Beginning J2ME: From Novice to
Professional, Third Edition

SING LI AND JONATHAN KNUDSEN

Apress’

Beginning J2ME: From Novice to Professional, Third Edition
Copyright © 2005 by Sing Li and Jonathan Knudsen

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-479-7
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Steve Anglin

Technical Reviewer: Chris Harris

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore,
Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser

Assistant Publisher: Grace Wong

Project Manager: Laura Cheu

Copy Manager: Nicole LeClerc

Copy Editor: Ami Knox

Production Manager: Kari Brooks-Copony

Production Editor: Laura Cheu

Compositor: Susan Glinert Stevens

Proofreader: Liz Welch

Indexer: Carol Burbo

Artist: Kinetic Publishing Services, LLC

Cover Designer: Kurt Krames

Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 233 Spring Street,
6th Floor, New York, NY 10013, and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders@springer-ny.com, or visit
http://www.springer-ny.com. Outside the United States: fax +49 6221 345229, e-mail orders@springer.de,
or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Downloads section.

To Kimlan

To Andrew and Elena

Contents at a Glance

Aboutthe AUTNOrS . .. o e Xvii
About the Technical ReVIEWert e e i i Xix
ACKNOWIBAGMENTS ... e e i XXi
o1 T xxiii
CHAPTER 1 Introduction 1
CHAPTER 2 Building MIDlets ... 1
CHAPTER 3 All About MIDIetscc.oviii e 29
CHAPTER 4 Almost the Same Old Stuff, 39
CHAPTER 5 CreatingaUserlInterfaceooiinas. 53
CHAPTER 6 ListsandForms i 67
CHAPTER 7 CustomlItems ...t 89
CHAPTER 8 Persistent Storage I: MIDP Record Store 103
CHAPTER 9 Persistent Storage Il: File Connection and PIMAPI 117
CHAPTER 10 ConnectingtotheWorld, 143
CHAPTER 11 Wireless Messaging APl ...t 165
CHAPTER 12 Bluetoothand OBEX ..., 195
CHAPTER 13 Programming a Custom User Interface 231
CHAPTER 14 The Game APl 255
CHAPTER 15 3D GraphiCsciii e 275
CHAPTER 16 Sound, Music, and Video: MMAPI 305
CHAPTER 17 Performance Tuning ..., 331
CHAPTER 18 Protecting Network Datat 343
APPENDIX MIDP APl Referencecoiiiiiiiiiiiiiiannnn. 367

Contents

AboUt the AUThOIS . ..o e Xvii
About the Technical ReVIEWer e i Xix
ACKNOWIBAGMENTS ... e e i XXi
PrE aCE . . . e e xxiii
CHAPTER1 Introduction 1
Understanding J2ME i e 1

Configurationsot e 3

Connected Device Configuration.............................. 4

Connected, Limited Device Configuration 4

Profiles ... e 5

Current Profiles. e 5

Mobile Information Device Profile..................... 5

Platform Standardization.................. o il 6

Anatomy of MIDP Applicationsccoeiiiiiiiin.t. 6

Advantages of MIDP i i 8

Portability. ... 8

SECUMY .ot e 8

MIDPVENAOrS ...t e i i 9

Fragmentation i 9

SUMMIANY .o e e e e 10

CHAPTER 2 BuildingMIDletsiiiiiiii.L. 11
TOOlNGUD .« e 11

Debugging Your MIDlets ... 12

Creating Source Code ..o 12
CompilingaMIDIetc.ooviiiii i e 15

Preverifying Class Files ...t 17

Sun’s J2ME Wireless Toolkit Emulators 18

The Wireless Toolkit Devices.oovvveiiiiiiiiinnnns 18

RunningMIDIetSo 18

Using the Emulator Controlsccooiviiiiin.s. 19

vii

viii

CONTENTS

CHAPTER 3

CHAPTER 4

Tour of MIDP Featuresoooiiiiiiiiii e 20
S dava. ... e e 20
MIDletLife CyCle. ... cvv v i e 20
Generalized User Interface.covvii i, 20
The Likelihood of Server-Side Components 21

Packaging Your Applicationo 23
Manifest Information i 23
Creating a MIDlet Descriptor. ...t 24

Usingan Obfuscator ... 24

USiNg ANt L. e 25

RunningonaReal Deviceccoviiiiiiiiiieiiiinann.. 27

UMM .. e e 27

All AboutMIDlets ... 29

The MIDIet Life CyCle ...ovv i 29

Requestinga Wakeup Call ..., 30

A Bridge to the QutsideWorldcoiiiiiat. 31

Packaging MIDIEtScoiiiiiiiii i 31
MiDlet Manifest Information oLl 32
Application Descriptor ... 34
MIDlet Properties ..o e 34

MIDlet Suite SECUNtYooveii e 35
PermiSSIONS. . ..o e 35
Protection Domainsccoiiiiiiiiii i 36
Permission TYPeSo e 36
Permissions in MIDlet Suite Descriptors 36

SUMIMIANY it e e e e e 37

Almost the Same Old Stuff 39

No Floating Pointin CLDC 1.0 ...t 39

Javalang ... 39
No Object Finalization. ..., M
NoReflection. ... 42
No Native Methods ... 42
No User Classloadingc.ooviniiiiiniii e, 42
Multithreading. ... 42
String and StringBuffer 43
Math. .. e 43

CHAPTER 5

CHAPTER 6

CONTENTS

Streams injava.iocooiiiii i 45
Character Encodingsccoiiiiiii i, 48
Resource Files.o e e 48

Javautil . . e 49
Collections. oot e 51
TIMIBIS ottt e e e 51
Telling Time. . ..ot e i 51

SUMIMANY .. i e e e it 52

Creatinga Userinterface 53

TheViewfromthe Top ... e 53

Using Displayoovei i e 55

Event Handling with Commandscoiiiia... 56
Creating Commands.ccovviiieiir i, 57
Responding to Commands.cooviiiieiiniinn.ns. 58
ASimple Example. ... e 58

TICKBIS et e e 60

RS0 1 1< 61

TextBox, the Simplest Screen ... 61

USiNg AlBrtS . ..o e 63

UMM .t i e e 66

ListsandForms ... 67

UsSing LiStS . ..o e 67
Understanding List Types ..., 67
Event Handling for IMPLICIT ListS...........covvieiieinn..s. 68
Creating ListSoovniii e 69
Aboutlmagesc.oeiii i 69
Editinga List........coiiiiii 70
Working with List Selections.ol 71
AnEXample e 71

Creating Advanced Interfaces with Forms 73
Managing tems 74
Understanding Form Layout ..o, 75
TheltemPantry. ... i 75
Responding to Item Changes.cooioiiiiat. 87

UMM .. e e it 88

ix

X

CONTENTS

CHAPTER 7

CHAPTER 8

CHAPTER 9

Customltems ... 89
Introducing Customlitem i 89
Customitem Paintingt 92
Showing, Hiding, and Sizingccciiiiiii i 93
Handling Events 93
ltem Traversalco i e e 94
AnEXampPle ... e 97
SUMIMANY .. e i et i e 102
Persistent Storage I: MIDP Record Store 103
OVBIVIBW . e e 103
Managing Record Storesc.ovviiiiiiii it 104
Opening, Closing, and Removing Record Stores............... 104
Sharing Record Storesc.ovieiiiii i 105
Record Store Size..........coovieiiiiii 106
Versionand Timestamp, 106
Working with Records ... 106
AddingRecords. ... e 107
RetrievingRecords 107
Deleting and Replacing Records.cccvvvviieint.. 108
Getting RecordStore Record Information..................... 108
Saving User PreferenCesoovvieiiii i, 108
Listening for Record Changescccovviiiiiiinn.. 112
Performing RecordStore Queriescccoviiiiiiii. 113
RecordFilter. e 113
RecordComparator............c.cviiiiii i 113
Working with RecordEnumeration 114
Keeping a RecordEnumeration Up-to-Date 115
Using Resource Fileso 116
SUMIMIANY Lt i e e i e 116
Persistent Storage Il: File Connection and PIM API 17
File Connection Optional Packageccovvivvvnnnn.. 117
Determining If FileConnection APl Is Available 118
Accessing File Systems ... 119
Obtaining FileConnections fromGCF 119
Fileor Directory. ... e 120

Modifying File Attributes ... 120

CHAPTER 10

CONTENTS

Directoryand File Size ... 121
Creating New Files or Directoriesoitt, 121
Renaming and Deleting Files and Directories................. 121
Listing Directory Content ...t 122
Path and URL Informationcoiiiii.t 122
Listening for Card Insertion and Removal 123
Discovering the Available File Systems 124
FileConnection and Security ...t 124
AnEXample e 124
PIM Optional Packagec.covviiiniiiiiiiineennns 130
Determining If PIM Optional Package Is Available 131
Obtaining the Singleton PIM Instances. 131
Openingthe PIMLIStScviniii e 131
Obtaining ltems fromaPIM List 131
Manipulating Categoriesc.ccoviiiiiiiiiiiiien 132
Standard Fieldsonanltem.................. ...l 133
Reading Field Values ..., 135
Adding Attributes to Field Values 136
CreatingaNew Contact..............ccoviiiiiiiiiin.., 136
Modifying Field Values................cciiiiii it 137
Removing Contacts.cooviiiii e 137
Working withthe PIMAPI i 138
UMM . e e et e 142
ConnectingtotheWorld 143
The Generic Connection Framework 143
Review of HTTPo e 145
Requests and ReSpoONSeS.cvvvii it i 145
Parameters ... 145
GET,HEAD, and POSTot 145
Making a Connection with HTTP GET, 146
Passing Parameters 146
ASimple EXample.o.ovi i 147
Posting a Form with HTTP POSTt 149
Using Cookies for Session Trackingccvvveeiien... 152
DeSIgN TIPS ottt e 157
UsSiNg HTTPS ... e 157
Using Datagram Connectionscccvivieiieinnnnnn.. 158

Other Connection TYPES ... v v vt e ee i 159

Xi

Xii

CONTENTS

CHAPTER 11

CHAPTER 12

Responding to Incoming Connectionscccovitt.. 160
Permissions for Network Connections 163
SUMIMIANY e e e e e 164
Wireless Messaging APl 165
Ubiquitous SMS e 165
SMS: The Killer App for Wirelessc.cooitt. 165
WMAandSMS ... 166
WMA APl 167
Creating New Messagesovieiineiieiiinannnn., 168
Sending Binary SMS Messagescooeiiiiiiiiiiiiiin.. 169
Sending Text SMS MeSSagESvvvri v it 170
Receiving SMSMessagescooiiiiiiiiiiiiiiiant, 170
Calling the Blocking receive() Method 171
A Nonblocking Approach to Receiving SMS Messages 172
Examining Message Headers ...t 172
Receiving CBS MeSSagescvvvvi et ee i aans 173
Workingwith SMS APIS 173
Sending SMSMessagesoviiiiiiiiiii 178
Multimedia Messaging with WMA 2.0coiiint. 181
The Anatomy of a Multipart Message........................ 182
Working with Multipart Messages 182
Managing Message Parts ..., 184
Adding Message PartstoaMessage........................ 184
Accessing Content of Message Parts........................ 185
A MiDlet to Send and Receive MMSccoiuat.. 185
Testing MMS Send and Receive.................ccooivnnnt. 192
SUMIMANY .. e i et i 194
Bluetoothand OBEX 195
Bluetooth, CLDC, and MIDPcovirii it 195
JSR 82: The Bluetooth JSR 196
Networking with Devices Near Youcoiiiiintt. 196
The Bluetooth Service Model ... 198
The Bluetooth APLo e e i 199
Accessing Local Bluetooth Stack 199
Discovering Devices.ovvviii i 201

Starting and Stopping Device Discovery 201

CHAPTER 13

CONTENTS

A Simpler Way to Discover Devicesccovvvveennn... 202
Discovering Serviceso 202
A Simpler Way to Discover Services.covveennn... 203
Accessto Remote Devicesccoiiiiiiiiiii. 204
The Bluetooth Control Centerccoiiiiiiiinn... 205
ServiceRecord and Service Attributesl 205
Creating a Bluetooth Service ... 206
A Bluetooth Dating Service ... 207
Setting Your Dating Preferences. ...t 208
Coding the Bluetooth Client..............ccoiiiiin.t, 209
Coding the Bluetooth Servicet 211
Infrared Communicationsand OBEX 215
OBEX i e 216
OBEX RequUeStS . ..o e 216
Obtaining OBEX Client and Server Connections 220
An OBEX Dating Servicec.covviiiiiii i i 220
Coding the OBEX Dating Service Client 221
Coding an OBEX Serviceoovvvriiieeineiienneannn. 224
SUMIMIANY ittt e e i i e 229
Programming a Custom User Interface 231
The Canvas Classccoviiiiii i i e 231
Canvas Informationo i 231
Paintingand Repainting ... 232
Drawing Shapes, Text, and Imagesccoiiievninnt. 233
Coordinate Spaceooeiiii i e e 233
Drawing and Filling Shapes. ..o, 233
Workingwith Color. ... 235
Line Styles. ..o e 236
Drawing TexXt. ... e e 237
SelectingaFont ... 239
Measuring Text. ..o i 242
Drawing Imagesooiiiii e e 243
Advanced Image Rendering............. ...t 244
Images As Integer Arrays.oovvii i 245
BIttiNG . ..o e 246
ClipPINg . e e 246
KeyEvents ... 246

GaME ACHIONS . 247

Xiii

Xiv

CONTENTS

CHAPTER 14

CHAPTER 15

Pointer Events ... 249
Double Buffering. ... i 249
Multithreading and Animation il 250
SUMIMIANY .ttt e e i e 254
TheGame APl L. 255
OVBIVIBW . e e 255
Driving Animation with GameCanvas 255
Polling forKey Statesccoviiiiiii i 257
Understanding Layersccooviiiiiiiiiii i 259
Managing Layersoiiiiiiiii i 259
Using Tiled Layersccoiiriiiii i iiie s 260
Creating and Initializing a TiledLayer........................ 261
Using Animated Tilest 262
USING SPItBS .« v vt e e e 263
Animating Sprites. 263
Transforming Sprites 264
Handling ColliSionSoovii i i 266
Copying SPrites. . ..o ve e e 267
Putting It All Together ... 267
Special Effects . ..o 272
SUMIMANY .. e e et 273
BDGraphics ..o 275
OVBIVI W .t e e 275
Rendering 3D Graphicsccoiiii i 276
Getting Started with 3D i 277
Rotatinga Triangle in3D ...t 279
Rotatinga 3D CornerPiece.........covvirivieeiiinnnnn.. 291
Immediate Mode vs. Retained Modecoi.L. 297
High-Level Access to a Scene Graph via Retained Mode. 297
The Elusive .m3g Serialized Scene Graph File Format.......... 298
Creatinga.m3gFile.......o 298
Working with Retained Mode ...t 298
Loading a Retained Mode 3D World......................... 301
Retrieving the Active Camera in the Retained Mode World 302
Rendering a Retained Mode World 302

SUMIMIANY .t i i e e i e 303

CHAPTER 16

CHAPTER 17

CHAPTER 18

CONTENTS

Sound, Music, and Video: MMAPI 305
Quick Start 305
Playing MPIMUSIC.ov it e 311
MMAPI Media Conceptscovvriiiiii it it 311
Supported Content Types and Protocols 312
Player Life Cycleccoeiiiii i i 314
Controlling Playersc.oeiiriiiiii it 315
Listening for Player Events 316
Tones and TONE SEQUENCES vovett it iii e it e s 316
The Mobile Media APlt e i 321
Playing Video Usingthe MMAPL. 321
Snapping Pictures ona CameraPhone 325
SUMIMIANY ittt e e i i e 329
Performance Tuning 331
Benchmarking ... e 331
Diagnostic Tools in the J2ME Wireless Toolkit 332
Optimizing Memory USeovviee it 335
Creating and Discarding Objects.ccovvviinin... 335
Strings and StringBuffers.o oo 336
Failing Gracefully ...t 336
Coding for Speedoviii e 337
Optimize LOOPS . . v v e 337
Use Arrays Instead of Objectscooiiiiiiintt 337
UseBuffered I/0 ... 338
BeClean. . ..o i e 338
Optimize the User Interface...............cooeiviiiiin.. 340
Optimizing Application Deployment 340
Partition Your Application.l 340
Only Include Classes YouNeed.ccovvvviiinnnn... 341
Usean Obfuscator ...t 341
UMM . e e et e 3
Protecting NetworkData 343
Cryptography ReVIeWc.oiriii i 343
The InternetIsaBigRoom i i 343
Data Security Needs and Cryptographic Solutions............. 344

HTTPS Is Aimost Everything You Could Want 345

Xv

Xvi CONTENTS

APPENDIX

The Bouncy Castle Cryptography Package 345
Protecting Passwords with a Message Digest 346
The Problem with Passwordscoviiviinnnn.. 346
Usinga Message Digest., 346
Using the Bouncy Castle Cryptography Package 347
Implementing a Protected Password Protocol................. 347
Suggested Enhancements. ...t 355
Securing Network Dataccoo i 356
Using Bouncy Castle Ciphers.ccoviiiiiiinnn... 358
Implementation. ... 358
Suggested Enhancements............. ... oot 364
DeploymentISsues. ... 364
Trimming Bouncy Castle DowntoSize 364
SUMIMANY .. e e et 366
MIDP APl Referencecoooiiiil 367
.. 421

About the Authors

SING LI is a systems consultant, avid open source developer, and active
freelance writer. With over two decades of industry experience, Sing is
aregular contributor to printed magazines and e-zines. His book credits
include Beginning JavaServer Pages; Professional Apache Tomcat 5;
Pro JSP, Third Edition; Early Adopter JXTA; Professional Jini; and
numerous others. He is an active evangelist of the mobile Java, VON,
and P2P evolutions.

JONATHAN KNUDSEN is the author of several other Java books, including
Learning Java, Java 2D Graphics, and Java Cryptography. He is also the
author of The Unofficial Guide to LEGO® MINDSTORMS™ Robots, but,
sadly, was unable to parlay that success into a full-time career.
Jonathan has written numerous articles about Java and a few about
LEGO robots as well. He is the father of four children and enjoys bicy-
cling and playing the piano. For more information, see http://
jonathanknudsen.com/.

Xvii

About the Technical Reviewer

CHRIS HARRIS is from Dublin, Ireland, and received his BS in mathematics and computer
science from the Dublin Institute of Technology. He has worked in the wireless software industry
for over five years, and has been involved in the Java Community Process as both Specification
Lead and Expert Group member. He currently works in Bordeaux, France, for a mobile games
company called IN-FUSIO.

Xix

Acknowledgments

Thanks to everyone at Apress for putting this book together on such a tight schedule. Thanks
to Gary Cornell for the initial vision for such a title. To Steve Anglin, for putting the two of us
together on this fascinating project. To Laura Cheu, our “sleepless in New York” project manager,
without whom this book would have never wrapped in time. To Ami Knox, our tireless copy
editor, for transforming the techno-babble we churn out into understandable material. Last but not

least, a hearty thanks to Chris Harris, for keeping us honest with his excellent technical review.

Xxi

Preface

This book describes how to program mobile telephones, pagers, PDAs, and other small devices
using Java technology. It is about the Mobile Information Device Profile (MIDP), which is part
of the Java 2 Platform, Micro Edition J2ME). It is concise and complete, describing all of MIDP
as well as moving into several exciting advanced concepts such as 3D graphics and cryptography.

This third edition covers MIDP 2.0, and has been updated to track the Java Technology for
the Wireless Industry JTWI 1.0) de facto standard. Every chapter has been revised and meticu-
lously updated, and four completely new chapters have been added.

Who Are You?

You're probably reading this book because you're excited about building wireless applications
with Java. This book is aimed at people who already have experience programming in Java. Ata
minimum, you should understand the Java programming language and the fundamentals of
object-oriented programming. Some chapters delve into subjects that in themselves could
occupy entire books. These chapters include suggested reading if you want to get up to speed
on a particular subject.

If you are unfamiliar with Java, we suggest you read an introductory book or take a course.
Learning Java, Second Edition (O’Reilly 2002) is a good introduction to Java for programmers
who are already experienced in another language such as C or C++.

The Structure of This Book

This book is organized into 18 chapters and one appendix. There are basically three sections. The
first two chapters are introductory material. Chapters 3 through 16 provide complete coverage of
the MIDP 2.0 and JTWI 1.0 APIs, together with some of the most frequently used optional APIs
available. Chapters 17 and 18 cover advanced topics. The complete breakdown of chapters is
listed here:

e Chapter 1, “Introduction,” provides context and motivation for the rest of the book.
J2ME is explained in detail, gradually zooming in to MIDP and JTWI.

e Chapter 2, “Building MIDlets,” is intended to be a teaser. It includes an example applica-
tion that allows you to look up the definitions of words over the Internet using any MIDP
device. Along the way you'll learn a lot about developing applications for the MIDP platform.

* Chapter 3, “All About MIDlets,” goes into detail about the life cycle and packaging of
MIDP applications. It includes coverage of the MIDP 2.0 security architecture.

¢ Chapter 4, “Almost the Same Old Stuff,” describes the pieces of the MIDP API that will be
familiar to Java programmers.

xxiii

XXiv

PREFACE

Chapter 5, “Creating a User Interface,” is the first of a handful of chapters devoted to
MIDP’s user interface packages. It provides an overview of MIDP’s user interface package
and goes into detail about the simple visual components.

Chapter 6, “Lists and Forms,” picks up where Chapter 5 left off, describing MIDP’s
advanced user interface components.

Chapter 7, “Custom Items,” shows how to create your own form items in MIDP.

Chapter 8, “Persistent Storage I: MIDP Record Store,” describes MIDP’s mechanism for
storing data.

Chapter 9, “Persistent Storage II: File Connection and PIM API,” covers popular optional
APIs for accessing a device’s file system, memory cards, and PIM features.

Chapter 10, “Connecting to the World,” contains all the juicy details about how MIDP
applications can send and receive data over the Internet.

Chapter 11, “Wireless Messaging API,” describes WMA, a standard component of JTWI 1.0
that can be used to access the rich Short Message Service (SMS) and Cell Broadcast Service
(CBS) available on modern wireless networks. This chapter also covers the new WMA 2.0
for working with audio and video messages via Multimedia Messaging Service (MMS).

Chapter 12, “Bluetooth and OBEX,” provides coverage of the optional API that enables
communications of devices through Bluetooth radio Personal Area Networks (PANs)
and infrared links.

Chapter 13, “Programming a Custom User Interface,” describes the low-level API that
can be used for specialized application user interfaces.

Chapter 14, “The Game API1,” describes MIDP 2.0 features for creating games, including
sprites and tiled layers.

Chapter 15, “3D Graphics,” includes a hands-on, easy-to-understand introduction to the
Mobile 3D Graphics optional API (M3G), providing you with a springboard into the
fascinating world of 3D graphics programming on mobile devices.

Chapter 16, “Sound, Music, and Video: MMAPI,” is about MIDP 2.0 new multimedia
capabilities and the Mobile Media API (MMAPI). You'll learn how to produce simple
tones, play sampled audio data, play MP3 music, play video clips, and even take snap-
shots with your camera-phone.

Chapter 17, “Performance Tuning,” describes techniques for coping with the limited
resources that are available on small devices.

Chapter 18, “Protecting Network Data,” discusses how to protect valuable data on the
insecure Internet. It includes two sample applications that demonstrate cryptographic
techniques for protecting data.

Finally, the appendix, “MIDP API Reference,” contains an API reference for the classes
and interfaces that make up MIDP. The method signatures for the public API of each
class and interface are listed for handy quick reference.

CHAPTER 1

Introduction

Java 2 Platform, Micro Edition (J2ME) is the second revolution in Java’s short history. When
Java was introduced in 1995, it looked like the future of computing was in applets, small programs
that could be downloaded and run on demand. A slow Internet and a restrictive all-or-nothing
sandbox security model accounted for the initially slow adoption of applets. Java, as a platform,
really took off with the advent of servlets, Java programs that run on a server (offering a modular
and efficient replacement for the vulnerable CGI). Java further expanded into the server side of
things, eventually picking up the moniker of Java 2 Platform, Enterprise Edition (J2EE). This
was the first revolution, the blitz of server-side Java.

The second revolution is the explosion of small-device Java, and it’s happening now. The
market for small devices is expanding rapidly, and Java is important for two reasons. First,
developers can write code and have it run on dozens of small devices, without change. Second,
Java has important safety features for downloadable code.

Understanding J2ME

J2ME isn’t a specific piece of software or specification. All it means is Java for small devices.
Small devices range in size from pagers, mobile phones, and personal digital assistants (PDAs)
all the way up to things like set-top boxes that are just shy of being desktop PCs.

J2ME is divided into configurations, profiles, and optional APIs, which provide specific
information about APIs and different families of devices. A configuration is designed for a
specific kind of device based on memory constraints and processor power. It specifies a Java
Virtual Machine (JVM) that can be easily ported to devices supporting the configuration. It also
specifies a strict subset of the Java 2 Platform, Standard Edition (J2SE) APIs that will be used
on the platform, as well as additional APIs that may be necessary. Device manufacturers are
responsible for porting a specific configuration to their devices.

Profiles are more specific than configurations. A profile is based on a configuration and
provides additional APIs, such as user interface, persistent storage, and whatever else is necessary
to develop running applications for the device.

Optional APIs define specific additional functionality that may be included in a particular
configuration (or profile). The whole caboodle—configuration, profile, and optional APIs—
that is implemented on a device is called a stack. For example, a possible future device stack
might be CLDC/MIDP + Mobile Media API. See the section “Platform Standardization” later in
this chapter for information on JSR 185, which defines a standard J2ME stack.

Currently, there are a handful of configurations and profiles; the most relevant ones for
J2ME developers are illustrated in Figure 1-1.

CHAPTER 1 INTRODUCTION

__ Smaller Larger
Y >
. Car
Pagers Mobile PDAs Navigation Internet set-Top
Phones Appliances Boxes
Systems
Personal Profile
MIDP PDAP
Mobile Personal
Information Digital Personal Basis Profile
Device Assistant
Profile Profile 2 7
Foundation Profile
CLDC DC
Connected, Limited Connected
Device Configuration Device Configuration
J2ME
Java 2, Micro Edition

Figure 1-1. Common J2ME profiles and configurations

THE JAVA COMMUNITY PROCESS

The Java Community Process (JCP) is designed to ensure that Java technology is developed according to
community consensus, and to avoid industry fragmentation. The process is described here:

http://jcp.org/jsr/all/

Configurations and profiles first appear in the world as Java Specification Requests (JSRs). You can see a list
of current JSRs here:

http://jcp.org/jsr/all/

To give you a flavor of what’s happening in the J2ME world, Table 1-1 shows some of the

configurations, profiles, and optional APIs that are available and under development. This is
not a comprehensive list; for more information, check out the JCP web site athttp://jcp.org/.

Table 1-1. J2ME Configurations, Profiles, and Optional APIs

Configurations

JSR Name URL

30 Connected, Limited Device Configuration http://jcp.org/jsr/detail/30.jsp
(CLDC) 1.0

139 Connected, Limited Device Configuration http://jcp.org/jsr/detail/139.jsp
(CLDC) 1.1

36 Connected Device Configuration 1.0.1 http://jcp.org/jsr/detail/36.jsp

218 Connected Device Configuration 1.1 http://jcp.org/jsr/detail/218.jsp

CHAPTER 1 INTRODUCTION

Table 1-1. J2ME Configurations, Profiles, and Optional APIs (Continued)

Configurations

JSR Name URL

Profiles

JSR Name URL

37 Mobile Information Device Profile 1.0 http://jcp.org/jsr/detail/37.jsp
118 Mobile Information Device Profile 2.0 http://jcp.org/jsr/detail/118.jsp
75 PDA Profile 1.0 http://jcp.org/jsr/detail/75.]sp
46 Foundation Profile 1.0 http://jcp.org/jsr/detail/46.jsp
129 Personal Basis Profile 1.0 http://jcp.org/jsr/detail/129.jsp
62 Personal Profile 1.0 http://jcp.org/jsr/detail/62.jsp
219 Foundation Profile 1.1 http://jcp.org/jsr/detail/219.jsp
217 Personal Basis Profile 1.1 http://jcp.org/jsr/detail/217.jsp
Optional APIs

JSR Name URL

75 PDA Optional Packages for J2ME http://jcp.org/jsr/detail/75.]sp
82 Java APIs for Bluetooth http://jcp.org/jsr/detail/82.jsp
135 Mobile Media API 1.1 http://jcp.org/jsr/detail/135.jsp
184 Mobile 3D Graphics http://jsp.org/jsr/detail/184.jsp
179 Location API for J2ME http://jcp.org/jsr/detail/179.jsp
120 Wireless Messaging API 1.0 http://jcp.org/jsr/detail/120.jsp
205 Wireless Messaging API 2.0 http://jcp.org/jsr/detail/205.jsp
172 J2ME Web Services APIs http://jsp.org/jsr/detail/172.jsp
66 RMI Optional Package http://jcp.org/jsr/detail/66.jsp
Configurations

A configuration specifies a JVM and some set of core APIs for a specific family of devices. Currently
there are two: the Connected Device Configuration (CDC) and the Connected, Limited Device
Configuration (CLDC).

The configurations and profiles of J2ME are generally described in terms of their memory
capacity. Usually a minimum amount of ROM and RAM is specified. For small devices, it makes
sense to think in terms of volatile and nonvolatile memory. The nonvolatile memory is capable
of keeping its contents intact as the device is turned on and off. ROM is one type, but nonvolatile
memory could also be flash memory or battery-backed RAM. Volatile memory is essentially
workspace and does not maintain its contents when the device is turned off.

CHAPTER 1 INTRODUCTION

Connected Device Configuration

A connected device has, at a minimum, 512KB of read-only memory (ROM), 256KB of random
access memory (RAM), and some kind of network connection. The CDC is designed for devices
like television set-top boxes, car navigation systems, and high-end PDAs. The CDC specifies
that a full JVM (as defined in the Java Virtual Machine Specification, 2nd edition) must be
supported.

CDC is developed under the Java Community Process. For more information on the CDC,
see http://java.sun.com/products/cdc/. A Linux reference of CDC 1.0.1 implementation is
available now.

CDC 1.0.1 is the basis of the Personal Profile 1.0 stack. The Personal Profile 1.0 increases
the minimum memory requirement to 2.5MB of ROM and 1MB of RAM, and requires a robust
network plus a GUI display on a device that can support applet display.

CDC 1.1 is currently a work in progress. It will support Personal Profile 1.1 and will intro-
duce APIs to match the level of JDK 1.4.

Connected, Limited Device Configuration

CLDC is the configuration that interests us, because it encompasses mobile phones, pagers,
PDAs, and other devices of similar size. CLDC is aimed at smaller devices than those targeted
by the CDC. The name CLDC appropriately describes these devices, having limited display,
limited memory, limited CPU power, limited display size, limited input, limited battery life,
and limited network connection.

The CLDCis designed for devices with 160KB to 512KB of total memory, including a minimum
of 160KB of ROM and 32KB of RAM available for the Java platform. If you've ever watched J2SE
gobble up tens of megabytes of memory on your desktop computer, you'll appreciate the challenge
of J2ME. The “Connected” simply refers to a network connection that tends to be intermittent
and probably not very fast. (Most mobile telephones, for example, typically achieve data rates
of 9.6Kbps.) These connections also tend to be costly, typically billed by the data packets
exchanged. Between the high cost and intermittent slow network connection, applications
designed in the CLDC space should be very sparing with the use of the network connection.

The reference implementation of the CLDC is based around a small JVM called the KVM
(J2ME licensees may use this KVM or implement their own as long as it conforms to the CLDC).
Its name comes from the fact that it is a JVM whose size is measured in kilobytes rather than
megabytes. While the CLDC is a specifications document, the KVM refers to a specific piece of
software.! Because of its small size, the KVM can’t do everything a JVM does in the J2SE world.

¢ Native methods cannot be added at runtime. All native functionality is built into the
KVM.

¢ The KVM only includes a subset of the standard bytecode verifier. This means that the
task of verifying classes is split between the CLDC device and some external mechanism.
This has serious security implications, as we’ll discuss later.

1. The KVM was originally part of the Spotless system, a Sun research project. See http://www.sun.com/
research/spotless/.

CHAPTER 1 INTRODUCTION

You can find more information at the CLDC home page, http://java.sun.com/products/
cldc/. Most deployed devices implement CLDC 1.0, but CLDC 1.1 devices are making their way
onto the market as this is written. CLDC 1.1 includes enhancements to CLDC 1.0, including
support for floating-point data types.

Profiles

A profile is layered on top of a configuration, adding the APIs and specifications necessary to
develop applications for a specific family of devices.

Current Profiles

Several different profiles are being developed under the Java Community Process. Table 1-1
(shown earlier) provides a bird’s-eye view.

The Foundation Profile is a specification for devices that can support a rich networked
J2ME environment. It does not support a user interface; other profiles can be layered on top of
the Foundation Profile to add user interface support and other functionality.

Layered on top of the Foundation Profile are the Personal Basis Profile and the Personal
Profile. The combination of CDC + Foundation Profile + Personal Basis Profile + Personal Profile
is designed as the next generation of the PersonalJava application runtime environment (see
http://java.sun.com/products/personaljava/). As such, the Personal Profile has the specific
goal of backward compatibility with previous versions of Personaljava.

The PDA Profile (PDAP), which is built on CLDC, is designed for palmtop devices with a
minimum of 512KB combined ROM and RAM (and a maximum of 16MB). It sits midway
between the Mobile Information Device Profile (MIDP) and the Personal Profile. It includes an
application model based on MIDlets but uses a subset of the J2SE Abstract Windowing Toolkit
(AWT) for graphic user interface. Although the PDAP specification is nearly finished, to our
knowledge no hardware manufacturer has announced that it will be implementing PDAP. The
J2ME world currently is covered by MIDP on the small end and Personal Profile on the higher end.

Mobile Information Device Profile

The focus of this book is the Mobile Information Device Profile (MIDP). According to the MIDP 2.0
specification (JSR-118), a Mobile Information Device has the following characteristics:

e A minimum of 256KB of ROM for the MIDP implementation (this is in addition to the
requirements of the CLDC)

¢ A minimum of 128KB of RAM for the Java runtime heap

¢ A minimum of 8KB of nonvolatile writable memory for persistent data
¢ Ascreen of at least 96x54 pixels

* Some capacity for input, either by keypad, keyboard, or touch screen

¢ Two-way network connection, possibly intermittent

CHAPTER 1 INTRODUCTION

Try to imagine a device that might be a MIDP device: mobile telephones and advanced
pagers are right in the groove, but entry-level PDAs could also fit this description.

More information about MIDP, including a link to the official specification document, is
athttp://java.sun.com/products/midp/. There are two versions of MIDP: MIDP 1.0 (JSR 37),
and MIDP 2.0 (JSR 118). Many of the currently available devices do and all new devices will
support MIDP 2.0. Compared to MIDP 1.0, MIDP 2.0 features a number of enhancements,
including support for multimedia, a new game user interface API, support for HTTPS connection,
and other features. Most importantly, MIDP 2.0 is fully backward compatible with MIDP 1.0.

JTWI standard compliance requires devices to implement MIDP 2.0 (see the next section
on platform standardization). This book’s focus will be on MIDP 2.0. We will mention MIDP 1.0
differences only in this introductory chapter as background information.

Platform Standardization

Given the profusion of configurations, profiles, and especially optional APIs, how do you know
what APIs are likely to be available on typical devices? Sun’s answer to this question is JSR 185
(http://jcp.org/jsr/detail/185. jsp), impressively titled Java Technology for the Wireless
Industry JTWI). This specification attempts to standardize software stacks to bring coherence
to the J2ME world. A reference implementation and a TCK (kit for compatibility testing) of the
unified software stack is made available with JSR 185. As currently specified, a JTWI-compliant
device must have MIDP 2.0 with CLDC 1.0 (or CLDC 1.1), and must support WMA (Wireless
Messaging API 1.0—JSR 120). If a JTWI device exposes video or audio API to applications, they
must also support Mobile Media API (MMAPI).

In the next generation of J2ME, a concept called Building Blocks is supposed to replace
configurations and profiles. A Building Block is just some subset of a J2SE API. For example,
one Building Block might be created from a subset of the J2SE java.io package. Conceptually,
aBuilding Block represents a smaller chunk of information than a configuration. Profiles, then,
will be built on top of a set of Building Blocks rather than a configuration.

The definition of Building Blocks is a JSR, which is briefly described here: http://jcp.org/
jsr/detail/68.jsp. Progress on JSR 68 has been extremely slow since its creation in June 2000.

In the meantime, JSR 185 will better serve as a standardization platform. Recently, lever-
aging the success of the JTWI work, Nokia and Vodafone have submitted a new JSR, JSR-248:
Mobile Service Architecture for CDC (http://jcp.org/jsr/detail/248. jsp), to define a new
standard software stack for the next generation of mobile devices.

Anatomy of MIDP Applications

The APIs available to a MIDP application come from packages in both CLDC and MIDP, as
shown in Figure 1-2. Packages marked with a + are new in CLDC 1.1 and MIDP 2.0.

CLDC defines a core of APIs, mostly taken from the J2SE world. These include fundamental
language classes in java. lang, stream classes from java. io, and simple collections from java.util.
CLDC also specifies a generalized network API in javax.microedition.io.

INTRODUCTION

CHAPTER 1
CLDC 1.1 MIDP 2.0
java.lang javax.microedition.lcdui

+java.lang.ref

+javax.microedition.lcdui.game

java.io

+javax.microedition.media

java.util

+javax.microedition.media.control

javax.microedition.io

javax.microedition.midlet

+javax.microedition.pki

javax.microedition.rms

Figure 1-2. MIDP packages

Note While the MIDP 2.0 specification suggests that MIDP 2.0 will most likely be paired with CLDC 1.1,
the JTWI compatibility platform only requires implementation atop CLDC 1.0. As a result, most current imple-
mentations of MIDP 2.0 are paired with CLDC 1.0. Historically, the MIDP 2.0 specification was moving faster
through the Java Community Process than the CLDC 1.1 specification.

Optionally, device vendors may also supply Java APIs to access device-specific features.
MIDP devices, then, will typically be able to run several different flavors of applications. Figure 1-3
shows a map of the possibilities.

MIDP Java
Applications

Device-Specific
Java Applications

Device-Specific

MIDP

APIs

Native
Applications
(Compiled from
C, C++, or
Other Languages)

CLDC

Device Operating System

Figure 1-3. MIDP software components

Each device implements some kind of operating system (OS). Native applications run
directly on this layer and represent the world before MIDP—many different kinds of devices,
each with its own OS and native applications.

CHAPTER 1 INTRODUCTION

Layered on top of the device OS is the CLDC (including the JVM) and the MIDP APIs. MIDP
applications use only the CLDC and MIDP APIs. Device-specific Java applications may also use
Java APIs supplied by the device vendor.

Advantages of MIDP

Given the spectrum of configurations and profiles, why is this book about MIDP? First, MIDP
comes at a critical time, a time when MIDP devices, like mobile phones, are an exploding
market. Simultaneously, MIDP devices are achieving the kind of processing power, memory
availability, and Internet connectivity that makes them an attractive platform for mobile
networked applications. MIDP is already deployed on millions of handsets all over the world.

Second, of course, MIDP is the first J2ME profile that is ready for prime time. You will start
writing applications as soon as you head into the next chapter!

Portability

The advantage of using Java over using other tools for small device application development is
portability. You could write device applications with C or C++, but the result would be specific
to a single platform. An application written using the MIDP APIs will be directly portable to any
MIDP device.

If you’ve been following Java’s development for any time, this should sound familiar. It’s
the same “Write Once, Run Anywhere” (WORA) mantra that Sun’s been repeating since 1995.
Unfortunately, WORA is a bit of a four-letter word for developers who struggled with cross-
platform issues in JDK 1.0 and JDK 1.1 (particularly the browser implementations). While Java’s
cross-platform capabilities in Java 2 are generally successful, WORA still has the taint of an
unfulfilled promise.

Does MIDP deliver painless cross-platform functionality? Yes. There will always be platform-
specific bugs in MIDP implementations, but we believe MIDP works as advertised because it is
so much smaller than desktop Java. Less code means fewer bugs when porting to multiple
platforms. Most of the cross-platform incompatibilities of JDK 1.0 and JDK 1.1 were caused by
the nightmare of trying to fit disparate windowing systems into the AWT’s peer-based compo-
nent architecture. MIDP has nothing approaching the complexity of AWT, which means there’s
an excellent possibility that MIDP applications will seamlessly run on multiple platforms right
out of the starting gate. Furthermore, while the JDK 1.0 test suite only included a few dozen
tests, the MIDP compatibility test suite includes several thousand tests.

Security

A second compelling reason for using Java for small device development is security. Java is well
known for its ability to safely run downloaded code like applets. This is a perfect fit—it’s easy
to imagine nifty applications dynamically downloading to your mobile phone.

But it’s not quite such a rosy picture. For one thing, the JVM used in the CLDC only imple-
ments a partial bytecode verifier, which means that part of the important task of bytecode
verification must be performed off the MIDP device.

Second, the CLDC does not allow for application-defined classloaders. This means that
most dynamic application delivery is dependent on device-specific mechanisms.

CHAPTER 1 INTRODUCTION

MIDP applications do offer one important security promise: they can never escape from
the confines of the JVM. This means that, barring bugs, a MIDP application will never be able
to write to device memory that doesn’t belong to the JVM. A MIDP application will never mess
up another application on the same device or the device OS itself.2 This is the killer feature of
MIDP. It allows manufacturers and carriers to open up application development to the world,
more or less free from certification and verification programs, without the fear that rogue coders
will write applications that crash phones.

In MIDP 2.0, MIDlet suites can be cryptographically signed, and then verified on the device,
which gives users some security about executing downloaded code. A new permissions archi-
tecture also allows the user to deny untrusted code access to certain API features. For example,
if you install a suspicious-looking MIDlet suite on your phone, it will only be able to make network
connections if you explicitly allow it to do so.

MIDP Vendors

Several large players have thrown their weight behind MIDP. A quick browse of the JSR page for
MIDP exposes the most important companies.

Two Asian companies led the charge to provide network services for Java-enabled mobile
phones. In Korea, LG TeleCom deployed a service called ez-i in mid-2000. Later that same year,
NTT DoCoMo deployed their wildly popular i-mode. The APIs developed for LG TeleCom
(KittyHawk) and NTT DoCoMo (i-Appli) are similar to MIDP but were completed before the
MIDP 1.0 specification.

In the United States, Motorola was the first manufacturer to produce a MIDP telephone.
The i50sx and i85s were released on April 2, 2001, with service provided by Nextel. Motorola has
since expanded its offerings with a handful of new devices.

Nokia has also made serious commitments to MIDP, and the expert group that created the
MIDP specification includes an impressive list of manufacturers—Ericsson, Hitachi, Nokia, Sony,
Symbian, and many more. You can go read the industry predictions if you wish—a gazillion MIDP
phones sold in the next three years, and so on. It’s a safe bet that your MIDP application will have a
large market. For a comprehensive listing of MIDP devices, visit http://wireless.java.sun.com/
device/.

Fragmentation

Platform fragmentation is a serious concern in the MIDP community. Many devices that imple-
ment MIDP 1.0 also include device-specific APIs. These APIs access device-specific features or
provide functionality that wasn’t addressed in MIDP 1.0’s least-common-denominator specifica-
tion. Current software vendors, particularly game developers, sometimes create and distribute
multiple versions of an application, each tailored to a specific platform. Obviously this is a
concern: part of the point of using MIDP in the first place is the ability to write one set of code
and deploy it on multiple platforms.

2. AMIDP application could conceivably launch a denial-of-service attack (that is, sucking up all the
processor’s time or bringing the device OS to a standstill). It’s widely acknowledged that there’s not
much defense against denial-of-service attacks. Applications and applets in J2SE suffer from the
same vulnerability.

10

CHAPTER 1 INTRODUCTION

MIDP 2.0 addresses a long list of the shortcomings inherent with MIDP 1.0. Its timing is
good, so the current adoption and deployment of MIDP 2.0 devices should provide a standard,
unified platform for wireless development.

Another fragmentation issue is the confusion surrounding the assembly of configurations,
profiles, and optional APIs into a software stack. As a developer, you want to understand exactly
what set of APIs will be available or are likely to be available, but there seem to be so many
choices and so many possibilities. The standardization on a software stack, via JTWI (JSR 185—
http://jcp.org/jsr/detail/185.7sp), should bring clarity to this issue.

Summary

J2ME is the Java platform for small devices, a broad field that covers pretty much everything
smaller than a breadbox. Because J2ME spans such a diverse selection of hardware, it is divided
into configurations, profiles, and optional APIs. A configuration specifies a subset of J2SE func-
tionality and the behavior of the JVM, while profiles are generally more specific to a family of
devices with similar characteristics. Optional APIs offer added functionality in a flexible package.
The Mobile Information Device Profile, which is the focus of this book, includes APIs for devices
like mobile phones and two-way pagers.

CHAPTER 2

Building MIDlets

MIDP applications are piquantly called MIDlets, a continuation of the naming theme begun
by applets and servlets. Writing MIDlets is relatively easy for a moderately experienced Java
programmer. After all, the programming language is still Java. Furthermore, many of the
fundamental APIs from java.lang and java.io are basically the same in the MIDP as they are
in J2SE. Learning the new APIs (in the javax.microedition hierarchy) is not terribly difficult, as
you'll see in the remainder of this book.

The actual development process, however, is a little more complicated for MIDlets than it
is for J2SE applications. Beyond a basic compile-and-run cycle, MIDlets require some additional
tweaking and packaging. The complete build cycle looks like this: Edit Source Code » Compile »
Preverify » Package » Test or Deploy.

To show how things work, and to give you a taste of MIDlet development, this chapter is
dedicated to building and running a simple MIDlet. In later chapters, we’ll delve into the details
of the MIDP APIs. In this chapter, you'll get a feel for the big picture of MIDlet development.

Tooling Up

MIDlets are developed on regular desktop computers, although the MIDlet itself is designed to
run on a small device. To develop MIDlets, you'll need some kind of development kit, either
from Sun or another vendor. Remember, MIDP is only a specification; vendors are free to
develop their own implementations.

The world is full of MIDlet development tools if you know where to look. Furthermore,
many of these tools are freely available.

The bare bones set of tools is Sun’s MIDP reference implementation. This includes the
preverify tool (more on this later), a MIDP device emulator, source code, and documentation.
You can download the MIDP reference implementation by following the links from http://
java.sun.com/products/midp/. However, we don’t recommend using the reference implemen-
tation unless you really enjoy being in the middle of the gritty details of building and packaging
MIDlets. (You should also investigate the reference implementation if you are interested in
porting the MIDP runtime to a new device or platform.)

A much better tool for beginners is Sun’s J2ME Wireless Toolkit, available from http://
java.sun.com/products/j2mewtoolkit/. The J2ME Wireless Toolkit (or 2MEWTK, as it’s affec-
tionately known) includes a GUI tool that automates some of the tedious details of building
and packaging MIDlets, providing a simple path from source code to running MIDlets. At the
same time, the J2ME Wireless Toolkit is a relatively lightweight solution, almost a miniature
IDE, not something that will choke your machine.

11

