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CHAPTER 1

What Is SwiftUI

In this chapter, we'll review the principles of SwiftUI and why it came
into being. You'll see the advantages that it offers over traditional
methodologies of development and how easy it is to write UI without
having to worry much about it in a much more declarative manner.

The Beginnings

Every year, WWDC is always a source of exciting stuff for developers;
everyone waits with baited breath to see what new tech is being introduced
by Apple. Historically, WWDC, which is the Developers Conference,

has been the forum where numerous new and interesting technologies
have been previewed for release in some time. The most current
groundbreaking piece of tech released by Apple was in 2014 when Apple
released Swift, an alternative to the aging Objective-C. This not only had
an easier syntax and was based on modern programming fundamentals
but was also open sourced. Five years have passed since then and several
books and apps are now created using Swift. This year in 2019, at WWDC,
Apple released something that got developers all excited once again, called
SwiftUI (Figure 1-1). Though this is still a new technology and at the time
of writing the book still in beta, it can have some changes which would
only add more functionality to the existing repertoire of SwiftUI.

© Jayant Varma 2019 1
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CHAPTER 1 WHAT IS SWIFTUI

Figure 1-1. Applications built using SwiftUI on Mac, iOS, and WatchOS

In a single sentence, the easiest way to describe SwiftUI is a declarative
UL This might still not really answer or help understand what it is all
about. An easy way to understand declarative Ul is to simply state what you
want, like “I want my eggs hard boiled” instead of detailing the steps like
“get eggs, put them in a pan filled with water, put this on the flame and wait
for 7 minutes.” Its more about focusing on what’s important than how to
achieve that.

In traditional programming languages, one would generally create
an Ul element; then set its visual frame; set the colors, background and
foreground, and other attributes; and then set it up on the visual hierarchy.
With declarative, you only need to specify that you need an element, and
these can then be modified using modifiers.

SwiftUl Principles

SwiftUI is built on four principles discussed in the following sections.
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Declarative

Traditional development was focused more on how to create elements and
how to display them on the screen and then continue to update them as
the data changes. With a declarative UI, this moves away from that, instead
allowing the developer to focus on what you want to display.

Let’s see how this looks currently:

let labelText = UILabel(frame: CGRect(x:0, y:0, width:100,
height:100))

labelText.text = "Hello World"

labelText.textColor = UIColor.blue
labelText.backgroundColor = UIColor.red

labelText.font = UIFont(name: "Helvetica", size: 24)
self.view.addSubview(labelText)

This simply creates a UILabel and then sets its attributes. This code
is specific for iOS as it uses the UILabel which is not available on macOS
which uses NSLabel or the watchOS which uses WKInterfacelabel. Now
with SwiftUI, there is a common element that is available on all of 10S,
iPad0S, mac0S, and watchOS. The same code looks like

Text("Hello World")
.color(.blue)
.background(Color.red)
.font(.largeTitle)

That brings us up to the next principle:

Automatic

This principle is hinged on the basis that it offers automatic functionality; if
you saw the preceding code snippet, there was no mention of spacing, frames,
insets, and the like. SwiftUI offers all the out-of-the-box features for free
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functionality - like Localization; if the code had language strings, then the line
above would display the localized version, all without writing extra code,
all automatically. Developers can also take advantage of functionality like
left-to-right, Dark mode, Dynamic type, and more, all with writing minimal
code.

Composition

This is another interesting principle that SwiftUT is based on simply
because a Ul is nothing but a collection of visual elements that together
provide the user an interactive experience. With SwiftUI, Apple makes this
much easier to manage, even creating complex views by using containers
like VStack or HStack. Composition is nothing but creating newer
elements by compositing using other elements.

Consistent

Now when Apple wanted to create an easy-to-use application program
interface (API), they made sure that it was easy to use. The biggest problem
faced with developers is updating the UI from data models; there can be
lags and/or issues that prevent the data from being used in the update
cycle and can lead to strange errors or behaviors that are difficult to
understand. So, to solve this particular problem with data and UI, the
fourth principle is important.

Since the Ul is a reflection of the data it represents, it should always be in
sync so as to provide a consistent experience. Traditionally, this is the step
that is error prone as data can be out of sync and/or updated out of cycle.
With SwiftUI, the Ul updates automatically as soon as the data changes.

It also caters for a temporary Ul state that can be simply declared using
the @State property wrapper.
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Note With traditional programming, most developers are used to
mutability; with SwiftUl, it is surprising how little mutability is required.

SwiftUl Architecture

The advantages of using SwiftUI are not limited to the preceding points;
these are just the tip of the iceberg, mostly because it is not very long ago
that SwiftUI was released and like the early versions of Swift, there are a lot
of changes to be expected. However, most of the principles would still be
useful and available even with the organic changes.

The Swift language is open source and there is an evolution web
site where the community discusses and progresses the development.
SwiftUI is however not open source and managed only by Apple. It is cross
platform on the Apple Ecosystems only and works across all of them, iOS,
iPadOS, macOS, tvOS, and watchOS (Figure 1-2).

Code

Figure 1-2. SwiftUI Architecture
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While SwiftUI sits on top of the code and creates the application that
displays UI elements, it does not, and please note this (as of now and
probably even later), it does not create native elements from the code.

So when a developer creates a text element, it does not create a UILabel
or aNSLabel or WKInterfacelabel. It is still a text element, and in the
view debugger, it shows all of the elements, the native ones and the
SwiftUI. However, they are displayed separately in their own hierarchies.
All of the SwiftUI is hosted in a container called Hosting View; more details
of all these are available in subsequent chapters.

Requirements to Use SwiftUl

There are a couple of touch points that use SwiftU]I, the first being

the newer OS, iOS 13, iPadOS 13, macOS 15, and watchOS 6. From a
development perspective, the minimum requirements are Xcode 11 or
higher running on macOS 10.15 Catalina or higher, and from a language
perspective, it needs the new features added in Swift 5.1. With all of these,
itis apparently clear that it is not available with Objective-C; perhaps, the
key giveaway was the name SwiftUI and not a name that was generic.

Integration with Xcode

The second advantage that SwiftUI offers after it being an easy declarative
Ul language is that it offers quick previews. With Xcode 6, Apple offered

a @IBDesignable attribute that allowed developers to create classes that
could be previewed in Interface Builder and interactively change some
parameters and see the changes accordingly. SwiftUI allows us to create
views and also provides sample data to preview the view in Xcode without
having to run it. Xcode compiles the code and displays the preview all in
the background as soon as some code is written. If there is a substantial
change, then previews are paused, and requesting to resume the preview
would compile the code and attempt to preview the UI.



