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Introduction

In the last three decades or so, important questions in distinct areas of
mathematics such as the local analytic dynamics, the study of analytic
partial differential equations, the classification of geometric structures
(e.g.moduli for holomorphic foliations), or the semi-classical analysis of
Schrödinger equation have necessitated in a crucial way to handle deli-
cate asymptotics, with the formal series involved being generally diver-
gent, displaying specific growth patterns for their coefficients, namely
of Gevrey type. The modern study of Gevrey asymptotics, for questions
originating in geometry or analysis, goes together with an investigation of
rich underlying algebraic concepts, revealed by the application of Borel
resummation techniques.
Specifically, the study of the Stokes phenomenon has had spectacular

recent applications in questions of integrability, in dynamics and PDEs.
Some generalized form of Borel summation has been developed to han-
dle the relevant structured expansions – named transseries – which mix
series, exponentials and logarithms; these formal objects are in fact ubiq-
uitous in special function theory since the 19th century.
Perturbative Quantum Field Theory is also a domain where recent ad-

vances have been obtained, for series and transseries which are of a to-
tally different origin from the ones met in local dynamics and yet display
the same sort of phenomena with, strikingly, the very same underlying
algebraic objects.
Hopf algebras, e.g. with occurrences of shuffle and quasishuffle prod-

ucts that are important themes in the algebraic combinatorics community,
appear now natural and useful in local dynamics as well as in pQFT. One
common thread in many of the important advances for these questions
is the concept of resurgence, which has triggered substantial progress in
various areas in the near past.
An international conference took place on October 12th – October

16th, 2009, in the Centro di Ricerca Matematica Ennio De Giorgi, in
Pisa, to highlight recent achievements along these ideas.
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4, rue des Frères-Lumière, 68093 Mulhouse cedex, France
augustin.fruchard@uha.fr

SHINGO KAMIMOTO – Graduate School of Mathematical Sciences, Uni-
versity of Tokyo, Tokyo, 153-8914, Japan
kamimoto@ms.u-tokyo.ac.jp

TAKAHIRO KAWAI – Research Institute for Mathematical Sciences, Ky-
oto University, Kyoto, 606-8502, Japan

TATSUYA KOIKE – Department of Mathematics, Graduate School of Sci-
ence, Kobe University. Kobe, 657-8501, Japan
koike@math.kobe-u.ac.jp
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Feynman graphs in perturbative quantum
field theory

Christian Bogner and Stefan Weinzierl

Abstract. In this talk we discuss mathematical structures associated to Feynman
graphs. Feynman graphs are the backbone of calculations in perturbative quantum
field theory. The mathematical structures – apart from being of interest in their
own right – allow to derive algorithms for the computation of these graphs. Topics
covered are the relations of Feynman integrals to periods, shuffle algebras and
multiple polylogarithms.

1 Introduction

High-energy particle physics has become a field where precision mea-
surements have become possible. Of course, the increase in experimental
precision has to be matched with more accurate calculations from the
theoretical side. As theoretical calculations are done within perturbation
theory, this implies the calculation of higher order corrections. This in
turn relies to a large extent on our abilities to compute Feynman loop
integrals. These loop calculations are complicated by the occurrence of
ultraviolet and infrared singularities. Ultraviolet divergences are related
to the high-energy behaviour of the integrand. Infrared divergences may
occur if massless particles are present in the theory and are related to the
low-energy or collinear behaviour of the integrand.
Dimensional regularisation [1–3] is usually employed to regularise

these singularities. Within dimensional regularisation one considers the
loop integral in D space-time dimensions instead of the usual four space-
time dimensions. The result is expanded as a Laurent series in the pa-
rameter ε = (4 − D)/2, describing the deviation of the D-dimensional
space from the usual four-dimensional space. The singularities mani-
fest themselves as poles in 1/ε. Each loop can contribute a factor 1/ε
from the ultraviolet divergence and a factor 1/ε2 from the infrared diver-
gences. Therefore an integral corresponding to a graph with l loops can
have poles up to 1/ε2l .
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At the end of the day, all poles disappear: The poles related to ultravi-
olet divergences are absorbed into renormalisation constants. The poles
related to infrared divergences cancel in the final result for infrared-safe
observables, when summed over all degenerate states or are absorbed
into universal parton distribution functions. The sum over all degenerate
states involves a sum over contributions with different loop numbers and
different numbers of external legs.
However, intermediate results are in general a Laurent series in ε and

the task is to determine the coefficients of this Laurent series up to a
certain order. At this point mathematics enters. We can use the alge-
braic structures associated to Feynman integrals to derive algorithms to
calculate them. A few examples where the use of algebraic tools has
been essential are the calculation of the three-loop Altarelli-Parisi split-
ting functions [4, 5] or the calculation of the two-loop amplitude for the
process e+e− → 3 jets [6–15].
On the other hand is the mathematics encountered in these calcula-

tions of interest in its own right and has led in the last years to a fruitful
interplay between mathematicians and physicists. Examples are the re-
lation of Feynman integrals to mixed Hodge structures and motives, as
well as the occurrence of certain transcendental constants in the result of
a calculation [16–33].
This article is organised as follows: After a brief introduction into per-

turbation theory (Section 2), multi-loop integrals (Section 3) and periods
(Section 4), we present in Section 5 a theorem stating that under rather
weak assumptions the coefficients of the Laurent series of any multi-loop
integral are periods. The proof is sketched in Section 6 and Section 7.
Shuffle algebras are discussed in Section 8. Section 9 is devoted to mul-
tiple polylogarithms. In Section 10 we discuss how multiple polylog-
arithms emerge in the calculation of Feynman integrals. Finally, Sec-
tion 11 contains our conclusions.

2 Perturbation theory

In high-energy physics experiments one is interested in scattering pro-
cesses with two incoming particles and n outgoing particles. Such a pro-
cess is described by a scattering amplitude, which can be calculated in
perturbation theory. The amplitude has a perturbative expansion in the
(small) coupling constant g:

An = gn
(
A(0)
n + g2A(1)

n + g4A(2)
n + g6A(3)

n + ...
)
. (2.1)

To the coefficientA(l)
n contribute Feynman graphs with l loops and (n+2)

external legs. The recipe for the computation of A(l)
n is as follows: Draw
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first all Feynman diagrams with the given number of external particles
and l loops. Then translate each graph into a mathematical formula with
the help of the Feynman rules. A(l)

n is then given as the sum of all these
terms.
Feynman rules allow us to translate a Feynman graph into a mathe-

matical formula. These rules are derived from the fundamental Lagrange
density of the theory, but for our purposes it is sufficient to accept them as
a starting point. The most important ingredients are internal propagators,
vertices and external lines. For example, the rules for the propagators of
a fermion or a massless gauge boson read

Fermion: = i
p/+ m

p2 − m2 + iδ ,

Gauge boson: = −igμν
k2 + iδ .

Here p and k are the momenta of the fermion and the boson, respectively.
m is the mass of the fermion. p/ = pμγ μ is a short-hand notation for the
contraction of the momentum with the Dirac matrices. The metric tensor
is denoted by gμν and the convention adopted here is to take the met-
ric tensor as gμν = diag(1,−1,−1,−1). The propagator would have a
pole for p2 = m2, or phrased differently for E = ±√ �p2 + m2. When
integrating over E , the integration contour has to be deformed to avoid
these two poles. Causality dictates into which directions the contour has
to be deformed. The pole on the negative real axis is avoided by escap-
ing into the lower complex half-plane, the pole at the positive real axis is
avoided by a deformation into the upper complex half-plane. Feynman
invented the trick to add a small imaginary part iδ to the denominator,
which keeps track of the directions into which the contour has to be de-
formed. In the following we will usually suppress the iδ-term in order to
keep the notation compact.
As a typical example for an interaction vertex let us look at the vertex

involving a fermion pair and a gauge boson:

= igγ μ.
(2.2)

Here, g is the coupling constant and γ μ denotes the Dirac matrices. At
each vertex, we have momentum conservation: The sum of the incoming
momenta equals the sum of the outgoing momenta.
To each external line we have to associate a factor, which describes the

polarisation of the corresponding particle: There is a polarisation vector
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εμ(k) for each external gauge boson and a spinor ū(p), u(p), v(p) or
v̄(p) for each external fermion.
Furthermore there are a few additional rules: First of all, there is an

integration ∫
d4k

(2π)4
(2.3)

for each loop. Secondly, each closed fermion loop gets an extra factor of
(−1). Finally, each diagram gets multiplied by a symmetry factor 1/S,
where S is the order of the permutation group of the internal lines and
vertices leaving the diagram unchanged when the external lines are fixed.
Having stated the Feynman rules, let us look at two examples: The

first example is a scalar two-point one-loop integral with zero external
momentum:

k

k

p = 0
=

∫
d4k

(2π)4
1

(k2)2
= 1

(4π)2

∫ ∞

0
dk2

1

k2

= 1

(4π)2

∫ ∞

0

dx

x
.

(2.4)

This integral diverges at k2 → ∞ as well as at k2 → 0. The former di-
vergence is called ultraviolet divergence, the later is called infrared diver-
gence. Any quantity, which is given by a divergent integral, is of course
an ill-defined quantity. Therefore the first step is to make these integrals
well-defined by introducing a regulator. There are several possibilities
how this can be done, but the method of dimensional regularisation [1–3]
has almost become a standard, as the calculations in this regularisation
scheme turn out to be the simplest. Within dimensional regularisation one
replaces the four-dimensional integral over the loop momentum by an D-
dimensional integral, where D is now an additional parameter, which can
be a non-integer or even a complex number. We consider the result of the
integration as a function of D and we are interested in the behaviour of
this function as D approaches 4. The original divergences will then show
up as poles in the Laurent series in ε = (4− D)/2.
As a second example we consider a Feynman diagram contributing to

the one-loop corrections for the process e+e− → qgq̄, shown in Fig-
ure 2.1.
At high energies we can ignore the masses of the electron and the light

quarks. From the Feynman rules one obtains for this diagram (ignoring
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p1

p2

p3p4

p5 

Figure 2.1. A one-loop Feynman diagram contributing to the process e+e− →
qgq̄.

coupling and colour prefactors):

−v̄(p4)γ μu(p5)
1

p2123

∫
dDk1
(2π)4

1

k22
ū(p1)ε/(p2)

p/12
p212

γν
k/1
k21
γμ
k/3
k23
γ νv(p3). (2.5)

Here, p12 = p1+ p2, p123 = p1+ p2+ p3, k2 = k1− p12, k3 = k2− p3.
Further ε/(p2) = γτε

τ (p2), where ετ (p2) is the polarisation vector of
the outgoing gluon. All external momenta are assumed to be massless:
p2i = 0 for i = 1..5. We can reorganise this formula into a part, which
depends on the loop integration and a part, which does not. The loop
integral to be calculated reads:∫

dDk1
(2π)4

kρ1 k
σ
3

k21k
2
2k
2
3

, (2.6)

while the remainder, which is independent of the loop integration is given
by

−v̄(p4)γ μu(p5)
1

p2123 p
2
12

ū(p1)ε/(p2)p/12γνγργμγσγ
νv(p3). (2.7)

The loop integral in equation (2.6) contains in the denominator three
propagator factors and in the numerator two factors of the loop momen-
tum. We call a loop integral, in which the loop momentum occurs also in
the numerator a “tensor integral”. A loop integral, in which the numer-
ator is independent of the loop momentum is called a “scalar integral”.
The scalar integral associated to equation (2.6) reads∫

dDk1
(2π)4

1

k21k
2
2k
2
3

. (2.8)

There is a general method [34, 35] which allows to reduce any tensor
integral to a combination of scalar integrals at the expense of introduc-
ing higher powers of the propagators and shifted space-time dimensions.
Therefore it is sufficient to focus on scalar integrals. Each integral can
be specified by its topology, its value for the dimension D and a set of
indices, denoting the powers of the propagators.
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3 Multi-loop integrals

Let us now consider a generic scalar l-loop integral IG in D = 2m − 2ε
dimensions with n propagators, corresponding to a graph G. For each
internal line j the corresponding propagator in the integrand can be raised
to a power ν j . Therefore the integral will depend also on the numbers
ν1,...,νn . It is sufficient to consider only the case, where all exponents are
natural numbers: ν j ∈ N. We define the Feynman integral by

IG =

n∏
j=1


(ν j )


(ν − lD/2)
(
μ2

)ν−lD/2 ∫ l∏
r=1

dDkr

iπ
D
2

n∏
j=1

1

(−q2j + m2j )ν j
, (3.1)

with ν = ν1 + ...+ νn . μ is an arbitrary scale, called the renormalisation
scale. The momenta q j of the propagators are linear combinations of the
external momenta and the loop momenta. The prefactors are chosen such
that after Feynman parametrisation the Feynman integral has a simple
form:

IG =
(
μ2

)ν−lD/2 ∫
x j≥0

dnx δ(1−
n∑
i=1

xi)

(
n∏
j=1

x
ν j−1
j

)
Uν−(l+1)D/2

Fν−lD/2
. (3.2)

The functions U and F depend on the Feynman parameters and can be
derived from the topology of the corresponding Feynman graph G. Cut-
ting l lines of a given connected l-loop graph such that it becomes a con-
nected tree graph T defines a chord C(T,G) as being the set of lines not
belonging to this tree. The Feynman parameters associated with each
chord define a monomial of degree l. The set of all such trees (or 1-trees)
is denoted by T1. The 1-trees T ∈ T1 define U as being the sum over
all monomials corresponding to the chords C(T,G). Cutting one more
line of a 1-tree leads to two disconnected trees (T1, T2), or a 2-tree. T2
is the set of all such pairs. The corresponding chords define monomials
of degree l + 1. Each 2-tree of a graph corresponds to a cut defined by
cutting the lines which connected the two now disconnected trees in the
original graph. The square of the sum of momenta through the cut lines
of one of the two disconnected trees T1 or T2 defines a Lorentz invariant

sT =
⎛⎝ ∑

j∈C(T,G)
p j

⎞⎠2

. (3.3)

The function F0 is the sum over all such monomials times minus the cor-
responding invariant. The function F is then given by F0 plus an addi-
tional piece involving the internal masses m j . In summary, the functions
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U and F are obtained from the graph as follows:

U =
∑
T∈T1

⎡⎣ ∏
j∈C(T,G)

x j

⎤⎦ ,

F0 =
∑

(T1,T2)∈T2

⎡⎣ ∏
j∈C(T1,G)

x j

⎤⎦ (−sT1) ,

F = F0 +U
n∑
j=1

x jm
2
j .

4 Periods

Periods are special numbers. Before we give the definition, let us start
with some sets of numbers: The natural numbers N, the integer numbers
Z, the rational numbers Q, the real numbers R and the complex numbers
C are all well-known. More refined is already the set of algebraic num-
bers, denoted by Q̄. An algebraic number is a solution of a polynomial
equation with rational coefficients:

xn + an−1xn−1 + · · · + a0 = 0, a j ∈ Q. (4.1)

As all such solutions lie in C, the set of algebraic numbers Q̄ is a sub-set
of the complex numbers C. Numbers which are not algebraic are called
transcendental. The sets N, Z, Q and Q̄ are countable, whereas the sets
R, C and the set of transcendental numbers are uncountable.
Periods are a countable set of numbers, lying between Q̄ and C. There

are several equivalent definitions for periods. Kontsevich and Zagier gave
the following definition [36]: A period is a complex number whose real
and imaginary parts are values of absolutely convergent integrals of ra-
tional functions with rational coefficients, over domains in Rn given by
polynomial inequalities with rational coefficients. Domains defined by
polynomial inequalities with rational coefficients are called semi-alge-
braic sets.
We denote the set of periods by P. The algebraic numbers are con-

tained in the set of periods: Q̄ ∈ P. In addition, P contains transcendental
numbers, an example for such a number is π :

π =
∫∫

x2+y2≤1
dx dy. (4.2)

The integral on the right hand side . clearly shows that π is a period. On
the other hand, it is conjectured that the basis of the natural logarithm e
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and Euler’s constant γE are not periods. Although there are uncountably
many numbers, which are not periods, only very recently an example for
a number which is not a period has been found [37].
We need a few basic properties of periods: The set of periods P is a

Q̄-algebra [36, 38]. In particular the sum and the product of two periods
are again periods.
The defining integrals of periods have integrands, which are rational

functions with rational coefficients. For our purposes this is too restric-
tive, as we will encounter logarithms as integrands as well. However any
logarithm of a rational function with rational coefficients can be written
as

ln g(x) =
1∫
0

dt
g(x)− 1

(g(x)− 1)t + 1 . (4.3)

5 A theorem on Feynman integrals

Let us consider a general scalar multi-loop integral as in equation (3.2).
Letm be an integer and set D = 2m−2ε. Then this integral has a Laurent
series expansion in ε

IG =
∞∑

j=−2l
c jε

j . (5.1)

Theorem 5.1. In the case where

1. all kinematical invariants sT are zero or negative,
2. all masses mi and μ are zero or positive (μ 
= 0),
3. all ratios of invariants and masses are rational,

the coefficients c j of the Laurent expansion are periods.

In the special case were

1. the graph has no external lines or all invariants sT are zero,
2. all internal masses m j are equal to μ,
3. all propagators occur with power 1, i.e. ν j = 1 for all j ,
the Feynman parameter integral reduces to

IG =
∫

x j≥0
dnx δ(1−

n∑
i=1

xi)U−D/2 (5.2)

and only the polynomial U occurs in the integrand. In this case it has been
shown by Belkale and Brosnan [39] that the coefficients of the Laurent
expansion are periods.
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Using the method of sector decomposition we are able to prove the
general case [40]. We will actually prove a stronger version of Theo-
rem 5.1. Consider the following integral

J =
∫

x j≥0
dnx δ(1−

n∑
i=1

xi)

(
n∏
i=1

xai+εbii

)
r∏
j=1

[
Pj (x)

]d j+ε f j
. (5.3)

The integration is over the standard simplex. The a’s, b’s, d’s and f ’s
are integers. The P’s are polynomials in the variables x1, ..., xn with
rational coefficients. The polynomials are required to be non-zero inside
the integration region, but may vanish on the boundaries of the integration
region. To fix the sign, let us agree that all polynomials are positive inside
the integration region. The integral J has a Laurent expansion

J =
∞∑
j= j0

c jε
j . (5.4)

Theorem 5.2. The coefficients c j of the Laurent expansion of the integral
J are periods.

Theorem 5.1 follows then from Theorem 5.2 as the special case ai =
νi − 1, bi = 0, r = 2, P1 = U , P2 = F , d1 + ε f1 = ν − (l + 1)D/2 and
d2 + ε f2 = lD/2− ν.

Proof of Theorem 5.2. To prove the theorem we will give an algorithm
which expresses each coefficient c j as a sum of absolutely convergent
integrals over the unit hypercube with integrands, which are linear com-
binations of products of rational functions with logarithms of rational
functions, all of them with rational coefficients. Let us denote this set
of functions to which the integrands belong byM. The unit hypercube
is clearly a semi-algebraic set. It is clear that absolutely convergent inte-
grals over semi-algebraic sets with integrands from the setM are periods.
In addition, the sum of periods is again a period. Therefore it is sufficient
to express each coefficient c j as a finite sum of absolutely convergent in-
tegrals over the unit hypercube with integrands fromM. To do so, we use
iterated sector decomposition. This is a constructive method. Therefore
we obtain as a side-effect a general purpose algorithm for the numerical
evaluation of multi-loop integrals.
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6 Sector decomposition

In this section we review the algorithm for iterated sector decomposition
[41–47]. The starting point is an integral of the form∫

x j≥0
dnx δ(1−

n∑
i=1

xi)

(
n∏
i=1

xμii

)
r∏
j=1

[
Pj (x)

]λ j
, (6.1)

where μi = ai + εbi and λ j = c j + εd j . The integration is over the
standard simplex. The a’s, b’s, c’s and d’s are integers. The P’s are
polynomials in the variables x1, ..., xn . The polynomials are required to be
non-zero inside the integration region, but may vanish on the boundaries
of the integration region. The algorithm consists of the following steps:

Step 0: Convert all polynomials to homogeneous polynomials.

Step 1: Decompose the integral into n primary sectors.

Step 2: Decompose the sectors iteratively into sub-sectors until each of
the polynomials is of the form

P = xm11 ...xmn
n

(
c + P ′(x)

)
, (6.2)

where c 
= 0 and P ′(x) is a polynomial in the variables x j without a con-
stant term. In this case the monomial prefactor xm11 ...xmn

n can be factored
out and the remainder contains a non-zero constant term. To convert P
into the form (6.2) one chooses a subset S = {α1, ..., αk} ⊆ {1, ... n}
according to a strategy discussed in the next section. One decomposes
the k-dimensional hypercube into k sub-sectors according to

1∫
0

dnx =
k∑
l=1

1∫
0

dnx
k∏

i=1,i 
=l
θ
(
xαl ≥ xαi

)
. (6.3)

In the l-th sub-sector one makes for each element of S the substitution

xαi = xαl x
′
αi

for i 
= l. (6.4)

This procedure is iterated, until all polynomials are of the form (6.2).
Figure 6.1 illustrates this for the simple example S = {1, 2}. equa-

tion (6.3) gives the decomposition into the two sectors x1 > x2 and
x2 > x1. Equation (6.4) transforms the triangles into squares. This trans-
formation is one-to-one for all points except the origin. The origin is
replaced by the line x1 = 0 in the first sector and by the line x2 = 0 in
the second sector. Therefore the name “blow-up”.
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x1

x2

=

x1

x2

+

x1

x2

=

x1

+

x2

x1'

x2'

Figure 6.1. Illustration of sector decomposition and blow-up for a simple ex-
ample.

Step 3: The singular behaviour of the integral depends now only on the
factor

n∏
i=1

xai+εbii . (6.5)

We Taylor expand in the integration variables and perform the trivial in-
tegrations

1∫
0

dx xa+bε = 1

a + 1+ bε , (6.6)

leading to the explicit poles in 1/ε.

Step 4: All remaining integrals are now by construction finite. We can
now expand all expressions in a Laurent series in ε and truncate to the
desired order.

Step 5: It remains to compute the coefficients of the Laurent series. These
coefficients contain finite integrals, which can be evaluated numerically
by Monte Carlo integration. We implemented1 the algorithm into a com-
puter program, which computes numerically the coefficients of the Lau-
rent series of any multi-loop integral [45].

1 The program can be obtained from http://www.higgs.de/˜stefanw/software.html
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7 Hironaka’s polyhedra game

In Step 2 of the algorithm we have an iteration. It is important to show
that this iteration terminates and does not lead to an infinite loop. There

x2 x2 x2

x1 x1 x1

S={1,2}, i=1→ S={1,2}, i=1→

Figure 7.1. Illustration of Hironaka’s polyhedra game.

are strategies for choosing the sub-sectors, which guarantee termination.
These strategies [48–52] are closely related to Hironaka’s polyhedra
game.
Hironaka’s polyhedra game is played by two players, A and B. They

are given a finite set M of points m = (m1, ..., mn) in Nn+, the first
quadrant of Nn . We denote by � ⊂ Rn+ the positive convex hull of the
set M . It is given by the convex hull of the set⋃

m∈M

(
m + Rn

+
)
. (7.1)

The two players compete in the following game:

1. Player A chooses a non-empty subset S ⊆ {1, ..., n}.
2. Player B chooses one element i out of this subset S.

Then, according to the choices of the players, the components of all
(m1, ..., mn) ∈ M are replaced by new points

(
m ′1, ..., m

′
n

)
, given by:

m ′j = m j , if j 
= i,

m ′i =
∑
j∈S

m j − c,

where for the moment we set c = 1. This defines the set M ′. One then
sets M = M ′ and goes back to Step 1. Player A wins the game if, after a
finite number of moves, the polyhedron� is of the form

� = m + Rn
+, (7.2)

i.e. generated by one point. If this never occurs, player B has won. The
challenge of the polyhedra game is to show that player A always has a
winning strategy, no matter how player B chooses his moves. A simple
illustration of Hironaka’s polyhedra game in two dimensions is given in
Figure 7.1. Player A always chooses S = {1, 2}. In [45] we have shown
that a winning strategy for Hironaka’s polyhedra game translates directly
into a strategy for choosing the sub-sectors which guarantees termination.
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8 Shuffle algebras

Before we continue the discussion of loop integrals, it is useful to discuss
first shuffle algebras and generalisations thereof from an algebraic view-
point. Consider a set of letters A. The set A is called the alphabet. A
word is an ordered sequence of letters:

w = l1l2...lk . (8.1)

The word of length zero is denoted by e. Let K be a field and consider the
vector space of words over K . A shuffle algebraA on the vector space of
words is defined by

(l1l2...lk) · (lk+1...lr ) =
∑

shuffles σ

lσ(1)lσ(2)...lσ(r), (8.2)

where the sum runs over all permutations σ , which preserve the relative
order of 1, 2, ..., k and of k + 1, ..., r . The name “shuffle algebra” is
related to the analogy of shuffling cards: If a deck of cards is split into two
parts and then shuffled, the relative order within the two individual parts
is conserved. A shuffle algebra is also known under the name “mould
symmetral” [53]. The empty word e is the unit in this algebra:

e ·w = w · e = w. (8.3)

A recursive definition of the shuffle product is given by

(l1l2...lk) · (lk+1...lr ) = l1 [(l2...lk) · (lk+1...lr )]
+ lk+1 [(l1l2...lk) · (lk+2...lr )] . (8.4)

It is well known fact that the shuffle algebra is actually a (non-cocom-
mutative) Hopf algebra [54]. In this context let us briefly review the
definitions of a coalgebra, a bialgebra and a Hopf algebra, which are
closely related: First note that the unit in an algebra can be viewed as
a map from K to A and that the multiplication can be viewed as a map
from the tensor product A⊗ A to A (e.g. one takes two elements from A,
multiplies them and gets one element out).
A coalgebra has instead of multiplication and unit the dual structures:

a comultiplication � and a counit ē. The counit is a map from A to K ,
whereas comultiplication is a map from A to A⊗A. Note that comultipli-
cation and counit go in the reverse direction compared to multiplication
and unit. We will always assume that the comultiplication is coassocia-
tive. The general form of the coproduct is

�(a) =
∑
i

a(1)i ⊗ a(2)i , (8.5)
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where a(1)i denotes an element of A appearing in the first slot of A ⊗ A
and a(2)i correspondingly denotes an element of A appearing in the second
slot. Sweedler’s notation [55] consists in dropping the dummy index i
and the summation symbol:

�(a) = a(1) ⊗ a(2) (8.6)

The sum is implicitly understood. This is similar to Einstein’s summation
convention, except that the dummy summation index i is also dropped.
The superscripts (1) and (2) indicate that a sum is involved.
A bialgebra is an algebra and a coalgebra at the same time, such that

the two structures are compatible with each other. Using Sweedler’s no-
tation, the compatibility between the multiplication and comultiplication
is expressed as

�(a · b) = (
a(1) · b(1))⊗ (

a(2) · b(2)) . (8.7)

A Hopf algebra is a bialgebra with an additional map from A to A, called
the antipode S, which fulfils

a(1) · S (
a(2)

) = S (
a(1)

) · a(2) = e · ē(a). (8.8)

With this background at hand we can now state the coproduct, the counit
and the antipode for the shuffle algebra: The counit ē is given by:

ē (e) = 1, ē (l1l2...ln) = 0. (8.9)

The coproduct � is given by:

�(l1l2...lk) =
k∑
j=0

(
l j+1...lk

)⊗ (
l1...l j

)
. (8.10)

The antipode S is given by:

S (l1l2...lk) = (−1)k lklk−1...l2l1. (8.11)

The shuffle algebra is generated by the Lyndon words. If one introduces
a lexicographic ordering on the letters of the alphabet A, a Lyndon word
is defined by the property

w < v (8.12)

for any sub-words u and v such that w = uv.


