecer e 15
RS T 11T T o 17
Chapter 2: The Ethereum Development Environment..........ccccunnnnnnn 19
GELEING ST UP et 19
Hardware ChOICES ........ccoveerrierrrenirsse s se s s nsnnes 20
Operating SYSTEM........cocvcvvireres s 21
Programmer’s TOOIKL..........cooucevnenemnnennesneses s 23
Ethereum CHENtS .........cccvvevnesnese s s ssanes 26
DEPIOYMENL ... 28
Basic Geth Commands ..o s 29
Connecting to the BIOCKCHAIN .......cccccvvvirienernsinsenene s sese e ssesesessesees 33
Network Synchronization .........cccoevvvncninnnnsnse e 34
FAUCETS ..ot 36
1] 4= 36
Chapter 3: First Steps with Ethereum.........c.ccusvemnmnssnnnnnnsssssnnesssssnnns 37
Project 3-1: Creating Transactions..........c.ccoveerrrrnicnnescns e 37
Generating Wallets.........cccorecrrrrnierreser e se s e 37
0btaining EINEr ..ottt e 38
Sending Fake Ether with the Geth Command Line..........ccovcvnvennencrniennnn 40
Project 3-2: Deployment 1071 ... 44
Hello WOorld CONtract...........covoceeeererenereneserese e 44
Manual Deployment..........coocvvininnnnn e 46
Deploying With TrUffle.......coovrcnirrr e 49
SUMMANY.....eieeeresere e n e e e e 56

iv



TABLE OF CONTENTS

Chapter 4: Smart Contracts in the Abstract ..........ccccccmrrnssnnnninssnnnn 57
TrUFIE TREOIY c..eveceeeetrer e e s 57
CoNfIQUrALION. ......c.cceerecrirerire e s 58
MiIgrations .......ccccerevinnierere e 60
Development ENVIroNmMENt ..........cccovrvrirnenirienses s se e s s 63

LT 1711 T P 64
L] 66
Ethereum Virtual Maching...........coocoreernecnrercree e 67
GAS FEES ...t 67

RS0 10 1 T 68
0] 10 10 68
Function Calls in SOlAItY ........ccccveerererrnrererererese e 69
0] L T Y R 72
Working with Data...........ccovinininnn e 73
CONTract STIUCIUNE .......ceeceeee e 80
Logging and EVENLS ... s 82
Operators and Built-in FUNCHIONS.........cccoivrvninr s 83
Error HANAING ....coveiiirccnr s 87
Ethereum ProtoCol............oo oo 89
SUMMANY.....eiieeresere e r e se s e re e e e ne s 90
Chapter 5: Contract Security ..........cccornnsmmmmmnnssnnnmnsssssnmnssssnmsans 91
All Contract Data IS PUDIIC! ... 91
[0 ES] T 95
AQAIrESSES .....ceceriee e 95
000112 T P 96
Storing Ether in CONTractS........ccccvverevvververiere s s s sss s s ssssessessessssessesseses 97



TABLE OF CONTENTS

L1100 (T 98
Withdraw Methods.........coveeerecrrcrerere e 103
Calling External Contracts..........ccccvcvennnnnniennsnsnse s 107
Re-entrancy AtACK........c.ccovvrvnininsnsnre s snens 107
RACE CONAILIONS.......ccovecrereerere e rerce e 111
Suspendable CoONtracts ... 111
Random-Number GEneration ...........cueeeerenrnsesnsesesiese s 113
ISSUES With INTEYEIS....cecercerere s 115
UNderflow/OVerflOW........ccceverenenenesersse e 115
Truncated DiVISION ........ccccerviernenrese s 118
Functions Are Public by Default...........ccoccvvriennnniniennnnsene e sesessens 119
Use msg.sender Instead of tX.0Fgin .......c.ccocvveririnnnn s 120
Everything Can Be Front-RUN..........ccccooeiricrniennesene e 122
Previous Hacks and AHACKS........c.ccoveererenerenrcrrese e 122
THE DAD.....c e s b p e 123
Parity MUHi=Sig......cccocvrririinrrir e snens 124
0 L SN 126
GOVEINMMENTAL .......coeeeeeeeeeeecreee e 126
SUMMANY.....eiveerireseree e re e e s e ne e e 127
Chapter 6: Crypto-economics and Game Theory ........cccuusssssssnsnnnnnas 129
Securing the BIOCKCNAIN .........ccocvverenirinierens s s e ssesessessessens 129
ProOf-0f-WOrK.......ccovoeirirrririeisne s 130
Proof-0f-Stake........ccccorrnnc 131
Proof-0f-AUthOrity.......cccoierrrrire e nnens 132
FOrming CONSENSUS .......ccvverrerrererserersessnsessessesssssssessesssssssessessessssessessesssssssessees 132
Transaction FEES ... 133
INCENTIVES. ....cceeececee e 133



TABLE OF CONTENTS

AHACK VECTOIS ..ottt s se e s a e s 134
51% AHACKS. .....cereiirerisiree s s 135
Network SPamming.......cccceievrverieriesenserseressssessesessesessessessessssessessessssessessens 136
Breaking Cryptography........cccvevvrenerrersenensssenesessssessessessessssessessessssessessens 137
Replay ALACKS ......cccvverriererirrersie e s s 138
Testnet Attacks and ISSUES ... 139

SUMMAIY.c.veiteirerereseesere s e sese e sresse e ssessessesessesaesaess s e nsesaesaessssessesasssssensessens 140

Chapter 7: Ponzis and Pyramids........ccccusseennesssssnnsssssssssssssssssnssssssnns 143

Schemes: Ponzi vs. PYramid ..........cccooeeenenerenesnsesesesesese s sessesenns 143

Verifiably COrTUPT ......covvceereeree e e 144

SIMPIE PONZ ..ot nne e 145

REAlISC PONZI......cccoviriiiiiriinsise s 150

SimMPIE PYramid.........cccocvveriernserrereressssessesessssessesessessssessessesssssssessesssssssensessens 155

GOVEINMENTAL.....cvccccririseee e 162

SUMMANY....citiciiirec e s s e e s e r e e R r e e e nne s 170

Chapter 8: Loteries .....uueeeeemmmrrimmssssssssssnsssssssssssssssssnsssessssssssssssnnsnnas 171

Random-Number GEneration ...........ccueererernsesssesssiese s sessenes 171

SIMPIE LOEEIY...civieerreserce e e e 172

RECUITING LOMEIY ....eveieerere ettt se s se e sne e s sn e s sne s 176

Constants and Variables ... 179

LC 7211 1T o] O 181

Cleanup and Deployment...........cccninninnnnrnre e 186

RNG LOTEEIY ....eeeeeereeerieeresese e se e nsens 187

POWEIDAIL ...t 194

SUMMAIY.c.ueitiirere s e s b e s e s b b e e e s R sae e e e naenne e 209

vii



TABLE OF CONTENTS

Chapter 9: Prize PUZZIES.........ccerrrsssmnnsmssssssnsssssssnsssssssssssssssssnsnsssssnns 211
ODSCUNNG ANSWELS ....vcuereeriresersesesieesassesessesessesessssesessesessesessssessssesessssessssesenns 211
SIMPIE PUZZIE........oeeieere e e 212
Commit-ReVeal PUZZIE ...........ccoveeereereerereer e 216
Additional Prize ChallENges .........cccvvrerrnsesesesesssesssesssssessssessssessssssesssssssssenens 223
L1414 OO 224

Chapter 10: Prediction Markets........ccccmmmmmmmmmmsssssssssnnsmssssssssssssssnnnns 225
CONEraCt OVEIVIBW.......covuiuiicrerrsissse s s 226
Tracking State with EVENES ... 233
Trading SRArES ..o ——————— 234
ReSOIVING MAIKELS .......ccevererereerircres e 240

1A 10| L= 0] - o S 240
MURIPIE OFaCIE ...t ne e 242
Schelling Point CONSENSUS .......c.veevrrererrenerensesesesesese e sesesessssessesesessesenns 243
SUMMANY....eivierieesrsese e nr e e 244

Chapter 11: GambIiNg ......cccccussseenmmssssnnnmmssssssnnmsssssnnsesssssnnsesssssnssssssnnns 245
Gameplay Limitations ......c.ccovvvvrierennsninesssessene s sessese s s ssssessesnens 245
SALOSHI DICE ...covrvrieecriris s 245
ROUIBLEE......cecceece e s 252
SUMMANY..c..citiiiire e p e e s R e e e e nne s 260

o) = € 261

1T - 263

viii



About the Authors

Kedar Iyer is a software engineer who

runs Emergent Phenomena, a blockchain
consultancy. He is currently writing
blockchain software as a member of the
Everipedia team. He has a bachelor’s degree
in mechanical engineering from UCLA and
has worked in the past with microsatellites,
robotics, and multiple startups.

Chris Dannen is a cofounder and partner at
Iterative Capital, a large-scale cryptocurrency
miner, investment manager, and private digital
asset exchange. A self-taught programmer,

he has written three technical books and
holds one computer hardware patent. He was
formerly the technical editor at Fast Company.
He graduated from the University of Virginia
and lives in New York.

ix



About the Technical Reviewer

Massimo Nardone has more than 23 years
of experience in security, web/mobile
development, and cloud and IT architecture.
His true IT passions are security and Android.
He holds a master of science degree in
computing science from the University of
Salerno, Italy.
He currently works as chief information

security officer (CISO) for Cargotec Oyj and is

a member of ISACA Finland Chapter Board.
Massimo has reviewed more than 40

IT books for various publishing companies and is the coauthor of Pro

Android Games (Apress, 2015).



Acknowledgments

Thank you to Chris Dannen and Solomon Lederer for getting me into
blockchain and introducing me to the NYC blockchain community. To
Nancy Chen and James Markham at Apress for putting together this book,
and Chris for offering me the opportunity to write it. And to my parents
and sister for being supportive of my odd career choices.

—Kedar

Thank you to my team at Iterative Capital for their hard work and support,
and to Kedar for traversing the smoky parlors of Las Vegas to make the
games in this book especially authentic.

—Chris

xiii



What Is Ethereum?

Ethereum is a trusted compute platform with a native currency built on
top of a decentralized network. A global network of nodes works together
to form a consensus on the state of a shared database.

If Bitcoin offers us a glimpse into the future of money, Ethereum offers
the equivalent for private property, financial assets, legal contracts, supply
chains, and personal data. Any digital unit that can be owned by someone
can be stored in an Ethereum smart contract and transferred between
owners without the need for a third party or middleman such as a bank,
exchange, or central government.

Ethereum works by successively executing a series of transactions,
each of which is a block of code. That code is written in a special language
named Solidity. This is the language we will be exploring in this book.

We will start by getting set up (Chapter 2), deploying simple contracts
(Chapter 3), and going over the basics of the Solidity language (Chapter 4).
Then we will take a brief detour into the theory behind contract security
(Chapter 5) and crypto-economics (Chapter 6) before spending the last
half of the book walking through a series of sample projects (Chapters 7-11).
By the end of this book, you will be comfortable reading and interpreting
existing Solidity contracts and ready to write your own original Solidity code.

Prerequisites

Working with Ethereum and Solidity requires some knowledge

of computer science concepts and prior experience with another
programming language. You don’t need to be an expert, though; just the
basics will do.



WHAT IS ETHEREUM?

Computing Concepts

The best resource for learning the basics of computer science is the

Harvard CS50 lecture series on YouTube (www.youtube.com/user/cs50tv).
It’s a fast-paced, detailed course. If you can make it through all 10 weeks,
by all means do, but the first five lectures will teach you enough to tackle
Solidity.

For learning about networking, Linux, or security and hacking,
check out the popular uploads for Eli the Computer Guy on YouTube

(www. youtube.com/user/elithecomputerguy/videos?shelf id=26&view=
0&sort=p). His videos are much more beginner-friendly than the CS50
lectures, so if you're looking for a soft intro to ease you in, this the place to
start.

We will be using UNIX (Linux or Mac) command lines throughout
the book. Instructions are given for how to make your Windows system
compatible with our commands, but we recommend learning Linux if
you can.

Networking and security are less important concepts to know, and you
can make it through the book and become a Solidity developer without any
prior knowledge of either. Networking is important in the Ethereum protocol
under the hood, but is abstracted away at the application level, where we
will be writing our code. Security is important because the amount of money
passing through our contracts will make them lucrative targets. We spend
an entire chapter discussing contact security (Chapter 5), but any additional
knowledge you can obtain on the topic will serve you well.

Programming

Before diving into Solidity, you should have previous programming
experience with another language. The closest language to Solidity is C,
but it is neither beginner-friendly nor easy to set up. Your best bet for a
simple programming introduction is Codecademy. The simplest language


http://www.youtube.com/user/cs50tv
http://www.youtube.com/user/elithecomputerguy/videos?shelf_id=26&view=0&sort=p
http://www.youtube.com/user/elithecomputerguy/videos?shelf_id=26&view=0&sort=p

WHAT IS ETHEREUM?

to learn is Python, and the simplest Codecademy course is Learn Python
(www.codecademy.com/learn/learn-python).

JavaScript, while slightly more confusing with syntax, is still easy to
learn and more relevant to Ethereum programming because it is used by
most client software for interacting with the blockchain. We will be writing
and issuing simple JavaScript scripts and commands in this book. The
best resource for JavaScript is the Codecademy Introduction to JavaScript
course (www.codecademy.com/learn/introduction-to-javascript).

Suggested Reading

This book is an intermediate-level programming book. Before starting with
this book, consider that maybe you should be reading a different one.

Introducing Ethereum and Solidity by Chris Dannen (Apress, 2017) is a
great book for getting you up to speed with all things Ethereum. If you just
want to understand how Ethereum works without getting deep into the
nuances of writing smart contracts, that’s the book you should be reading.

In the Beginning...was the Command Line by Neal Stephenson
(William Morrow, 1999) is the best book I've come across on the history
and metaphysics of software. It reads like a novel, is far better written than
this book, and if you're here for anything except learning Solidity, you
should probably be there instead.

Protocols, Platforms, and Frameworks

Ethereum is both a protocol and a platform, but not a framework.

A protocol is a series of rules used to standardize communication over
a network. Basic protocols such as IP and TCP allow the garbled bytes
flowing through fiber-optic cables to be routed to their proper destinations
and decoded into a meaningful structure. Without protocols, the
communication between computers would be random noise, like a Maori
and English speaker attempting to hold a conversation.

xvii


http://www.codecademy.com/learn/learn-python
http://www.codecademy.com/learn/introduction-to-javascript

WHAT IS ETHEREUM?

The Ethereum protocol allows nodes on the Ethereum network to hold
a meaningful conversation with each other. Through this conversation,
they can broadcast transactions, synchronize nodes, and form the
consensus that underpins the network.

Platforms and frameworks are a little more loosely defined. For our
purposes, we distinguish them by saying platforms allow applications to be
built on top of them, whereas frameworks are (usually software) structures
that make building those applications easier.

Ethereum is a platform. We can build and deploy distributed
applications, or dapps, onto the Ethereum blockchain. Truffle, which
we will encounter in Chapter 2, is a framework. It makes developing,
compiling, and deploying Ethereum dapps easy.

xviii



CHAPTER 1

Conceptual
Introduction

This chapter provides a high-level overview of the Ethereum blockchain.
The blockchain is an ordered series of blocks, each of which is an ordered
series of transactions. A transaction runs on the Ethereum Virtual Machine
and executes code that modifies the state tree. We will explore each of
these concepts in more detail in the following sections.

Blocks

As stated previously, a blockchain consists of an ordered series of blocks.
A block consists of a header with meta information and a series of
transactions. Blocks are created by miners through the mining process and
broadcast to the remainder of the network. Every node verifies received
blocks against a series of consensus rules. Blocks that don’t satisfy the
consensus rules will be rejected by the network.

A fork occurs when a network has competing sets of consensus rules.
This usually occurs through an update in the official client, which in
Ethereum’s case is a program called geth.

Soft forks occur when the newer set of rules is a subset of the old rules.
Clients still using the old rules will not reject blocks created by clients using
the new rules, so only block creators (miners) have to update their software.

© Kedar Iyer and Chris Dannen 2018 1
K. Iyer and C. Dannen, Building Games with Ethereum Smart Contracts,
https://doi.org/10.1007/978-1-4842-3492-1_1



CHAPTER 1  CONCEPTUAL INTRODUCTION

Hard forks occur when the new set of rules is incompatible with the old
set. In this case, all clients must update their software. Hard forks tend to
be contentious. If a group of users refuses to update their software, a chain
split occurs, and blocks that are valid on one chain will not be valid on the
other. There have been six hard forks in Ethereum, one of which led to a
chain split and the creation of Ethereum Classic (ETC).

Mining

Mining nodes in the Ethereum network compete to create blocks by

using a proprietary proof-of-work algorithm called Ethash. The input

to the Ethash algorithm is the block header, which includes a randomly
generated number called a nonce. The output is a 32-byte hex number.
Modifying the nonce modifies the output, but in an unpredictable fashion.

For the network to accept a mined block, the Ethash output for the
block header must be less than the network difficulty, another 32-byte
hex number that acts as a target to be beaten. Any miner who broadcasts
a block that beats the target difficulty receives a block reward. The block
reward is awarded by including a coinbase transaction in the block. The
coinbase transaction is usually the first transaction in the block and
sends the block reward to the miner. The current block reward since the
Byzantium hard fork is 3 ether.

Sometimes two miners produce a block around the same time, and
only one gets accepted into the main chain. The unaccepted block is called
an uncle block. Uncle blocks are included in the chain and receive a lesser
block reward, but their transactions don’t modify the state tree.

The security of a blockchain is proportional to the amount of hashpower
in the network. More hashpower in the network means each individual
miner has a smaller percentage of the total hashpower and makes network
takeover attacks more difficult (see “51% Attacks” in Chapter 6). Including
uncle blocks in the chain increases the security of the chain because the
hashpower used to create the unaccepted block doesn’t get wasted.

2



CHAPTER 1  CONCEPTUAL INTRODUCTION

The network difficulty is constantly adjusted so that a block is
produced every 15-30 seconds.

Transactions

A transaction sends ether, deploys a smart contract, or executes a function
on an existing smart contract. Transactions consume gas, an Ethereum
measurement unit that determines the complexity and network cost of

a code operation. The gas cost of a transaction is used to calculate the
transaction fee. The transaction fee is paid by the address sending the
transaction to the miner who mines the block.

Transactions can contain an optional data field. For contract
deployment transactions, data is the bytecode of the contract. For
transactions sent to a smart contract, data contains the name and
arguments for the function to invoke.

Ethereum Virtual Machine (EVM)

A processor is an integrated circuit that executes a series of given
instructions. Each processor has a set of operations it can perform. An
instruction consists of an operation code, or opcode, followed by input data
for the operation. The x86 instruction set is the most common instruction
set in use today and has about 1,000 unique opcodes.

A program is a set of instructions executing blindly in order. All
code—be it punchcards, assembly, or a high-level language such as
Python—gets compiled or interpreted down to a series of raw bytes.
These bytes correspond to a series of processor instructions that the
computer can run in order, like a dumb machine. Listing 1-1 shows what
a Hello World program looks like in x86 Linux Assembly.



CHAPTER 1  CONCEPTUAL INTRODUCTION

Listing 1-1. Hello World in x86 Linux Assembly’

section .text
global _start ;must be declared for linker (1d)
_start: ;tell linker entry point
mov edx, len ;message length
mov ecx,msg ;message to write
mov ebx,1 ;file descriptor (stdout)
mov eax,4 ;system call number (sys write)
int 0x80 ;call kernel
mov eax, 1 ;system call number (sys exit)
int 0x80 ;call kernel
section .data
msg db 'Hello, world!',oxa  ;our dear string
len equ $ - msg ;length of our dear string

A virtual machine, or VM, is a software program that pretends to be a
processor. It has its own set of opcodes and can execute a program tailored
specifically to its instruction set. The low-level bytes that correspond to
VM instructions are referred to as bytecode. Programming languages can
be written that compile down to bytecode for execution. The Java Virtual
Machine (JVM) is the most popular virtual machine in use today. Some
of you make a living off it. It supports multiple languages including Java,
Scala, Groovy, and Jython.

Because it is an emulation, a virtual machine has the advantage of
being agnostic to the hardware it runs on. Once a virtual machine has been
ported to a new platform such as Windows, Linux, or the embedded OS

'Sourceforge, “Hello World!; http://asm.sourceforge.net/intro/hello.html


http://asm.sourceforge.net/intro/hello.html

CHAPTER 1  CONCEPTUAL INTRODUCTION

in your “smart” refrigerator, programs written for that virtual machine can
run equally well on the fridge as on your “smart” TV. Java’s “Write Once,
Run Anywhere” motto comes to mind.

Ethereum has a VM of its own called the Ethereum Virtual Machine
(EVM). Ethereum requires its own VM because each opcode in the EVM
has an associated gas fee. Fees act as a spam deterrent and allow the
EVM to function as a permissionless public resource. Each of the EVM’s
custom opcodes has its own fee, meaning that well-written contracts can
be cheaper to execute. For instance, the SSTORE operation stores data into
the state tree, which is an expensive operation because the data has to be
replicated across the whole network

The sum of the gas fees accumulated by a transaction’s bytecode
determines the transaction fee.

State Tree

The primary Ethereum database is its state tree, which consists of key/value
pairs that map Keccak256 hash keys to a 32-byte value. Data structures
in Solidity use one or multiple state tree entries to create programming
constructs that are more conducive to programming. A simple data type is
32 bytes or less and can be stored in one state tree entry. A complex data
type like an array requires multiple state tree entries. See the “Data Types”
section in Chapter 4 for more on Solidity data structures.

Because a Keccak256 hash is 256 bits long, the Ethereum state tree
is designed to store up to 2°° unique entries. However, after about 2%
entries, hash collisions will make the tree fairly unusable. Either way, this
is more disk space than currently exists across the world, so developers
can assume that unlimited storage exists. Paying for that storage is another
issue, as storing data in the state tree consumes a significant amount of
gas. Contracts should be written carefully to minimize the number of
insertions and updates they make to the state tree.



CHAPTER 1  CONCEPTUAL INTRODUCTION

The state tree is modified and built up by executing transactions. Most
transactions will modify the state tree.

The state tree is implemented as a Merkle Patricia trie. Understanding
this data structure is not essential for Solidity programming, but if you are
interested, the details are documented on GitHub at https://github.com/
ethereum/wiki/wiki/Patricia-Tree.

Web3 Explained

Many early adopters of blockchain technologies were excited by its
potential to usher in a new era of the Internet—Web 3.0. Web 1.0 was
the initial phase of the Internet: a platform used mostly for selling
goods and posting information. Web 2.0 introduced social networks
and collaboration to the Internet. Sites including Facebook, Flickr, and
Instagram brought user-created content front and center. Web 3.0 is the
hope for a new decentralized Web, where central authorities no longer
have the power to conduct censorship or control user data.

DARPA originally designed the Internet to be a decentralized
communication network that could not be taken down by attacking any
central authority. As the Web became more commercialized in the last 15
years, the degree of centralization has increased as well.

Scoring well on Google’s search algorithm has become a must for new
sites to gain traffic. Facebook controls a large percentage of user-generated
data and content behind its walled garden. Netflix and YouTube combined
account for about one-third of Internet traffic. Countries such as China
and Turkey take advantage of this by banning sites that do not agree to
their censorship rules.

One of the goals of Web 3.0 is to re-decentralize the Web so it is harder
to censor and control. Ethereum is an exciting platform for Web 3.0
enthusiasts because any application built on top of it is automatically
decentralized.


https://github.com/ethereum/wiki/wiki/Patricia-Tree
https://github.com/ethereum/wiki/wiki/Patricia-Tree

CHAPTER 1  CONCEPTUAL INTRODUCTION

An application on Ethereum is commonly referred to as a distributed
application, or dapp. Unlike traditional Internet applications, they do not
need servers for hosting and data storage. The Ethereum network handles
all the traditional duties of the server, including authentication, contract
data storage, and an API. This means dapps cannot be censored like
traditional sites. Censoring a dapp would require blacklisting every node
on the Ethereum network—not a trivial task.

The term Web3 can lead to a bit of confusion among the Ethereum
community. Although initially it referred to the idea of Web 3.0, it now also
commonly refers to Ethereum’s client library, web3.js. We will be using
web3 to refer to the client library in this book.

What’s New with Ethereum

As of this writing, the Ethereum development community is largely
focused on two initiatives that may be relevant to developers building
dapps with this book:

o Proof-of-stake: Both Bitcoin and Ethereum’s low-
transaction throughput make some applications and
services impractical at present. At peak, Bitcoin can
process 7 transactions per second (TPS); Ethereum
tops out around 30. In contrast, Visa and MasterCard
boast tens of thousands of TPS at their peaks. In proof-
of-stake (PoS), miners are replaced by validators.
Swapping out the SHA-256 proof-of-work consensus
algorithm for a PoS algorithm could greatly reduce
block times, helping Ethereum to increase throughput
beyond even Visa and MasterCard’s limits.



CHAPTER 1  CONCEPTUAL INTRODUCTION

o Sharding: Currently, every full archival node on
the Ethereum network must download the entire
blockchain, which as of this writing stands at over
300GB. Options for “light syncing” are available but are
not long-term solutions. Sharding splits the account
space into subspaces, each with its own validators,
removing the requirement for the whole network to
process every transaction. Transaction throughput
projections for a sharded, PoS-enabled Ethereum
network reach as high as 2,000 TPS per shard.

Bitcoin vs. Ethereum

Many of you have received your first exposure to cryptocurrencies and
blockchains through Bitcoin. Bitcoin was the first cryptocurrency and is
still the largest and most used. It enabled users to send and receive money
anywhere in the world without going through a third-party intermediary
such as a bank or PayPal. Think of it as counterfeit-proof money for the
Internet.

Ethereum’s primary innovation over Bitcoin is that it adds a trusted
compute framework on top of a blockchain. Ethereum nodes may not
necessarily trust each other, but they can trust that the network will
execute smart contract code in a deterministic fashion. Combined with the
inclusion of a native currency, this allows for a variety of functionality that
Bitcoin does not support.

With the exception of hash-locked time contracts, Bitcoin does not
support conditional paths. Money is either sent or not sent; the transaction
does not depend on the internal state of the system. This may seem trivial,
but adding support for conditional paths allows developers flow of control,



CHAPTER 1  CONCEPTUAL INTRODUCTION

or the ability to specify the order in which individual statements in their
program are evaluated and/or executed. An escrow payment is an example
of an exchange that is conditional on both parties’ participation. Bets are
another example of payouts conditional on an external event. Users don’t
need to trust each other to trust that the smart contract logic will execute
as intended.

In many ways, Ethereum is a leap into the unknown. Bitcoin was
built to solve the specific problem of creating a decentralized currency.
Ethereum offers programmable value transfer based on arbitrary logic,
making it conducive to unimagined blockchain-related solutions of
the future. The largest use-case at the moment is crowdfunding, but
experiments and applications for betting, escrows, decentralized
exchanges, prediction markets, decentralized encyclopedias, user-

controlled smart data, and more are underway.

Addresses and Keypairs

Ethereum uses the same asymmetric key cryptography methods as Bitcoin
to authenticate and secure transactions. Public-private keypairs are
generated, and messages signed by the private key can be decoded only
with the corresponding public key, and vice versa. An Ethereum address
is the last 20 bytes of the Keccak256 hash of a public key. Keccak256 is the
standard hash function used by Ethereum.

Ether balances tied to an address can be spent by whichever user can
prove ownership of the corresponding private key. To do so, all Ethereum
transactions are encrypted with the sender’s private key. If the user’s
public key can be used to decrypt the broadcasted message into a valid
transaction, that is proof that the user owns the private key.



CHAPTER 1  CONCEPTUAL INTRODUCTION

Contracts and External Accounts

Ethereum has two types of accounts: external accounts and contracts.
External accounts are controlled by users, whereas contracts are
semiautonomous entities on the blockchain that can be triggered by

a function call. All accounts have an associated balance and nonce.
The nonce is incremented after every transaction and exists to prevent
duplicate transactions. In addition to these two fields, contracts have
access to storage space where they can store additional data fields as
specified in their contract code.

Programs in Ethereum

Programs in Ethereum consist of one or more interacting smart contracts.
Smart contracts can call functions in other smart contracts. Individual
contracts are similar to classes in a traditional language.

Smart contracts can be written in EVM Assembly, Solidity, Low-Level
Lisp (LLL), or Serpent. All contracts are eventually compiled down to EVM
Assembly bytecode. Solidity is the most commonly used language and the
one we will be using. Serpent has been phased out, and LLL usage is rare.
New, experimental languages such as Viper are also under development.

Smart contracts are deployed by sending a transaction to the null
address (0x0...) with the bytecode as the data.

When Ethereum was designed, its creators envisioned that smart
contracts would call upon existing contracts for most of their functionality,
with each new smart contract acting as a building block for new contracts
on the chain. For example, a contract that wishes to manipulate strings
would call on an existing StringUtils contract to perform operations like
string concatenation that are not supported by Solidity.

10



CHAPTER 1  CONCEPTUAL INTRODUCTION

Unfortunately, developing in this style requires interacting directly
with the Ethereum mainnet for testing and development, which has turned
out to be quite expensive. Instead, most developers nowadays would copy
a standard StringUtils contract into their program so that it’s available
on a private test chain, and then deploy their own copy of the StringUtils
contract to use in their program. We will see more examples of this in the
game projects in the latter half of the book.

Smart contracts automatically expose an application binary interface
(ABI), which is the binary or bytecode equivalent of an API. The ABI
contains all public and external functions and excludes private and
internal functions. ABI functions can be called by either an external
account while sending a transaction or by another smart contract while
executing its internal logic.

Digging into Solidity

Solidity is the primary programming language for the EVM. Because the
EVM has custom opcodes that are not used by conventional processors,
existing programming languages are an awkward fit for the EVM. Solidity
was designed specifically for the task of programming smart contracts on
Ethereum.

Solidity receives many comparisons to JavaScript, but its closest
relative is C. Solidity is a strongly typed language with minimal
functionality that emphasizes limiting storage and CPU usage. It supports
256-bit data types for the EVM, unlike most languages, which support only
32- and 64-bit processors.

Developers who have never worked with a strongly typed language
should not find it difficult to adjust to Solidity. Many people actually find
typed languages easier to deal with than untyped languages, so don'’t
let that intimidate you. Mobile developers coming from Java, Swift, or
Objective-C will find Solidity syntax pretty familiar. JavaScript developers

11



CHAPTER 1  CONCEPTUAL INTRODUCTION

may require some adaptation, as expressions evaluate more easily
in loosely typed languages but introduce undesired (and potentially
expensive) ambiguities into a system where computation is fee-based.

In a production setting, all developers will have to adjust to working
within the gas constraints that limit storage, memory, and CPU usage.
Embedded systems developers used to working with limited resources will
likely have the easiest transition to Solidity.

Chapter 4 has much more on the ins and outs of working with Solidity.

Staying Hack-Free

Because smart contracts can maintain an ether balance, they are
lucrative targets for hackers. Hacks including the DAO attack and Parity
multi-sig attack have led to millions of dollars in losses. Most Solidity
application code is open source, so following best practices is essential
to avoid leaving glaring security flaws in your contract code. These
range from interaction techniques such as using a withdrawal method
instead of sending ether within a contract (see “Withdrawal Methods” in
Chapter 5) to code techniques such as minimizing conditional paths.

In general, Solidity development should be treated more like building
a bridge than building a web site. The process is not iterative. Once
deployed, a contract’s code and ABI cannot be updated. Transferring
balances from one contract to another, especially for contracts that
maintain an internal ledger, ranges from difficult to impossible.

Whenever possible, proven legacy code should be used instead of new,
untested code. Contracts should be thoroughly tested and vetted before
being deployed to the mainnet.

Chapter 5 covers contract security in extensive detail. It is the most
important chapter in the book. Make sure to read it before attempting to
store any assets or ether on a deployed smart contract.

12



CHAPTER 1  CONCEPTUAL INTRODUCTION

Block Explorers

Block explorers are web sites that provide an easy-to-use interface for
navigating a blockchain. Etherscan (https://etherscan.io/) is currently
the best block explorer available for Ethereum (Figure 1-1). We can use it
to check the height of the latest block while syncing, monitor a pending
transaction, view the final gas fee for a transaction, check the network
difficulty, view the source code or ABI for a deployed contract, and more.

oG . x g GO
m, Etherscan
i HOM BLOCKCHAIN ACCOUNT TOKEN CHART MISC
Sporsored Link: Hash Rush brings crypeo mining to RTS gaming. Join our 160 and clam your colomy!
LIOH 14 day Ethersum Transaction Hisiory
0.06256 BTC/ETH T
£l p—a A
\ v —
—— o 'S
300k N .
e —
w
sk
W 026 0T W26 W20 930 100 107 107 104 105 10% 107 106
& Blocks View A1 [ Transactions iewsa |

Mined By Etherine \ Toom 01 >33 secs ago

4 e

Mined By DwartPoci o T 0 > 33 secs ago

174 tans in 20 st

Mined By miningpocliu_L
136 txns

JDETADL.. > 33 5605 3g0

£ To# 0X0C 10000

Figure 1-1. Etherscan block explorer

We will be using Etherscan extensively in this book to monitor our
transactions and wallets. You can search for individual transactions and
addresses by using the search box in the upper-right corner.

13


https://etherscan.io/

