Exploring Swift
Playgrounds

The Fastest and Most Effective Way
to Learn to Code and to Teach Others
to Use Your Code

Jesse Feiler

Apress’

Exploring Swift
Playgrounds

Jesse Feiler

Apress®

Exploring Swift Playgrounds: The Fastest and Most Effective Way to Learn to Code and to
Teach Others to Use Your Code

Jesse Feiler
Plattsburgh, New York, USA

ISBN-13 (pbk): 978-1-4842-2646-9 ISBN-13 (electronic): 978-1-4842-2647-6
DOI10.1007/978-1-4842-2647-6

Library of Congress Control Number: 2017938279
Copyright © 2017 by Jesse Feiler

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the

date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Technical Reviewer: Massimo Nardone
Coordinating Editor: Jessica Vakili
Copy Editor: Corbin Collins
Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Cover image designed by Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit waw. springeronline.com. Apress Media, LLC is

a California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at waw.apress.com/978-1-4842-2646-9.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/978-1-4842-2646-9
http://www.apress.com/source-code

Contents at a Glance

About the Authorcccnvsmmmis s ———— ix
About the Technical ReVIEWErcvcesssessmsssmsssmsassssssssasssssssssssnsnnsas xi
Introduction.......cccsvsemismmimme e ———————— Xiii
Chapter 1: Introducing Swift Playgroundsccccceurresssssssssnnsnnnnnas 1
Chapter 2: Creating a Simple Swift Playground on Xcode............ 13
Chapter 3: Looking at Swift Basics for Playgrounds..........cccueussee 27
Chapter 4: Editing Playgrounds on macO0S........c.ccueeenmmssssnnnssssnns 41
Chapter 5: Editing Playgrounds on i0S........cccccenmmmmnennmnssssnnssensnns 65
Chapter 6: Entering Data and Viewing Results in
Swift Playgroundsccueuesemssmssenssesssnsssssssssssssssssnssanssnsssnssssssnssasssnssns 91
Chapter 7: Adding Resources and Source Code to
Playgrounds 113
Chapter 8: Using Touch Gestures in Interactive
Playgrounds......cccuuseemmmmmmmmmssssssssssnnnnmmsssssssssssssnnenessssssnnsnnnnnnnnsss 143
Chapter 9: Building a Complex Playground........ccccussseenrnssssnnnnnns 167
L1 - 189

iii

Contents

About the AUthOrccccciieemminissssmmnssssr s ix
About the Technical REVIEWErcuussssmssmssssssssssssssnsnsssssssssssssssnnssssss Xi
INtroductioncccucermiemmmissnsmsssnnmssssnmsssnsnsssnnnsssnnssssnnssssnnssssnnnsssnnnnns Xiii
Chapter 1: Introducing Swift Playgroundsccccceurresssssssssnnsnnnnnas 1
DEVEIOPEr OVEIVIEWccueeeereereerieeresssessessssssesssessesssesssssesssessssssessssssssas 1
(e 2 2
Building the Single View Application in XCode..........cccovrrrererrnnrenernneseresssesesesenns 2
Exploring the Single View Applicationcccovnnievnnniesesnne e esesesens 5
Looking into the Frameworks..........cccveeeveeecenesncsn e ssesessessnsens 7
SWift Playgroundsccceeeevirsessseessses s sss s s s s s s sennas 7
Building the Classic Hello WOrld Appcccoveeeerereercreriseereresee e 7
Building @ Hello Playgroun ... 8
Setting FONtS in XCOEccccevververrerrer et 10
SUMMAIY ... s p e s 11
Chapter 2: Creating a Simple Swift Playground on Xcode............ 13
Getting Started with a Playground, Code, and Results..........ccceeevvvrnnene. 13
Setting Up the Playground...........cccernnencnnnnscncrns s sessssesesesessns 14
Watching Variables and Using Code Completionccccocevvvncicnnnnsescnennenenens 15
Running the Playground..........cccocverircrcnsssesses s 20

vi

CONTENTS

Dealing With Errors........c v 20
Handling SYNtaX EITOIS........cccvcceervererrereerereseresesseresessssessesessesesessssessssessssssessssenes 20
Handling Contextual EFTOrS.........ccevrererererersererseressersssersesessesessessssessssessssessensssenes 22

SUMMANY ... r e sas e san s 25

Chapter 3: Looking at Swift Basics for Playgrounds.........cccessseees 27

Comments and Markup.........cccoceerrrernicnnsnse s ns 27

Globals and ODJECTS........cccvvrvercrrrr e 30

Classes, Enumerations, and STrUCTUIES.......c.cccvcviiininrimncsessseesssessneens 31

TYPES iN SWifL.....eeeeeecr s 32

PrOPEILIES.....ceceeceeee et 33
Constants and Variablescccvrrerenmrnnnenesensse s seesenns 34
Lazy INtIAliZALION.........ccoeeereeerereeer e 34
OptionN@l PrOPEITIEScceeeceeresecerer e 34

SUMMANY ... sr s srens 39

Chapter 4: Editing Playgrounds on macQ0S...........ccccusssssmnnnssnnnnnns 41

Exploring the Two Playground Environments...........cccccvevvreercernensenenne, 4

Creating a Playground with Xcode on macOS.............ccooeererrierernrnenn 42

Turning a Static Playground into an Interactive Playground 43

Moving a Playground from Xcode/Mac to Playgrounds/iPad 46

Managing Interaction in a Playgroundcccceeverercrcescescensessenennn 51
Creating and Using an Editable Area...........c.cooovvvnnnnnnnnenssessesesesesesesesenenens 52

T 1] 1 63

Chapter 5: Editing Playgrounds on i0S.........c.ccccnsemmmmssmnssssnnssssnns 65

The Playgrounds App User Interface and Experience...........cceevrverreene 65

Using the ShortCut Barcccovevrvrvrnrrn e 69
Inserting a Simple Line 0f COUE..........ccverrrrereriererrererrereesereesereresseressesessesassessesessenes 69
Inserting More COmMPIEX SYNEAX.........cocoeeererereererenese e 70

CONTENTS

Cho0SING @ COIOT ..o 74
ChooSiNg an IMAJE.........ccoierrcrcre e 74
Putting the Pieces Together: Writing a Class in a Playground
With the ShortCut Bar ... 77
TYPING the COUEcveereeeerererer e e e s sre e sae e s e s sas e sae e sae e saesasnesae e saeanann 77
Using the Shortcut Bar to Write the Code..........coorerenererererenereresenese e 79
SUMMANY ...ttt snssn s sr s r e sn s snesn s sn e sn s snesn e nnnnnnnans 89
Chapter 6: Entering Data and Viewing Results in
Swift Playgroundscccuusemssmmsamssessanssasssnssassssssanssasssnssasssnssanssnsssnssas 91
Using the TIMelNE........coeeeeeceeere e 92
Creating a Basic Playground with a View........ccccceevvvvvrerrnennsennennenne 96
Looking at Your View in the TIMeliNe........ccocevevevencninnrccc e seeeens 97
Add a Second View 10 the LiVe VIEW.........ccceerererererererereseseseseseseseseseseseseseseseseseenes 98
Working with Interactive Data Entry.........ccccoverercecrcscscesces s 101
Creating @ New Playground.............ccoeecrernencnesensesese e sesnsnes 102
Creating a View Controller for the Live VIEW.........cccocvevrenrecnccnnensccreesseenas 102
Creating the View Controller VIEWS..........cccevernennncnnscne s sessesessesesnes 103
SUMMANY ... sr s nesn s nne s nnas 112
Chapter 7: Adding Resources and Source Code to
Playgrounds........cccssessessessussussussussnssassnssassassnssassassnssnssnssnsssnsnssnnsnnsansnss 113
Looking Inside a Playgroundccceevervennrnensensnssessesesssessensnenns 113
Exploring a Playground in the Finder (Mac0S).........ccoovrrerererererersereerereesessnsenas 115
Exploring a Playground in Playgrounds (i0S)ccceevrererererererserenseressersesessenenaes 120
Adding Resources to a Playgroundccceeeeeeeersssssessesesssssennnnns 124
Adding Code to a Playground...........ccceveernnmresmssessssesessssessssssssssssens 131
1141 1P 141

vii

CONTENTS

Chapter 8: Using Touch Gestures in Interactive

Playgrounds.......cccouussssmmnmmssssssnmmssssssnssssssnsnssssssnsnsssssnnsnsnsssnnnnnnssns 143
Understanding Gestures Using Playgrounds...........cccccvvevverrerserseriennens 144
Creating a Basic Gesture Playground in Xcode on mac0S..........c.ccoeeveverervererenes 144
Creating a Basic Gesture Playground in Playgrounds on iPad............ccccccvreruruene. 153
Working with Gestures in a Playgroundccoceevvernnricnnccresennenns 159
SUMMANY ..ot 166
Chapter 9: Building a Complex Playground...........cccusummnnssnnsnsnns 167
Collecting Your Playground Pages and Creating
the MUltiPIaygroundc.ccocvververrnrenssrerrerser s 167
Assembling Playground Pages for Basic Navigation...........c..ccccevueunee. 172
Using Basic Link Navigation...........ccccceeeveerencessssssessesses s 174
Enhancing Navigation...........cccceevrvrnrnnnnses e 181
Changing Link and File Names........cccceorverrvererrerersereseresesesesseressessssessssessesessenes 181
Adding a Constant Link (HOME)ccevvererrererererereresseresseraesereesessesessessssesssesaens 183
Using a BasiC File fOr All PAQESccevrereererererererseresseressersssessssessesessessssessssenees 184
Making Further Enhancements...........cccooeeeereersensessessessessessessessennens 186
SUMMANY ..ot 187
INA@X..eiiiiisnnnnnnsssnnnnnsssssnnnsnsssnnnnsssssnnnnsssssnnnnsnsssnnnnsssssnnnnsssssnnnnnsnssnnns 189

viii

About the Author

Jesse Feiler is a developer, consultant, and author
focusing on Apple technologies for small businesses
and nonprofit organizations. His projects have included
database design and development with FileMaker and
Core Data as well as production process control,
publishing project management, and social media
strategies for clients such as Federal Reserve Bank of
New York, Young & Rubicam, Cutter Consortium, and
Archipenko Foundation. His books have been published by Wiley, Pearson, Apress, and
others. His apps, including Utility Smart, Minutes Machine, Saranac River Trail, and The
Nonprofit Risk App, are published by Champlain Arts Corp (http://champlainarts.com).
He is founder of Friends of Saranac River Trail, Inc. and has served on a variety of boards
for libraries and nonprofit cultural organizations. A native of Washington, DC, he has lived
in New York City and currently lives in Plattsburgh, New York. He can be reached at
jfeiler@champlainarts.com.

ix

http://champlainarts.com
mailto:jfeiler@champlainarts.com

About the Technical
Reviewer

Massimo Nardone has more than 22 years of
experiences in Security, Web/Mobile development,
Cloud and IT Architecture. His true IT passions are
Security and Android.

He has been programming and teaching how to
program with Android, Perl, PHP, Java, VB, Python,

C/C++ and MySQL for more than 20 years.

He holds a Master of Science degree in Computing
Science from the University of Salerno, Italy.

He has worked as a Project Manager, Software
Engineer, Research Engineer, Chief Security Architect,
Information Security Manager, PCI/SCADA Auditor
and Senior Lead IT Security/Cloud/SCADA Architect
for many years.

Technical skills include: Security, Android, Cloud, Java, MySQL, Drupal, Cobol,
Perl, Web and Mobile development, MongoDB, D3, Joomla, Couchbase, C/C++, WebGL,
Python, Pro Rails, Django CMS, Jekyll, Scratch, etc.

He currently works as Chief Information Security Office (CISO) for Cargotec Oyj.

He worked as visiting lecturer and supervisor for exercises at the Networking
Laboratory of the Helsinki University of Technology (Aalto University). He holds four
international patents (PKI, SIP, SAML and Proxy areas).

Massimo has been reviewing more than 40 IT books for different publishing
company and he is the coauthor of Pro Android Games (Apress, 2015).

This book is dedicated to Antti Jalonen and his family who are always there when I
need them.

xi

Introduction

Once you get beyond the basics of very simple code that doesn’t do very much, you
quickly discover a conundrum: testing code to do something pretty simple in the context
of an app requires you to write a pretty complicated app—in many cases before you can
test your simple code. Apple’s Swift playgrounds address that issue in many of its guises.
With a playground, you can experiment with a simple snippet of code on its own or within
a playground that provides the context that your snippet will run in. You don’t have to
write the whole app in order to test your few lines of code.

You can use a Swift playground as a trainer or teacher: you can build the app context
as a playground so that your students can write their snippets inside your playground.
Because playgrounds are often used for training and documentation, Apple’s Swift
playgrounds support their own markup language that lets you format your code and
create areas of the playground’s code where the user can or must provide their own code.
You can even hide some of your playground context so that the user or learner sees only
the snippet to be worked with.

Swift playgrounds can be built and run with Playgrounds for iPad or with Xcode
for macOS. The code that you write in a playground can be tested in that standalone
environment and then copied and pasted into an app being developed with Xcode for
macOS, i0S, watchOS, or tvOS.

This book provides an introduction to Swift playgrounds and gets you started either
as a developer of playgrounds or a user of playgrounds developed by someone else. As
the book progresses, you'll see how to build more and more complex playgrounds.

Playgrounds can provide a powerful and intriguing entry into coding for new coders
of any age or background.

Downloading Playgrounds for the Book

You can download playgrounds from the book from the author’s website at
northcountryconsulting.com. Create an account, log in, and use the Downloads section
on the left-hand side of the landing page.

xiii

northcountryconsulting.com

CHAPTER 1

Introducing Swift
Playgrounds

Swift is Apple’s new programming language being used by developers inside and outside
Apple to create new apps for macOS, i0S, watchOS, and tvOS. Most Apple operating
systems and frameworks were written originally in Objective-C, and there are bridges
between the two so that you can write new apps in Swift that use the Objective-C
frameworks, sometimes without even knowing it. Examples and demos from Apple on
http://developer.apple.comand at the Apple Worldwide Developer Conferences
(WWDC) and Tech Talks now use Swift.

In and of itself, a new programming language isn’t an earth-shaking event. Yes, many
people think Swift is a terrific language (count me among them!), but new programming
languages have appeared many times over the years since the first programming
languages were developed in the 1950s. What is revolutionary is the Swift playground.
This book provides an introduction to playgrounds and covers how to use them with
Swift. (At the moment, Swift is the only language for playgrounds.)

This chapter introduces you to the pieces you'll use to put together apps for the
operating systems and frameworks and talks about how they fit together. In different
ways, Swift and playgrounds simplify the process, but underneath it all, the components
described in this chapter are what make apps run.

Tip If you've used or even just looked at these components in the past, treat this chapter
as a review. Things were changing even before Swift and playgrounds came along. The app
development process—particularly the management of apps themselves—has been simplified.

Developer Overview

Getting started as an Apple developer has changed a little in the last few years. What
hasn’t changed is that apps for the App Store (including the Mac App Store) are curated—
meaning Apple reviews each app and its descriptive materials. Curation helps to enforce
basic standards of app quality and security to enhance consumers’ confidence in the

© Jesse Feiler 2017 1
J. Feiler, Exploring Swift Playgrounds, DOI 10.1007/978-1-4842-2647-6_1

http://developer.apple.com/

CHAPTER 1 " INTRODUCING SWIFT PLAYGROUNDS

Apple and App Store brands. The only way an app can be installed on an Apple device
is through the relevant App Store using a special code that App Store reviewers place in
each app to guarantee that it has not been changed since the review.

That said, there are now more ways to distribute your apps on a limited basis without
going through the App Store. One important way to share your work with others is to
build a playground for part of your app. You won’t be able to build the next killer game or
must-have lifestyle app using only a playground, but you'll be able to build small pieces
of it to try out your concept and share it with friends. You can also build a playground to
provide a proof-of-concept look at what your app will eventually be and do.

The App Store review and curation process require that you be a registered Apple
developer. You can find out more about the programs at http://developer.apple.com.
Most developers subscribe to the $99 per year membership category, which enables
access to the App Store as well as to Developer Technical Support (two incidents
per year). There are other development categories for corporations and educational
institutions, all described on http://developer.apple.com.

Most of the development tools and documentation are available for free through
http://developer.apple.com. You may need to register with a valid email address
to gain access, but for the most part, there is no cost. Where there is a cost involved is
for anything that you use for testing on the iOS Simulator or on live devices. For many
would-be developers, that is when they pay the $99 fee.

In short, there’s no cost involved in getting started programming with the Apple
environments.

Xcode

Xcode is the integrated development environment (IDE) used to develop apps. It's
enormously powerful: in fact, it’s used to develop the operating systems themselves.
This power means that it may appear daunting to use it to build something small like a
Hello World app. As your development projects in Xcode increase in size and complexity,
Xcode’s power and features come into play for you. By the time you get up to even a small
app with a user interface for iOS or macOS, using Xcode is more efficient than writing out
code line by line.

This chapter gives only a very high-level overview of the Xcode development process.
Don’t worry, there are a lot more details as we move into playgrounds.

Building the Single View Application in Xcode

Let’s start with an example of building a simple iOS app with Xcode. This is not an Xcode
tutorial, but rather just a quick look at the Xcode process. As you move on in this chapter
and through the book, you'll see how playgrounds can become part of that process,
saving you time and effort along the way.

We're going to look at the Single View Application project that is built into Xcode.
You'll see how pieces of it reappear in a Swift playground as you work with code in both
the project and the playground:

1. Launch Xcode and choose New » Project.

2. Select Single View Application, as shown in Figure 1-1.

http://developer.apple.com/
http://developer.apple.com/
http://developer.apple.com/

CHAPTER 1 " INTRODUCING SWIFT PLAYGROUNDS

L =
BR G = = choose a temolate for your new project: b ®
B w05 005 mac0S Cross-cistion
Application
1 * -

m Game Master-Detal Page-Based Tabzed

Sticker Pack IMessage
Application Apabcation

Framiwork & Library

\?ﬂ) By

Cocoa Touch Cocoa Touch Metal Libeary
Framiwori Stati Ligrary

Caee .

Figure 1-1. Single View Application has been selected

3. Click Next and select the options for your project, as shown in
Figure 1-2. All that matters right now is the name and that the
language is set to Swift.

B8 9 4 ¢ B o B cngosoptions for your naw aroect: b =@

Product Mame: | Simpleaod]
Team MNone =]
Orgenization Mame: Jease Failer
Orgarization idantifier; com.champlainants
Bunle Igenlier, eomchamelnnans 5
Language: _Swift B

Devices: | Universas <]

Use Core Data
Incude Uit Tests 0D &0
Include LN Tests.

Cancal Pravious

Figure 1-2. Enter your app’s product name and other basic information

4. Enter a name and location on disk for your project. In this
case, the project is named SimpleApp (you can use that name
if you want to follow along).

CHAPTER 1 " INTRODUCING SWIFT PLAYGROUNDS

5. Click Next, and the project is created for you. You may have to
open folders in the project navigator at the left of the window
to see your project files, as you see in Figure 1-3.

e0e »r oy Simpianpe |) Pore 7 P SimplaAce: Ready | Today at 903 AM
B2 & OB -c] B simclease
¥ (5 Steleipo. O cersrs Capsbitios Resource Tage o Bue Settags Buiis Fhsses
v Simpladpo PROMCT
« AppDeegato.swift ¥ identity
by Simoled
+ ViewControle ewitt & SimpleApp
M soryboR TAAGATS e
- oo
Bundie Identifer com champainats Smoledpo
LaunchSerean seoeyboand
nfo pEST Vorsion 10
. Products Buld 1
¥ Signing
0 Automatically manage sgring
Team bees 2]

Provisioning Profile

Signing Certificate

Status

T Degloyment info

Degioymant Target
Devices
Main lezerface

Device Crientation

Satus Dar Sty

Heode Maraged Prefle

05 Developer

@ Signing tor “SimpleApp” requives 3 deiopment
team.

Uriversa

Main

& Portrait

Uosioe Dawn
& Lanzecape Lan
B Langscase Right

Detaut B

Hee s

Reauires full scroee

* Aop loons and Launch Images

+ Embedded Binaries

¥ Linkeet Framewsoeks and Libraries

Figure 1-3. View the project navigator and the target in the main view

T

Name | Smpieace
Locaren to
o aApR.ERGtErE
Fut v fUsersessate e Deseton]
SimeleApey
SimeleAoo.xsadeors]
brepees Document
Project Fermat | Xcoce 3.2-compatibie
Orparissten Jeise Feles

Class Presic

Text Settings
bt Using | Spaces

widh ER
= o

B Wrap fres.

D0O®Do

6. Select the SimpleApp project itself (the blue icon at the top of
the project navigator). You'll see the default settings, as shown

in Figure 1-3.

7. Ifyou see a status warning for code signing, you can safely

ignore it for now.

8. Choose a device simulator for the project from the top of

the window. iPhone 7 Plus is chosen in Figure 1-3. Click the
triangle to build and run the app.

o

B

CHAPTER 1 © INTRODUCING SWIFT PLAYGROUNDS

9. The app is built and runs in the iOS Simulator for iPhone 7
Plus, as shown in Figure 1-4. There’s not much to see, but the
app is running.

iPhone 7 Plus - i0S 10.1 (14B72)
Carrier ¥ 12112 PM -

Figure 1-4. A basic app just runs until you create its user interface

Exploring the Single View Application

You can explore the files that are automatically created for you. They're shown in
Figure 1-5. What Xcode gives you is the ability to create all of those files and a runnable
app with only a few keystrokes.

CHAPTER 1 " INTRODUCING SWIFT PLAYGROUNDS

0 SimpleApp
sBHPoow s #- 6 o Q Search
| BackiForwara View Amange Action Share Add Tags Search
[s | s #]
: Name Date Modified v Size Kind

v [SimpleApp 2 Folder

v [Assets xcassets Today, 12:54 PM Falder
¥ [Applcon.appiconset Today, 9:02 AM Folder
Contents json Today, 9:02 AM 1KB Plain Text Document
AppDelegate.swift Today, 8:02 AM 2KB Swilt Source Code
v [Base.lproj Today, 9:02 AM 3KB Folder
LaunchScreen.storyboard Today, 9:02 AM 2KB Interiace Builder Storyboard Document
" Main.storyboard Today, 9:02 AM 2KB Interface Builder Storyboard Document
Info.plist Teday, 9:02 AM 1KB Property List
ViewController.swift Today, 9:02 AM 485 bytes Swift Source Code
B simpleApp.xcodeproj Today, 8:02 AM 26KB Xcode Project

iCloud Drive » [Desktop » [l SimpleApp » [SimpleApp
| 1 of 11 selected, 14.49 GB avallable on ICioud

Figure 1-5. The app’s files are created inside the app’s folder

These files are just the tip of the iceberg. If you look inside AppDelegate.swift (one of
the main files of the project), you'll see the code shown in Figure 1-6 at the top of the file.

BSOS P B A Sepiehp | B Frome TP Smpilehgp: Ready | Tadey st 03 AM e (=]
o< R Sepleace . AppDeegen st G Sewcten

£/ hppDelegate.swift

£/ SimpleApp

£/ Created by Jesse Feiler on 11/29/1&.
£/ Copyright ¢ 2016 Jesse Feiler. All rights reserved.

import UIKit

-
-

SUIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

var window: UIWindow?

func application(_ application: UIApplication, didFinishLaunchingWithOptions launchOptions:
[UlApplicationLaunchOptionskey: Any]?) =» Bool {

i /! Override point for customization after applicstion launch.

" y return true

7
22 furc applicationWillResignActivel(_ application: UlApplication) {
2 // Sent when the application iz about to move from active to inactive state. This can occur for

certain types of temporary imterruptions (such as en incoming phone call or SMS message) or when
the user quits the application and it begins the transition to the background state.

/f Use this method to pause ongoing tasks, disable timers, and invalidate graphics rendering
callbacks. Games should use this method to pause the game.

27 func applicationDidEnterBackground{_ application: UlApplication) {

E /f Use this method to release shared resources, save user data, invalidate timers, and store
enough application state information to restore your application to its current state in case it
is terminated later.

F /f It your application supports background execution, this method is colled instead of
applicationWillTerminate: when the user quits.

22 furc applicationWillEnterForeground(_ application: UIApplicatien) {
n ff Called as part of the transition from the background to the sctive state; here you con unde
many of the changes made on entering the background.

34 }

35

3% furc applicationDidBecomedctive(_ application: UIApplication) {

a // Restart any tasks thot were paused (or mot yet started) while the application wos insctive, If
the application was previously in the backgrourd, optionally refresh the user interface.

a8

n ?

& furc applicationWillTerminatel_ application: UlApplication) {

“ ff Called when the application is about to terminate. Save dota if oppropriate. See also
applicationDidEnterBackground: .

42 }

A

Figure 1-6. Basic app code is placed in the files for you

CHAPTER 1 © INTRODUCING SWIFT PLAYGROUNDS

Looking into the Frameworks

Most of the code in Figure 1-6 consists of comments and stubs for functions. At the top of
the file, you'll notice a line of Swift code to include the UIKit framework:

import UIKit

UIKit is the framework that contains the classes to support windows, views, view
controllers, and most of the user interface in i0S, tvOS, and watchOS. (AppKit is the
comparable framework for macOS). You use UIKit in any app you write that has a user
interface, and Xcode puts it in place for you, so you may not even think about it as you
develop your app. Other frameworks need to be added for specific functionalities, such
as frameworks for system configuration, web services, Core Data, and many more. This
integration of frameworks with your code is a key component of Xcode. At the bottom of
Figure 1-3 you can see the Xcode interface that lets you add other frameworks.

In short, Xcode provides a simple and almost effortless way of integrating thousands
of lines of code in the various frameworks into your app.

Swift Playgrounds

Playgrounds in their basic form won’t help you create full-fledged apps. But you can build
a functioning playground for testing code and learning how to use the APIs. If you want to
build something extremely simple such as the traditional Hello World app that is one line
of C code, Xcode and UIKit are overkill.

Building the Classic Hello World App

As a point of reference, the classic Hello World code in C is the following (or some
variation):

#include <stdio.h>

main()
{
printf("hello, world\n");

}

(This code is from Programming in C: A Tutorial by Brian Kernighan, www.lysator.
liu.se/c/bwk-tutor.html).

The heart of the Hello World code is the printf line: the rest is the environment that
makes it run. Depending on the spacing, this basic program can be anywhere from one
to six lines of code. Certainly, that’s simpler than the steps to create even the basic Single
View Application in Xcode.

http://www.lysator.liu.se/c/bwk-tutor.html
http://www.lysator.liu.se/c/bwk-tutor.html

CHAPTER 1 " INTRODUCING SWIFT PLAYGROUNDS

Building a Hello Playground

To build a comparable playground, follow these steps (you may want to compare them
with the Xcode steps earlier in this chapter):

1. Launch Xcode and choose New » Playground.

2. Set the options for your playground: the main one is the
name. By default, you will probably be using iOS. If that is not
the choice for platform, change it. The options are shown in
Figure 1-7 (they’re much simpler than the full app options
shown in Figure 1-2).

[] Ready | Today at 8:54 AM & | ol | L

Ne el Choase options for your new playground:

Name | Helloworid|

Platform: 108 | <)

Cancel Previcus | Next |

Figure 1-7. Set options for a playground

3. Click Next and choose the location on disk for the playground.

4. The playground you created is shown, as you see in Figure 1-8.

CHAPTER 1 © INTRODUCING SWIFT PLAYGROUNDS

[] @ Ready | Today at 8:58 AM n |t D B]
» HelloWorld
1 //: Playground - noun: a place where people can play

import UIKit

5 var str = "Hello, playground|" Hello, playgrou...

Figure 1-8. A basic playground is created

5. You may have to wait a moment for the text in the sidebar
to appear. The playground is running, and it needs to make
the connection to the interface. Be patient if you don’t see it
immediately.

6. To convert this to a Hello World app, edit the word playground
in the code to world, as shown in Figure 1-9.

[] @ Ready | Today at 8:58 AM n |t D B]
» HelloWorld
1 //: Playground - noun: a place where people can play

import UIKit

5 var str = "Hello, world" Hello, world”

Figure 1-9. Turn “Hello, playground” into “Hello, world”

There’s no build process, and there’s no iOS Simulator—the playground executes in
its own window.

Playgrounds and Xcode apps are similar in many respects, but different in many
others. You need the overhead, power, and complexity of Xcode to build an app for an i0S
device, but you can build code in a playground without any of that. If your objective at the
moment is to build and test some code, a playground may be the best choice. Once you
have tested your code, you can copy and paste it into an Xcode project.

