Programming 101

Learn to Code with the Processing
Language Using a Visual Approach

Second Edition

Jeanine Meyer

APress®

Programming 101

Learn to Code with the Processing
Language Using a Visual Approach

Second Edition

Jeanine Meyer

Apress®

Programming 101: Learn to Code with the Processing Language Using a Visual
Approach

Jeanine Meyer
Mt Kisco, NY, USA

ISBN-13 (pbk): 978-1-4842-8193-2 ISBN-13 (electronic): 978-1-4842-8194-9
https://doi.org/10.1007/978-1-4842-8194-9

Copyright © 2022 by Jeanine Meyer

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: James Robinson-Prior
Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 NY Plaza,

New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers
on the Github repository: https://github.com/Apress/Programming-101. For more detailed information,
please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-8194-9

To my family, who inspire and teach me.

Table of Contents

About the AUROFcccccemmismninsnssssss s n s san s an s nnnannn s nnnnnnns XV
About the Technical REVIEWETcccccussssmmsssssnssssansssssnsssssnsssssnsssssssssssnsssssnssnssnnsnss Xvii
Acknowledgments........cccccimiisssnsensmmmmmmsssssssssssnsmmesssssssssssssnsssssssssssssnnnnnsssessssssnnnnnnns Xix
INtroductioncccciiimmmisnnnnn s —————— XXi
Chapter 1: BaSiCS..uuuuuuummsnmmnnmmmmmssssssssssnnnsssssssssssssssssnssssssssssssssssnnnsssssssssssnnnnnnssesssssnns 1
0L T OSSPSR 1
Programming CONCEPLSccvcerererririerere s s se s e e s st s s e e s s e e s s 3
Programming Languages and Natural Languagescccuveverernrierenensensessessssssessessessssessessens 3
Values and Variables...........ccovrm s 3

T T (0] 5
Specifying Positions and ANGIES........ccueverrrririennsirserese s s e s sssssssessesaens 6
0] 0] 7
Development ENVIFONMENTccoeviinineneninine e ssssese s ssessssessesaessssessesnens 7

3101 (=00 o =T 1 1 o RS 8
UNAEE The COVETS.....cciuiuiiciririsissee s 8
Processing Programming FEATUIES.........ccccvvriereririer e rses e s s s s s e sse e s s sessnesne s 9
Processing Development ENVIrONMENT...........ccooovvrie i ncinser st 9
FUNCLIONS ...t e 11
YT] S 12
Implementing Hello, WOrld ...t 14
Implementing the Daddy LOJOccvvermrenerrereresesesenesessesesesesss e ses e e ssssessssesesssssssssessssesenes 22
P2 11 o P 22
Daddy LOGO Programccoeeeoerencrnseseresesesesessesessssessssesessesessssessssssessssssssssssssssessssssssnsssanes 25

TABLE OF CONTENTS

THINGS 0 LOOK UP ..everiiieneriren e s e sae s s sa e s a e s s st s s e e snesaenaenns 29
How t0 Make ThiS YOUF QWcccverrrineeereresisesese s sesss e e sesessssssssssssessnsssnnes 29
WhEt YOU LEAINEA ..o s nenns 30
WREAE'S NEXL.....coeeerrrererese s n s pe e nr s 3
Chapter 2: Interactions..........cccinnisemmmmmsssnnnmmmsssssnmmsssssnmessssmmsssss————————— 33
ADSTFACT.......cceeeeeeere e e e e r e e e R e e nr e e nne e 33
OSSR 33
Programming CONCEPTSccecevererreriererirsirere s s sse s ses e s s se s e s sae e s saesaesse e s e saesaesessenaesaes 35
BVBNES ... —————— 35
RANOMNESS......coviiiriii i e 36
Displaying Images from FileScccuvvvrvrinnrrrre e sse s sse s s s s ssssesesne s 36
Calculations, Including Built-in FUNCHIONSccccovvririenennsirsere s sesse e ssesessessessens 36
0T 0 o RS 37
Processing Programming FEATUIES.........c.ccvvvveriiiniinnie s s s s s se s s s sseas 37
N 38
UNAEE The COVETS......civieeeeeriris e s 41
Polygon Sketch Operation QVEIVIEWcccoeeererererenerescrese e senns 42
Implementing the Polygon SKEtCh ... 44
g2 11 o SR 44
Polygon SKETCh Programcoccvnennenesesesessesessse s sessssssssse s sessssssssssssssssessssssssssnsnnes 47
Coin-Toss Sketch Operation QVEIVIEWcccverernserrsesesesesrsse s ss e s s ssssesnssenens 49
Implementing the Coin-TOSS SKEICHccvcrereircre e 52
[P T 11 o R 52

L LT F (O T QL oSS 56
How t0 Make ThiS YOUF QWcccverrrineeereresisesese s sesss e e sesessssssssssssessnsssnnes 56
WhEt YOU LEAINEA ..o s nenns 57
WREAE'S NEXL.....coeeerrrererese s n s pe e nr s 58

TABLE OF CONTENTS

Chapter 3: Animation Using Arrays and Parallel Structures..........ccccusseenrrnsssnnnnnnns 59
0L T S 59
More 0N the SKEICHES ... 59
Programming CONCEPLSccovrermrrenerrnesesresessse s s s s sessssessssessnssenns 64

ANIMALION ... ne e e nnn e 65
LOGiCal OPEIatiONS.......cceeerererercrerene s s s s pe e s 65
AITAYS c.eeveeeeeseesresesese e s e s e s s s e s e s se e e e s R e R e e R e e e R e R e e e e e e e R e e e e rnRnn s 65
Parallel STrUCIUIEScccerierererere s e nns e 66
Compound STAtEMENTS ..o ———————— 66
Pseudorandom PrOCESSING........c.ouevmserersesmsraserensesesssssssssesessesssssssssssssssssssssssssssssssssssssssnsssanes 66
Processing Programming FEAUIES.........cuucvirrnennesmnsse s sssse e sens 67
7211110 67
Implementing a Bouncing Ball ... e 71
o0 4 1] T S 71
o0 (00 0 S 72
Implementing a Set of Three Bouncing Ballscccccvrvvnienrecrnsc e 74
PIANNING....cei i e e e e 74
Lo (0T 7= 1 OSSPSR 74
Implementing Pentagon BOUNCING..........ccciiriinsnninns s 76
PlANNING...ccoi i e e e e 76
Implementing Bouncing POIYGONS.........cccuvorinmrnnesrnessssse s sessssessssessssesenns 78
P2 1 0 o P 79
(00 1 79
UNAET the COVEIS......cceeveerireeree s p g n e 82
THINGS 10 LOOK UP ...ttt se st saese s sae s e se s s sne st e e s s seesss e naesnens 82
How t0 Make ThiS YOUF QWccocveriiminicsirinsssssse s sn s sesssssssss s sesssss s 83
What YOU LEAIMNEAc.eeeeeeeeeeeeee e s nenns 83
WREE'S NBXL.....ceeeeecerce e r e e e e e e re e 84

vii

TABLE OF CONTENTS

Chapter 4: ClasSeS....cuuueurrrssssnnmrsssssnnssssssnnsssssssnnssessssnsnsessssnsnssssssnnnsssssnnnnsssssnnnnsssss 85
0L T TS 85
Programming CONCEPLScccviiiiiirirr s s e e 86
ClASSES..urrreerreerrssesessesessesesr s se s e e e s s e s s e re e e e e e e e e R e R e e e R Re e R e e e EnRe R e e e e e rnRe e 86

Phases 0f OPErations........c.cccvvininninn e e e e e 87
TOIEranCe OF MArgin..........ccoveerrererenersesesessesessese s s srs e s e sss s sesseses e e ssasesenssssnsenens 88
Processing Programming FEAUIES.........cuucrirrnreninessnnss s se e sens 88
ClASSES ..vuveuerriuerrnesrsse et r s e e R R e R e e 88
Definition of Images, Rectangles, and EIlPSES.........ccccuurrnrennenennsesnessnesesssesessesessesessnnes 90
DYNAMIC AITAYS ..viveerreesrssessssesesesesssse s e s e e s se s e s ss s sss e se s snsss e saa e ssnsesnnsssensnns 90
Tolerance and OK-S0-Far COdiNgc.cucvrererenernsesrnesssese s ssssessssssessssessssessssssesssssssssenens 92
BouncCing ODJECLS OVEIVIEBWccvecerereeririerersesiesessessessesessese e sseses e ssesassessessessesssssssessessesessensesaes 92
Implementing the Bouncing ODJECTS.......ccvcrerririner s s saeenes 94
o0 1 1] T S 94
o (00 0 S 96
Make Path and Travel Path OVEIVIEW..........ccoveercrnerincesese e senenes 100
Implementing the Make Path and Travel Path...........cccovrinnsnininnsnne s 103
PlANNING.....u i e e e e a e 104
L (0T 72 1 SRS 105
JIGSAW OVEIVIBW.....vcueereeerreesessesessesesssesessesessssessssesessssssssssssasesessssssssssssssssssssssssssssansssnsessnssnens 109
IMplementing the JigSaW.........cccveeiiirniesnese e e 111
PIANNING......c ot se e e e r e nr s 111
g (0T] 72 OSSR 114
UNAEE The COVETS......civieeiiriierirsisise s e 125
THINGS 10 LOOK UP ..eeeriiiece e s ss e s a e s s n e s s s s s s s s 126
How t0 MakKe ThiS YOUF QWc.coceeriiriecseneresseese e se e see e s sessssssssssssesssssnsaes 126
What YOU LEAINEAc.eeeeeeecrercerese e se s e se s s se s s e nnenens 127
WHEE'S NBXL.....coveceeescercserrsse s e enne e p e e s nrnnn e 127

viil

TABLE OF CONTENTS

Chapter 5: More Interactions..........ccccurunseennmnsssssnnmssssssssessssssnnessssssnsesssssnssessssnnnnss 129
0L - T P 129
More 0N the SKEICHES ... e 129
Programming CONCEPLSccoveererermreserenessneses s e s s 130

BalliStiC MOLION.......cccveerreerreses s nre s 130
Character (char) Data Type vs. String Data TYpe........c.ccovvrermreneresernsesesssesesesesesessssesenns 131
LU= 30 1 T 131
Case StAtEMENT ..o s 131
EIAPSEU TIME ...eueieic et s e s e e s 131
RegUIAr EXPIrESSIONSccciveerrrserrssesessesessssessssesessssessssssessssssssssssssesssssssssssssssnsssssssssssssssnsssnnes 132
Processing Programming FEAtUrES.......c.cucuvererinernsessesese s ss e sessesenns 132
The Char Data TYPEcceoeveerererer s e 132
The keyPressed Function, key, and KEYCOUE.........ccccvvrernrernenenesessse s s sessessssenens 133
TaDIE FIlES....ciueeeeeeerree e b e se e a e nr e nnne s 133
The SWitch STatement ... 133
The millis and Other Time FUNCHIONScvceiicenicsresc e 135
The match Function for Regular EXPresSSions........cocvvernsesnsesssssesssesessesssesessssesessessssenens 136
AITAYLISTcvieeeereesree s s s p e e R na e e n e n R 136
UNAEE The COVETS......civieiiiierisscsiss s e 136
SlingShot OPeration OVEIVIEW.........civverrerrerierenrenseressessssesessessssessessesssssssessessessssessessessssessessesses 138
Implementing the SlingShot SKEtCh ... 139
PIANNING......i i e e e e e a e nn 139
Programming the Slingshot SKetCh..........ccoceoricrrcrnccrc e 142
Snake 0peration OVEIVIBW.........ccueririiiinieniesn e ss s s s s st s s e 151
Implementing the Snake SKEtCh ... s 153
g2 11 o TS 154
Programming the Snake SKetCh..........covcvvinresrss s 155
Image Test Operation OVEIVIEWcocvevererernsesesesese s s s ssnnes 163
Implementing the IMAge TESt ..o s 166

ix

TABLE OF CONTENTS

THINGS 10 LOOK UP ..ottt s s e s a e s a e s s s s s s s s 171
How t0 MakKe ThiS YOUF QWc.cocemrireiecneresesee e se e se s ss e sessssssssssssesssssnsas 171
WhEt YOU LEAINEAc.eeeeeeeecrercere e e se s s ses e e nnsnens 172
WREE'S NBXL.....ccveereecericse e e nnne e p e ne s e e nnn e 172
Chapter 6: Images and GraphiCscccrusssansmmsssssnnnssssssnnsssssssnnsssssssnnssssssnnnssssssnnnnss 173
L] - T OSSR 173
More 0N the SKEICHES ..o 174
Programming CONCEPLScvrevrererierierrerenserersessssessessessesessessessessssessessessessssessesssssssessessesssssnsessens 176
Images AS Arrays Of PIXEIS ..o s s n 177
Case STAtEMENT ... ————————— 177
PiXEl PrOCESSINGvevierierieririer et sse s s s s e ss e s s s a e s se s s s st s a e s ae e s e e s nesaenae s 177
The beginShape and endShape Vertex FUNCHIONScoccvvvvierevnsnsene s ses e sessessenees 178
Changing the Coordinate SYSTEMcccccvvvririernrerrre s e sa e sne s 178
Hue-Saturation-Brightness Color MOGE..........cucererrerersereresensessesessssessessesssssssessesssssssessesaes 179
Changing Image SKEetCh OVEIVIEW.........ccccvvrerverieresersere s s sse s sese e ssesessessessessssessesnees 179
Implementing the Image Transformations ..o 187
PIANNING....ui e e e e R e e nnn 187
Programming the Image SKECH ... 188
Origami Flower GraphiC OVEIVIBWccovvrernsesesesesssesessesssssssssssesessessssssssssssssssssssssssssssssenns 191
P2 11 o TS 191
Implementing the Origami Flower SKEICh.........ccccvvcrnennesc e 192
Programming the Origami FIOWENccucrernrninennserrene s sesessessssesessessesessessessessssessessens 194
Programming the Hexagon with HSB CoIOr MOGE..........ccccveererernersererensensesessesessessessessssessessens 197
UNAEE The COVETS......cveeeccererisecseseses e se s sessssnsnaes 203
ThINGS 10 LOOK UD . s e nnenens 204
How t0 Make ThiS YOUr QWccceomrreernesenesesrese s sessesessesessssssessessssssessssssessssssssnsssssssesssenns 205
What YOU LEAINEAooeeeeeererer et s 206
WhaE'S NBXL......ooieiiiiii e 206

TABLE OF CONTENTS

Chapter 7: Using Files for Making a Holiday Cardccussemmmnssssnnnsssssssnssssssnnnnss 207
0L - T P 207
Programming CONCEPLSccccvivriririninsine s sr s s e s s st 208

FIlBS et e e R e e e R e 208
0 1= 209
] 13T 209
072072 TG 210
FEEUDACK 10 USEIS.....ce et 210
Processing Programming FEAtUIES.......c.cucvvrermrinernsmsesesese s s s ssesesssse e sessesenns 210
Use 0f the SOUN LIDraryccocecerenerneseneserssesesessssssesessesssss s sessssesssssssssessssssssssssssnses 210
Making and Saving an Image of the Current Windowcocoevnevnrennesnsscsssesessnenennes 211
Use of Java Input/Output LIDrary ...t ssssesse s 212
SUDCIASSESeveuereresersenerrese s s s e e r e e e s e p e ne s e 213
Show Fonts Sketch Operation OVEIVIEW..........ccucverenininsene s sessesaesnes 214
Implementing the ShOW FONts SKEICH ..o 216
Programming the Show Fonts SKEICh.........ccccvcrirnininnnrr e 217
Make Card Sketch Operation OVEIVIEWccecevverereesesserseressssessessessssessessesssssssessessesssssssensens 218
Implementing the Make Card SKetCh.........ccccccricrrinriccrc e 223
PIANNING......i i e e e e e a e nn 223
Programming the Make Card SKetCh..........ccccovrvrnirnienrres et 225
UNAEI thE COVEIS......ceeeeereecrercsersee e s e s e ne e e 231
ThiNGS 10 LOOK UD .veeereeericerincsesess e sese s s s s e sesesssssssssssssssssssssssssssssssssesssssnsenens 232
How t0 Make ThiS YOUr QWccveeerierinesnnesesese s e s s sn s ssssssessssssesssnenns 232
What YOU LEAINEMccceriiiriiisinss s s s s s s s 232
WhEE'S NBXL.....cvciieicrce s e 233

Chapter 8: Combining Videos, Images, and Graphics..........ccorrrssnnnnrnssssnnsssssssnnnss 235
0L - T P 235
Programming CONCEPLSccccviiriririnirsine s st b et s b e st 235

L T TR 236
COPYING AVIHEO ...t s e e p e e s 236

xi

TABLE OF CONTENTS

Processing Programming FEATUIES.........cccvvvrirriniinne e sse e e se s s s s s s sae s ssenns 236
L LT 237
Classes and SUDCIASSEScovuiieererernsnssse s 238

UNAEE The COVETS......cveeeccererisecseseses e se s sessssnsnaes 238

Family Collage Operation OVEIVIEWccoeoeeerenerensereneneseseses s se s se s sessesenns 239

Implementing the Family Collage SKetCh..........c.cccvverniennesrsse s 242
P2 1 o S 242
Programming the Family Collage SKetChccccvvernrennienmnsse s 243

ThiNGS 10 LOOK UD c.vcueeieciriccsinesine e ss s ss s s s sssnssnssssesessessnsanens 252

How t0 Make ThiS YOUF QWcccvimiininirinnssssse s s sns s s sesssssssas 252

What YOU LEAINEAccueeriieririsince s se s s s s snse s 257

WREE'S NBXL ... e esae e r e e e e nnn e 257

Chapter 9: Word GuesSing GAMEccuvsusssssasssmsssnssssssssssssssssssssssssnsssnsssnssnsssnnss 259

0L 1 T P 259

More 0N the SKEICHESccvverrererese e 259

Programming CONCEPSccvvererenirrise s 262
Implementing an Existing APPliCationccoovvviennisnnsesnsen s 262
Testing and SCAlING UPccvecereceriririresensse e sss e e s ssenens 262

Displaying the State of the GAME..........ccccvcrivrrrrrr e 263

DTS 0] 1T 0 - S 264

Processing Programming FEAtUIES..........cccueriirinieninnsne s sessesnens 264
1 TS 265

OPEration QVEIVIBW.......cccceiriiririere s st s s b e bbb e e b et e nnas 266

Implementing the Word Game SKEIChESccuverrrrnnenmnene s 270
P2 11 TS 270
Programming the Word Game SKetChES..........cccurrvrrnnensnenmsese s sessssesennes 272

ThiNGS 10 LOOK UD c.veeeieeiiice s ss s s sn s s s sssnssnssssssessessnsanens 286

How t0 Make ThiS YOUr QWcccvrmiiiinininisssse s s sss s s s 287

What YOU LEAINEA ... e s s snse s 287

WREE'S NBXL ... e s esre e r e e e e nnnne s 288

xii

TABLE OF CONTENTS

Chapter 10: 3Dcccccuriiinnnnrmssssnnnmssssssssmssssssssesssssnssessssnnssesssssnnnesssssnnssssssnnnnssssnnnnnss 289
0L - T P 289
Programming CONCEPLSccccvivriririninsine s sr s s e s s st 292
Processing Programming FEAtUIES.......c.cccvvermrinernsmsesesess s sessssesss s sessesessssessssesessesenns 293
UNAET the COVEIS......eivireerieerisesinse e s s s s r s nr e nr s 303
Rolling Ball at Alhambra Operation OVEIVIEWc.ccocvververrerenessersenessssessesessesessessessessssessesaens 303
Implementing the Rolling Ball at AInambra..........c.ccocvviininnnnnrsr s 304

g2 1 0 o N 304
Programming the Rolling Ball at AInambra ... 305
Rotating Cube Operation OVEIVIEWcccorererenernierine et se s sessesens 310
Implementing the Rotating CUDE ... 310
PIANNING....u i e e e nan 310
Programming the Rotating CUDE ... 312
ThiNGS 10 LOOK UD .veeerecericerenesessess e s e s se s e s sessssssssssssssssessssssssssssssssessssssssnees 318
How t0 Make ThiS YOUr QWccceeericerinesnnsesesese s se e s s s sssss s sesssnenns 319
What YOU LEAINEMccceriiiririinsi s s s s s s 321
WhAE'S NBXL.....ceiiiriirct e s e 321

Appendix A: Introduction 0 pP5.jS ...cccrnnnnmmmmmmmmmmmmmmnssssss i ———————— 323
Getting Started USING P5.JS ..covverrrrereicrirrerire st sss e se s s e se s sessesens 323
Overview of EXAMPIES.......ccviriinn e ss s s st s st 325
Implementing DAAAY LOGOccovermrrenerrnsesenesesese s sesesesse s sesssssssssessssssessssssssssssssssessssenns 327
Implementing Fearless Girls VS. the Bull...........ccucvivrnennesensse s s 331
Implementing RAINDOW HElIXccoverieviririre e se s s s se s s sne s sessesnens 336
WhaE's NBXL......ociriiiri i e 341

., ' &

xiii

About the Author

Jeanine Meyer is Professor Emerita at Purchase College/
SUNY. Before Purchase, she taught at Pace University and
prior to that was a manager and research staff member
at IBM Research in robotics and manufacturing. She also
worked as a research consultant at IBM for educational grant
programs.

She was moved to create this book because of a general

wish to make programming less mysterious and more

appealing while featuring the challenges. She enjoys
spending time with favorite pictures and video clips as well as producing programs. The
chance for a new edition provided a reason to explore p5.js, tools for using JavaScript
with features from Processing.

She is the author of five books and coauthor of five more on topics ranging from
educational uses of multimedia, programming, databases, number theory, and origami.
She earned a PhD in computer science at the Courant Institute at New York University,
an MA in mathematics at Columbia, and an SB (the college used the Latin form) in
mathematics from the University of Chicago. Recently, she has given lectures, in-person
and remotely, connecting origami, mathematics, and computer science as well as the
use and misuse of math in the news. She is a member of Phi Beta Kappa, Sigma Xi, the
Association for Women in Science, and the Association for Computing Machinery.
Jeanine is trying but remains a beginner at Spanish and piano.

About the Technical Reviewer

Joseph McKay is an associate professor of new media. He primarily teaches new
directions in virtual space, programming for visual artists, intro to physical computing,
hacking the everyday, senior seminar, and web development.

Joe’s work is focused on interactive art games. He makes games that have their roots
in fine art but are also fun and easy to play. He is currently working on a VR art game
with innovative locomotion.

Xvii

Acknowledgments

Much appreciation to the subjects of the illustrations in this book, starting with my father
(Joseph) and including my mother (Esther), Aviva, Grant, Liam, and especially Annika.
Thanks to my children, Aviva and Daniel, for the photography, video, and computer
graphics work.

My students, teaching assistants, and colleagues always provide ideas, stimulation,
feedback, and advice. Thanks especially to Irina Shablinsky for her efforts in teaching me
Processing and how to teach Processing and introducing me to Takashi Mukoda. Thanks
to David Jameson, whose comments and concerns made me produce the “Under the
Covers” section for each chapter.

Thanks to the crew at Apress/Springer Nature, including for the second edition
James Robinson-Prior, Jessica Vakili, Dulcy Nirmala, Krishnan Sathyamurthy, and others
I do not know by name. Much appreciation to the past technical reviewers, Massimo
Nardone and Takashi Mukoda, and the technical reviewer for this edition, Joe McKay,
who brought his considerable talent and experience to the task.

Xix

Introduction

Processing is a programming language built on top of another programming language
called Java. To quote from the https://processing.org page, “Processing is a flexible
software sketchbook and a language for learning how to code within the context of the
visual arts.” The term for a program in Processing is sketch. However, Processing can be
used to create applications that are far more than static sketches. You can use Processing
to create dynamic, interactive programs. It is a great tool for learning programming.

Though Processing was created for visual artists, it serves a broad population of
people. In particular, at Purchase College/SUNY, Processing has been an excellent first
computer programming language for our computer science/mathematics majors and
minors. It also serves students across the college, who take our CS I course to satisfy
one of the general education requirements. This experience has been reported in other
places. Processing and this text also are appropriate for self-study.

The ten chapters in this book share a common design and structure. My goal is to
introduce you to programming, focusing on the Processing language. In each chapter, I
explain general programming concepts and specific Processing features through the use
of one or more specific examples. The code and files such as image files are combined
as zip files and available at https://github.com/Apress/Programming-101.1 hope the
examples are entertaining; the goal, however, is not for you to learn the specific examples
but instead understand the concepts and features. The way to learn programming is to
make these examples “your own” and to go on to do a lot of programming.

The introduction to each chapter starts with a brief description of the concepts
and programming features used and the examples; then you need to be patient while
I provide background. Each chapter includes a discussion of general “Programming
Concepts” prior to plunging into the details. These are not limited to the Processing
language but are present in most programming languages. Presenting the concepts in a
general way might help you if you are coming to this book knowing another language or
you hope to move on to another language someday.

Next, I describe the “Processing Programming Features” that are used to realize
those concepts and produce the examples. This section will have actual code in it and
maybe short examples. This is a spiral approach, going from the general to the specific.

xxi

https://processing.org
https://github.com/Apress/Programming-101

INTRODUCTION

A section called “Under the Covers” describes what Processing is doing for us behind
the scenes and the relationship between Processing and Java. This section appears
in different places in each chapter. It might be of more interest for readers who know
something or want to know something about Java, but I urge everyone to give it at least a
quick scan.

I then provide an overview of each example, with screenshots showing the operation
of the program. Please note that in some cases, I have modified the programs to obtain
the screenshots. I then go on to describe the implementation of the example, which
contains a “Planning” and a “Program” section. The “Planning” section is where I
describe my thought process. Programs do not spring into existence—at least for me—
not like Mozart composing a symphony, which was said to emerge all at once from his
mind. It is an iterative process for most of us. This section contains a table indicating the
relationship of the functions. The “Program” section includes a table with one column
for code and another column with an explanation of that line of code. These tables are
long and are not meant to be read as poetry or fine literature. Instead, skip around. Use
the function relationship table. If you download the code and try it out, you can use this
section to improve your understanding of the program. The most critical step is to make
changes, and I provide suggestions in the “How to Make This Your Own” section. This
set of sections is repeated for each example.

A section titled “Things to Look Up” will contain a list of Processing features related to
the ones described in the chapter. Processing is a large language, and it is growing. I can
show you only a small subset of the features, and each feature is used in one way, perhaps
using default values. You can and should consult other references to learn more. You
can look things up in multiple ways. For example, you can go to the website at https://
processing.org/reference/ and just keep that open. Alternatively, if you want to look up
how to draw a rectangle in Processing, it can be efficient to enter “processing.org rectangle”
into Google (or another search engine) or the address field of browsers such as Chrome to
retrieve a list of possible sites. It is best to use “processing.org” because “processing” is a
common English word. You can try “Processing rectangle,” but you will need to skip over
some sites that have nothing to do with the Processing language.

Remember that the goal of this book is not to teach you how to make my examples,
from peanut-shaped bald men to my versions of certain games to rotating 3D cubes with
photos of my grandchild, but to help you understand how to make your own programs!
Make small changes and then large changes. Make your own programs! Chapters will
close with two more sections: a brief review, “What You Learned,” and “What’s Next.”

xxii

https://processing.org/reference/
https://processing.org/reference/

INTRODUCTION

The book also has an Appendix describing what is called p5.js. This is a way to
produce programs for the Web by providing a Processing Library to use with JavaScript.
The Processing organization also supplies an online editor.

You are welcome to look at the chapters in any order, but later examples do depend
on an understanding of concepts introduced earlier. Moreover, because one of the
main techniques of programming is to reuse code, there are many instances of later
examples copying parts of earlier examples. Do not be concerned: the tables in the
“Implementation” section contain complete programs. It is beneficial for your learning
process to recognize the repetition.

Please do take a pause in reading to explore, experiment, and, I repeat, make your
own programs. Learning how to program is critical for understanding how we function
in today’s world and the requirements and challenges of devising algorithms using logic
and data. Learning to program might help you get a job. However, the main thing that
drives me, and I hope will drive you, is that it is fun.

Enjoy,

Jeanine

xxiii

CHAPTER 1

Basics

Abstract

The goal of this chapter is to get you started. The programming example will be a static
drawing of two cartoonish figures, as shown in Figure 1-1. Be aware that the examples
in subsequent chapters will increase in complexity, as we will be producing programs
that are highly interactive and, possibly, involving random effects, reading files, and
exhibiting behavior based on various conditions.

© Jeanine Meyer 2022
J. Meyer, Programming 101, https://doi.org/10.1007/978-1-4842-8194-9_1

https://doi.org/10.1007/978-1-4842-8194-9_1

CHAPTER 1 BASICS

B 4

Figure 1-1. Fat and skinny Daddy logos

The Daddy logo is a version of a drawing my father would make, often as his
signature on a letter or note or artwork. I hope that you will design or recall a drawing
or symbol that has meaning to you and makes you happy the same way this cartoonish
peanut-shaped, bald guy makes me.

We will need to do some work to start us off and get to the point that the coding
is clear, but it is not too difficult. The traditional first task in using any programming
language is to get the program to display the phrase “Hello, world.” This works well in
demonstrating several important concepts, including what happens if the programmer
makes certain types of errors. Because of the features built into Processing, you can
produce a pretty fancy version of “Hello, world.”

Be patient with me and with yourself. At the end of the chapter, you will be able to
implement your own Daddy logo.

CHAPTER 1 BASICS

Programming Concepts

This section, included in each chapter, is to provide a general introduction to concepts.
I begin with comparing and contrasting programming languages with natural languages.

Programming Languages and Natural Languages

Programming languages have some similarities with natural languages, but they

also have significant differences. Programming languages are defined by rules just

as a natural language’s grammar defines what is proper English, Spanish, or other
language. A program contains statements of different types just as we find in English
(or Spanish, etc.), and there also are ways to construct compound statements.
Statements in programming languages contain terms and expressions involving terms.
In programming languages, programmers often come up with our own names for
things. The names must follow certain rules, but these are not unduly restrictive. This
is a difference from natural languages, in which we mainly use the official words of the
language, whereas in programming, we are extending the language all the time.

A more significant difference between programming languages and natural
languages is that the rules must be obeyed at all times when using programming
languages! Consider that we all frequently utter grammatically incorrect statements
when we speak and yet generally are understood. This is not the situation in
programming. The good news in the case of Processing, and certain other languages, is
that the Processing system generally indicates where an error occurs. The development
environments for Processing and other computer languages are themselves computer
programs, and they do not exhibit any impatience while we fix errors and try the
program again. I will give some examples of statements, right after I introduce the
concept of values and variables.

Values and Variables

Programming involves containers or buckets where we can store specific types of things
(values). These kinds (types) of things are called data types. The following are some
examples of data:

Int integer (e.g., 10)
float decimal value (e.g., 5.3)

CHAPTER 1 BASICS

Boolean logical values (e.g., true/false)
Char single character (e.g., 'a'")
String a string of characters (e.g., "hello world")

String should start with a capitalized “S” The B in Boolean can be upper or
lowercase. The data type is named for George Boole, an English mathematician credited
with originating symbolic algebra.

Our programs can include literal values such as 5, 100.345, and “Hello” in the
code. In addition, a feature in all programming languages is what is termed variables.

A variable is a construct for associating a name of our choosing with a value. We can
initialize the variable, change it, and use it in an expression; that is, the value associated,
often termed in the variable, can vary, that is, change. Using variables makes our
programs less mysterious. Moreover, we can define one variable in terms of another,
making relationships explicit and preventing certain errors. In Processing, Java, and
some, but not all, programming languages, variables need to be declared, or set up
before use. One characteristic of variables is termed scope, which indicates what code
has access (e.g., global variables vs. local variables), but that is best explained later.

The following are examples of Processing statements. Explanation is given in
comments and later.

int classSize; // this declares, that is, sets up classSize to
// be a variable.

classSize = 21; //assigns the value 21 to the variable classSize.

classSize = classSize + 5; //takes whatever is the current value held in
// the variable classSize
// and adds 5 to it and resets classSize to the new value
float score = 0; //declares the variable score AND
// assigns it a value. This is called initialization.
if (score == 0) {
text("You did not score anything.", 100,100);
text("Try again.", 100,300);

The // indicates that the rest of the line is a comment, meaning that Processing
ignores it. It is intended for readers of the code, including you, to make things clear. You
also can use the delimiters /* and */ for long comments.

CHAPTER 1 BASICS

Note

My examples, because they are surrounded by explanations, tend not to have as many
comments as I would use outside of teaching and writing books.

There are rules for variable and function names in all programming languages.
Generally, they must start with a letter, uppercase or lowercase, and cannot contain
spaces. The most important guidance for naming is that the names should have meaning
for you. The programming language will accept single character names or names with no
apparent meaning, but these will not be helpful when you are trying to recall what you
were trying to do. So-called camel casing, as in classSize, can be helpful.

A single equal sign (=) means assignment and is used in what are called, naturally
enough, assignment statements and initialization statements. The statement

classSize = classSize + 5;
will seem less illogical if you read it as

classSize is assigned or gets the total of the current value of
classSize plus 5.

A double equal sign (==) is a comparison operator and often appears in an if
statement. Think of it as like < or <=.

The if statement is an example of a compound statement. The expression score ==
0 is interpreted as a comparison. If the value of the variable score is equal to zero, then
the statement within the brackets is executed. If the value of score is greater than zero
or less than zero, nothing happens. Again, you will see many more statements in the

context of examples.

Functions

Programming work in any language is structured into units. One important way of
structuring code comes with different names: function, procedure, subroutine, method.
These are ways of packaging one or more statements into one unit. You will read about
functions in the “Processing Programming Features” section and methods in the “Under
the Covers” section. Briefly, functions are defined, and functions are invoked. I can give you
directions, perhaps orally, perhaps by text, to my house, which is analogous to defining a
function. At that point, I am not directing you to come to my house. At some later time, I can
direct you to go to my house, and this is analogous to invoking the function.

CHAPTER 1 BASICS

Programs can be considerably shorter as well as easier to modify through the use of
functions and variables, so understanding both of these concepts is important. You do
not need to accept this or understand this right now. It will be demonstrated later by my
sketch for displaying two Daddy logos that takes just one statement more than displaying
the Daddy logo just once.

Specifying Positions and Angles

Displaying drawings and images and text on the screen requires a coordinate system.
The coordinate system used by most computer languages and many graphical tools

is similar to what we learned (but might or might not remember) from high school
geometry, with one big difference. Horizontal positions, sometimes called x positions,
are specified starting from the left. Vertical positions, sometimes called y, are specified
starting from the top of the screen. Figure 1-2 shows the coordinate system with a small
circle at the 100, 200 location.

(0.0) X X5 ——p-

L]
(100,200)

-— sixef

Figure 1-2. Coordinate system

If you say to yourself “This is upside down,” then I know you understood. Another
important point is that the unit is very small, so if your code positions something at
100, 200 and later at 101, 201, you probably will not detect the difference. Your intuition
regarding this will improve with experience.

CHAPTER 1 BASICS

Note

As a teaser, Processing has facilities for 3D as well as 2D. We get to 3D in later chapters.

In this chapter, my Daddy logo has a smile made by specifying an arc of an ellipse. To
produce the arc, I need to write code to indicate a starting angle and an ending angle of
the arc. The system used in most computer languages is not the standard one in which
aright angle is 90 degrees, a U-turn is a 180, and snowboarders do 1800s. (I am writing
this during the Olympics, and yes, snowboarders did tricks measuring 1800 and bigger.)
It might be upsetting to realize this, but the notion of degrees with a circle consisting of
360 degrees was invented by people. I typically offer my students extra credit to identify
where and when this happened. Instead, in most programming languages, we use a
measure called radians. Think of wrapping a circle with lengths equal to one radius. How
many lengths will this take? You know the answer: It is not a whole number, it is 2 times
n, where = is an irrational number often approximated by 3.14159. In our programming,
we will use the built-in values TWO_PI, PI, HALF_PI, and QUARTER_PI. You will see

radians in use, so be patient.

Colors

There are different ways to specify colors in computer languages and computer
applications, and Processing supports more than one. In this text, we stick with
grayscale and RGB (red/green/blue). Because of how these values are stored, the range
of grayscale is from 0 (black) to 255 (white), and the values for redness, greenness,

and blueness are specified by a number from 0 to 255. This approach is used in many
applications. If you want to use a certain color that you see in a photo, you can open the
image file in Adobe Photoshop or the online Pixlr or some other graphics tool and use
the eye drop on the pixel (picture element) you want, and an information window will
tell you the RGB value. See also the mention of the Color Selector in the “Things to Look
Up” section.

Development Environment

Programmers need to prepare programs and test programs. We also need to save our
work to come back to it another time. We might need to send the program to someone
else. Processing has what is termed an integrated development environment, the
Processing Development Environment (PDE), which provides a way to prepare and

CHAPTER 1 BASICS

make changes to a program as well as test it and save it. To give you a different example,
Hypertext Markup Language (HTML) documents containing JavaScript are prepared and
saved using a text editor, such as Sublime. The resulting files are opened (and run) using
a browser, such as Chrome. In the Appendix, I will show you how to use an editor for
p5.js, which is a version of JavaScript incorporating Processing features.

Role of Planning

I close this first “Programming Concepts” section by noting that preparing programs
such as a Processing sketch generally involves planning and design. It might be best to
step away from the keyboard. Some of the plans might need to be modified when you get
to writing the code, but it is best to have plans!

Under the Covers

AsTindicated earlier, Processing is a language built on Java. This means that the
Processing code you write is Java code that the development environment puts into a
larger Java program prepared for handling Processing sketches. In Java, there are no
functions, but, instead, what are termed methods. I will introduce methods for our use in
Processing in Chapter 4.

The PDE (Processing Development Environment) makes use of libraries, collections
of methods holding the built-in functions of Processing, such as functions to draw a
rectangle.

In the big Java program, there are calls to functions that we write, or, to put it more
accurately, we code the body of the function. For example, all Processing sketches
contain a function called setup, the purpose of which is to do what the name implies.

It nearly always includes a statement that defines the width and height of the window,
for example. The big Java program invokes the setup program once at the start of the
sketch. Similarly, we can write the body of a function named draw. The Java program
invokes this function over and over, the frequency defined by the frame rate, which can
be reset by assigning a value to the built-in variable frameRate. This enables us to build
applications producing animations and responding to events such as a user clicking the
mouse button. There are many other functions for which we, the programmers, specify
the response to an event, for example, keyPressed or mouseClick.

http://dx.doi.org/10.1007/978-1-4842-3697-0_4

CHAPTER 1 BASICS

The Java program also defines default settings. Processing and other computer
languages and many computer applications provide powerful features. If we needed to
specify each aspect of each feature before anything happens, it would be tremendously
burdensome. It is important to be aware that certain things can be adjusted, though, as
you will see in our very first example later, with the discussion on default values for font,
text size, fill color, and stroke color.

The design and capabilities of Processing provide us a way to get started creating and
implementing our ideas quickly.

Processing Programming Features

In this section, I explain the concepts focusing on Processing features. There will be
small coding examples to prepare for the larger (although not too large) examples
covered later in the chapter.

To use Processing, you need to go to the processing.org website and follow the
directions to download and install Processing on your computer.

Processing Development Environment

To describe the PDE in abstract terms is too difficult, so let’s get started. Once you have
downloaded and installed Processing, open it. At the top of the PDE window, you will see
the Processing File toolbar.

Click File, which will open a drop-down menu. Select New. The toolbar will change
to hold more options. A window that looks like Figure 1-3 will appear on your screen.
The number after sketch_ will be different than what you see here. I believe in saving
early, and often so, at this point, you can think about where you want to save your
Processing work in terms of the file system on your computer. I leave that to you. You
also should give some thought to what you will name each sketch. I suggest the name
firsto for this one. Click File, then select Save As..., and proceed with a file name and a
location in the usual way for your operating system.

CHAPTER 1 BASICS

Figure 1-3. Window for new sketch

Using Save As... in the PDE produces a folder, in this case named firsto, which
contains a file named first0.pde. The examples explored in future chapters will
consist of folders containing additional items. For example, a Processing sketch named
myFamily that makes use of an image file aviva. jpg and an image file daniel. jpg will
be a folder named myFamily containing a file named myFamily.pde and a folder named
data that contains the two files aviva. jpg and daniel. jpg. The relationship of these
files is shown in Figure 1-4.

10

CHAPTER 1 BASICS

El myFamily.pde

@ danieljpg

Figure 1-4. Typical file structure for a sketch

Functions

Processing uses the term function for grouping together one or more statements into
something that can be invoked (called). Functions are defined with header statements
and then the body, a sequence of statements, contained within brackets. You will see
in this chapter and every chapter definitions for the setup function, a function that
Processing expects the programmer to supply. The header is

void setup()

The term void indicates that this function does not produce or return a value. The
opening and closing parentheses with nothing between them indicate that this function
does not expect any parameters.

The Daddy logo example includes a function called daddy that does the work of
drawing the cartoon. Its header is

void daddy(int x, int y, int w, int h)

The parameters are the things between the parentheses. The parameter list is the
place for the programmer to give names and specify the data type. This means that when
Iwrote the code to invoke daddy, which is necessary because daddy was something I
made up, not anything Processing expects, Processing will check that the values cited in
the call are the correct type.

I feel obliged to show you an example of a function that does produce a value, a
standard one supplied in many textbooks.

11

