SwiftUl
for Absolute
Beginners

Program Controls and Views
for iPhone, iPad, and Mac Apps

Jayant Varma

SwiftUl for Absolute
Beginners

Program Controls and Views for
IPhone, iPad, and Mac Apps

Jayant Varma

Apress’

SwiftUI for Absolute Beginners: Program Controls and Views for
iPhone, iPad, and Mac Apps

Jayant Varma
Melbourne, VIC, Australia

ISBN-13 (pbk): 978-1-4842-5515-5 ISBN-13 (electronic): 978-1-4842-5516-2
https://doi.org/10.1007/978-1-4842-5516-2

Copyright © 2019 by Jayant Varma

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.
apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.
com/978-1-4842-5515-5. For more detailed information, please visit http://www.apress.
com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5516-2

This book is dedicated to my parents

Table of Contents

About the AUhOFcccmmmnmmmmsensssssss s xi
About the Technical ReVIEWErcusssssmssssnsssassssasssassssassssnsssassssannsns Xiii
Acknowledgments.......cccccurmsssssssmssnmmmsmssssssssssssnssessssssssssnnnnsssssssssssnnnnns XV
Chapter 1: What Is SWiftUL.........ccoscmmmmmsssmnnmmsssnnnsmnsssssssmsssssssssssssssnnnns 1
The BEgINNINGSccvveriririrere st 1
SWITtUI PrNCIPIES ..ottt s 2
(DL Te T 1) 3

L (0] 1 USSR 3
COMPOSITION......ciiirrer e e eae s 4

0] 5] (=] | 4
SWITtUI AFCRITECIUE ... 5
Requirements to Use SWIftUL..........cccocrvririnnsnnni s 6
Integration With XCOEccovermrrererrerreere e 6
SWITIUI TRASET ...cvreeereeerreserrsesesre e ses e se s se s se e s sr s e e e nnnnens 7
SUMMANY....ceivierirerere e e e b e e r e e b e er e nnne e 8
Chapter 2: Peeking into SWiftUl...........ccocccmmninnemnmnnssnnnnmnssssnmmssssnns 9
Principles Behind SWIftUL...........ccccvvrrevnrnrenienisnessereresessessessessssessessessessssessessens 10
0paqUE RETUN TYPES...ciuerrererrerereresseressessssessessessesssssssessessssssessessesssssssessees 10
Implicit Returns from Single-Expression FUNCLIONSc.ccoevvvvevievevessensenaens 13
FUNCLION BUIIAEYS......ccvieecerrcere s 14

TABLE OF CONTENTS

Domain-Specific LANQUAGES......ccevrevrrrerrerersrrsrserersessssessessessssessessessessssessesaes 16
Property Wrappers......cccvveirinien s s s e e s s e s s ssessesssesaesse s 18
11T 111 T o OO 21
Chapter 3: Views and Controlscccureermssmmmssnsmsssnssssssssssssnsssssnsssas 23
EVerything IS @ VIEW.......ccov e 23
MOGIFIEIS ...veeeeceree e 24
Getting Started ... ———————— 25
THE GENEIIC VIBW...c.eeceeecereeereecresee e s sennenens 25
LD ST 26
IMAQES ..o e e e s 26
3100 28
TOQGIE e ———————— 28
TEXIFICIA ..cueeeececececes e np s 29
3] 1 TRV 31
SEBPPEE e ——————————— 31
Segmented CONLrOl.........cc.ccvrevrecrr e e 31
T3] N 32
DAEPICKEN ... s 33
NaVIgatioNVIBWooviriee et a e e s 34
TADVIBW ...ttt 36
STACKS...c.ererrrreeeere e 38
SCIOIVIBW ...t 41
DT eT0] £ (0] £ 42
AIBIT ...t g e 44
LISE vvreeeeesee s 45
11T 1117 O 49

TABLE OF CONTENTS

Chapter 4: Data and COMDbINE.........ccccrrnssnmnnmmssssnnnssssssnssessssssnssssssnnnnes 51
D7 - S 51
L LT R LS D - 52
Mutating Variables ... 52
L] - T 53
VIieW UPAALES.....coceeeriiricrirc st sns e s 56
ADSIACNG @ VIBW ...t 57
EXTErnal DAta........cocceerenernernesese s 59
State Vs. Bindable.........cccoveimreirneniresers s 61
COMDING ... e r e 65
1] 4= 66
Chapter 5: Layout and Presentationcccccuseemnnnsssnnnnmssssssssssssssnnns 67
Elements and MOGIfiersc.ooorerrrrrnerereserese s 67
Modifiable ALHDULESccoveerereeree s 68
STACKING VIBWS ...c.vrueirrcerrcerin sttt ettt 71
Creating IMage ASSEIS.......ccvvrrerererrerrerers s e s s s ssesne s 72
ClipPING IMAQES ...ccveererrerererrere s re e rae e s ssessessssessessesassesessessesessessessees 74

0] 1010 10T (] 76
Creating @ CHECK BOXccvvurverierrerenserserersesesseressessssessessessssessessessesssnsssessees 80
Composing MUHPIE HEMS.....ccvceveverrerrerere e se e e ene s 83
LAY OULS. ..ccueiueriecir s e r e nne 90
SUMIMANY.....eeeeeeerere e e e e e s e e re e nee e 91

vii

TABLE OF CONTENTS

Chapter 6: Drawing and Animation...........cccinnneemnnnssssnnnnnssssssnssssnnnn 93
L1 3SR 93
Making [t Better ... s 95
SNAPES ... ——————————— 96
RECIANGIE ... s 96
0 S 97
Shape MOIfIErScceviircrerr e 99
o 11 SR 100
CHPPEA ... e e e s 100

L T 100

R 0] 101
ANIMALION ..o 103
Animation ODJEct ... ————— 107
Types of ANIMALioNS.........coccvrivnrni e 107

o 113 ST 108
10T 111 17 OSSOSO 109
Chapter 7: Interactive GeStUresocccmermrrrsssssssssssssnssmsssssssssssnsnnnenes 111
(€T (1] - O 111
TP et ——————————————— 112
010 o TS 112
DIAQ e ——————————————— 113
ROTALION ... s 116
MagnifiCatioN......cceeeerrerere e nee 117
301 118
Y0 1 o RS 118
DiSAPPEANING ...everrerrerersererreserserere s s e s s sse e sae e s e s saese s e saesresre e nnennens 119
COMDINATIONS ...c.vvcccreres s 119
311111117 o O 119

viii

TABLE OF CONTENTS

Chapter 8: PreVieWs ...uuceerrissssssssssssssssssssssssssssssssnssssssssnnssssssnnnsssssnnns 121
o] 151171 ST 121
The AdVantage........ccevvcrcrinn s e enens 123

HOW DOES [EWOIK? ...t 123
What t0 PrEVIEW ..o s 125
CUSTOMIZING PrEVIBWScoveerereereererersersesessesessessessssessessesssssssessessssessensenses 126
USINg ASSELS iN PIEVIEWcc.eiverceereererersee e res e s s e se s saesne e s 130
PinNing PreviEWS......ccvce et ser e s s e se s s sessae s s nneas 138
SUMMANY....citiiicire e e e e s b s p e e s ae e e e e nne s 139
Chapter 9: Integrating UIKit..........coonrmmmmmmmmnnmnnmssssssmmmmmesmssssssssssnnns 141
SWIHUL ... bbb 1M
Integrating SwiftUl into UIKitccoeennenrecrecrnesere e 143
Integrating UIKit into SWiftUlcccvvenninnerrecerrese e 144
Passing Parameters.......c.cccoveernnnnnenneser s 148
SUMMANY....ceivierieererese s r s ne e pe e e e e 153
Chapter 10: Accessing APl Datacucnmssammmsssnsssssnsssssssssssnnssssnnnnss 155
REST API DAQccererciessne e sesees 155
Getting TEXE DAtccccevevecercere e 156
Getting JSON Data.......ccccovververerererseriere s sessese s s s saesessessesnes 157
Combine t0 the RESCUEcccorerericcrerir s 158
USING JSON DALacocereevrereriere et s e sa e s s sae e s e saesnes 159

JOKE ADD c.vveieeeeee st 160
LT - Y [0 160
Displaying the JOKESccccvvrieneririerree s rer e s s 162
SUMMANY.. ettt s e e e e s r e e s ae e e e e nne s 164

ix

TABLE OF CONTENTS

Chapter 11: Tips and TriCKS ...ccccurrmmssmnnmmssssssnsssssssnssssssssnssssssssssssssssnns 165
Rendering EIEmMents..........cccvvinvnincnnsnc s 165
Modifying Content: STYIES.......cccvvrnirnirris s 166
Everything Can Be Conditional?coecvivvvnennisnnnncnnesess e 167
Single Source of TrUthccvcvr s 168

T 1S 169
Model: VIEWMOEI ..o 169
Representables........cocvvee v 170
Coordinators and CoNteXt.........c.cuuerrernnnnsnseresesssse e sessseeas 172
(001111 T T 173
Adding DebUQPTINt........ccovirirrerrrrr e 175
Adding COMMENTSevveeeriererererrere e s e sse s s ssessssessessesasssssessessens 175
Create GridS........ccocoererererieeese s s 176
SUMMAIY.c.veitetrerere e sere e e s s sre e e e s s s ss e e s e s aesaese e e saesaesae e e e saesaessenennesness 178
1T - 179

About the Author

Jayant Varma is a Developer, Consultant and author that has over 25
years of experience in developing and delivering applications, of which
the last decade was focussed solely on i0S. He has worked on many iOS
applications that span indie games to Enterprise level applications used by
several users from the App store and via Enterprise builds. He loves to be
hands on, being closer to the code and manages teams of iOS developers
that work at different Enterprise level organisations in Melbourne,
Australia. He has worked with/ made apps for NBN, Telstra, Westpac to
name a few. He has written several books related to iOS development on
topics like Lua, Swift, Objective-C, Xcode, Bash and now SwiftUI. His early
days can be dated back to working with Z80 assembly, dBase, Clipper,
FoxPro, Visual Basic and even RPG on AS/400.

He has experience in several domains. His love of code can see him
dive deep hands-on into code. He is involved with the community and
speaks at meetups and conferences, has worked in 3 major universities in
Australia and teaches Swift to budding developers. He has also taught Swift
to an Apple Education cohort.

He can be reached on Linked in at https://www.linkedin.com/in/
jayantvarma/

https://www.linkedin.com/in/jayantvarma/
https://www.linkedin.com/in/jayantvarma/

About the Technical Reviewer

Mehul Mohan is an independent developer and security researcher who
likes to work with code and create things with it. He runs codedamn
(https://www.youtube.com/codedamn) as the platform to share his work
with others, and also runs codedamn.com as an independent developer
platform for learning and connecting. He’s mostly into JavaScript and its
runtimes but is eager to explore other interesting technologies. WWDC19
scholar, SwiftUI video series, and author of two books, you can find him
using the handle @mehulmpt almost everywhere.

xiii

https://urldefense.proofpoint.com/v2/url?u=https-3A__www.youtube.com_codedamn&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=E3AfiyxVwcAufBzWHjWU0E9DTfK7pUxOd3Vq_E0yK-A&m=J6xXGZ-o_RR-cjnKFD38DtuwZTGE_gQ4W-ISCELbk20&s=_1Vwxwg4eV1XmcQ02IEnWqPmo6PK4AUk5OidJ2XrrSk&e=
https://urldefense.proofpoint.com/v2/url?u=http-3A__codedamn.com&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=E3AfiyxVwcAufBzWHjWU0E9DTfK7pUxOd3Vq_E0yK-A&m=J6xXGZ-o_RR-cjnKFD38DtuwZTGE_gQ4W-ISCELbk20&s=zUrvRHrpGLqbDjITbW4afnkDLQ2ROLBoGgRfc7blUbc&e=

Acknowledgments

Writing a book is not exactly an easy task and more so when the
technology is new and does not have a lot of information available. This
has been a challenging journey also given the fact that every fortnight there
were changes to the API that broke some of the earlier code or changed
the way something was done. This book could be completed due to the
support by my family, more so my lovely wife Monica who has supported
me pulling late nighters and weekends trying out new features of SwiftUI
and making sure that it all works and remains current.

A special thanks to my parents that always believed in me and to that
effect this is going to be my 7th published book.

Thanks also to Aaron and Jessica at Apress, reaching out to Aaron for
a new book pitch and get this process started was quite easy, he got things
organised even while he was travelling and responded between his flights.
Thanks to Jessica, who as usual made the process easy and a breeze and
for all the quick responses and support at all aspects of the process.

Thanks to the Technical reviewer to go through the text and code and
highlight the little changes that were missed and special thanks to the team
that made this wonderful framework at Apple.

CHAPTER 1

What Is SwiftUI

In this chapter, we'll review the principles of SwiftUI and why it came
into being. You'll see the advantages that it offers over traditional
methodologies of development and how easy it is to write UI without
having to worry much about it in a much more declarative manner.

The Beginnings

Every year, WWDC is always a source of exciting stuff for developers;
everyone waits with baited breath to see what new tech is being introduced
by Apple. Historically, WWDC, which is the Developers Conference,

has been the forum where numerous new and interesting technologies
have been previewed for release in some time. The most current
groundbreaking piece of tech released by Apple was in 2014 when Apple
released Swift, an alternative to the aging Objective-C. This not only had
an easier syntax and was based on modern programming fundamentals
but was also open sourced. Five years have passed since then and several
books and apps are now created using Swift. This year in 2019, at WWDC,
Apple released something that got developers all excited once again, called
SwiftUI (Figure 1-1). Though this is still a new technology and at the time
of writing the book still in beta, it can have some changes which would
only add more functionality to the existing repertoire of SwiftUI.

© Jayant Varma 2019 1
J. Varma, SwiftUI for Absolute Beginners, https://doi.org/10.1007/978-1-4842-5516-2_1

CHAPTER 1 WHAT IS SWIFTUI

Figure 1-1. Applications built using SwiftUI on Mac, iOS, and WatchOS

In a single sentence, the easiest way to describe SwiftUI is a declarative
UL This might still not really answer or help understand what it is all
about. An easy way to understand declarative Ul is to simply state what you
want, like “I want my eggs hard boiled” instead of detailing the steps like
“get eggs, put them in a pan filled with water, put this on the flame and wait
for 7 minutes.” Its more about focusing on what’s important than how to
achieve that.

In traditional programming languages, one would generally create
an Ul element; then set its visual frame; set the colors, background and
foreground, and other attributes; and then set it up on the visual hierarchy.
With declarative, you only need to specify that you need an element, and
these can then be modified using modifiers.

SwiftUl Principles

SwiftUI is built on four principles discussed in the following sections.

CHAPTER 1 WHAT IS SWIFTUI

Declarative

Traditional development was focused more on how to create elements and
how to display them on the screen and then continue to update them as
the data changes. With a declarative UI, this moves away from that, instead
allowing the developer to focus on what you want to display.

Let’s see how this looks currently:

let labelText = UILabel(frame: CGRect(x:0, y:0, width:100,
height:100))

labelText.text = "Hello World"

labelText.textColor = UIColor.blue
labelText.backgroundColor = UIColor.red

labelText.font = UIFont(name: "Helvetica", size: 24)
self.view.addSubview(labelText)

This simply creates a UILabel and then sets its attributes. This code
is specific for iOS as it uses the UILabel which is not available on macOS
which uses NSLabel or the watchOS which uses WKInterfacelabel. Now
with SwiftUI, there is a common element that is available on all of 10S,
iPad0S, mac0S, and watchOS. The same code looks like

Text("Hello World")
.color(.blue)
.background(Color.red)
.font(.largeTitle)

That brings us up to the next principle:

Automatic

This principle is hinged on the basis that it offers automatic functionality; if
you saw the preceding code snippet, there was no mention of spacing, frames,
insets, and the like. SwiftUI offers all the out-of-the-box features for free

CHAPTER 1 WHAT IS SWIFTUI

functionality - like Localization; if the code had language strings, then the line
above would display the localized version, all without writing extra code,
all automatically. Developers can also take advantage of functionality like
left-to-right, Dark mode, Dynamic type, and more, all with writing minimal
code.

Composition

This is another interesting principle that SwiftUT is based on simply
because a Ul is nothing but a collection of visual elements that together
provide the user an interactive experience. With SwiftUI, Apple makes this
much easier to manage, even creating complex views by using containers
like VStack or HStack. Composition is nothing but creating newer
elements by compositing using other elements.

Consistent

Now when Apple wanted to create an easy-to-use application program
interface (API), they made sure that it was easy to use. The biggest problem
faced with developers is updating the UI from data models; there can be
lags and/or issues that prevent the data from being used in the update
cycle and can lead to strange errors or behaviors that are difficult to
understand. So, to solve this particular problem with data and UI, the
fourth principle is important.

Since the Ul is a reflection of the data it represents, it should always be in
sync so as to provide a consistent experience. Traditionally, this is the step
that is error prone as data can be out of sync and/or updated out of cycle.
With SwiftUI, the Ul updates automatically as soon as the data changes.

It also caters for a temporary Ul state that can be simply declared using
the @State property wrapper.

CHAPTER 1 WHAT IS SWIFTUI

Note With traditional programming, most developers are used to
mutability; with SwiftUl, it is surprising how little mutability is required.

SwiftUl Architecture

The advantages of using SwiftUI are not limited to the preceding points;
these are just the tip of the iceberg, mostly because it is not very long ago
that SwiftUI was released and like the early versions of Swift, there are a lot
of changes to be expected. However, most of the principles would still be
useful and available even with the organic changes.

The Swift language is open source and there is an evolution web
site where the community discusses and progresses the development.
SwiftUI is however not open source and managed only by Apple. It is cross
platform on the Apple Ecosystems only and works across all of them, iOS,
iPadOS, macOS, tvOS, and watchOS (Figure 1-2).

Code

Figure 1-2. SwiftUI Architecture

CHAPTER 1 WHAT IS SWIFTUI

While SwiftUI sits on top of the code and creates the application that
displays UI elements, it does not, and please note this (as of now and
probably even later), it does not create native elements from the code.

So when a developer creates a text element, it does not create a UILabel
or aNSLabel or WKInterfacelabel. It is still a text element, and in the
view debugger, it shows all of the elements, the native ones and the
SwiftUI. However, they are displayed separately in their own hierarchies.
All of the SwiftUI is hosted in a container called Hosting View; more details
of all these are available in subsequent chapters.

Requirements to Use SwiftUl

There are a couple of touch points that use SwiftU]I, the first being

the newer OS, iOS 13, iPadOS 13, macOS 15, and watchOS 6. From a
development perspective, the minimum requirements are Xcode 11 or
higher running on macOS 10.15 Catalina or higher, and from a language
perspective, it needs the new features added in Swift 5.1. With all of these,
itis apparently clear that it is not available with Objective-C; perhaps, the
key giveaway was the name SwiftUI and not a name that was generic.

Integration with Xcode

The second advantage that SwiftUI offers after it being an easy declarative
Ul language is that it offers quick previews. With Xcode 6, Apple offered

a @IBDesignable attribute that allowed developers to create classes that
could be previewed in Interface Builder and interactively change some
parameters and see the changes accordingly. SwiftUI allows us to create
views and also provides sample data to preview the view in Xcode without
having to run it. Xcode compiles the code and displays the preview all in
the background as soon as some code is written. If there is a substantial
change, then previews are paused, and requesting to resume the preview
would compile the code and attempt to preview the UI.

