Learn Objective-C
on the Mac

Penciled by MARK DALRYMPLE
Inked by SCOTT KNASTER

Apress’

Learn Objective-C on the Mac
Copyright © 2009 by Mark Dalrymple and Scott Knaster

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1815-9
ISBN-13 (electronic): 978-1-4302-1816-6
Printed and bound in the United States of America98765432 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a
trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with
no intention of infringement of the trademark.

Java™ and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in the US
and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book was written without
endorsement from Sun Microsystems, Inc.

Lead Editors: Clay Andres and Dave Mark

Technical Reviewer: Jeff LaMarche

Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell, Gary Cornell,
Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank Pohlmann, Ben Renow-Clarke,
Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Denise Santoro Lincoln

Copy Editor: Heather Lang

Associate Production Director: Kari Brooks-Copony

Production Editor: Laura Esterman

Compositor/Artist/Interior Designer: Diana Van Winkle

Proofreader: Greg Teague

Indexer: Toma Mulligan

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm. com,
orvisit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600, Berkeley,
CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales—eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has
been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any person or
entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information
contained in this work.

The source code for this book is available to readers at http://www.apress.com.

For Jerri Shertzer—teacher, mentor, friend
—Mark

Contents at a Glance

Aboutthe AUthOrso e XV
About the Technical Reviewer i i Xvii
Acknowledgmentsouiuii e Xix
Prefaceo Xxi
CHAPTER 1 BeforeYou Start.oovuvriii i 1
CHAPTER 2 EXtensionsto C ..o e 5
CHAPTER 3 Introduction to Object-Oriented Programming 19
CHAPTER 4 Inheritanceo 57
CHAPTER 5 (@00} 03] 001711 o o TR S 73
CHAPTER 6 Source File Organizationc.coiiiiiiiiii e, 87
CHAPTER 7 More About Xcode.ooininii i 101
CHAPTER 8 A Quick Tour of the FoundationKitc.o.t 131
CHAPTER 9 Memory Managementottt 161
CHAPTER 10 ObjectInitialization..........cccviiiiiiiiiiiiiiiniiin .. 179
CHAPTER 1T Properties ..o.uuet ettt et e e i eaieeaaans 201
CHAPTER 12 CatgOries. v v ettt tee ettt e et e e e e ey 217
CHAPTER 13 Protocolsot 235
CHAPTER 14 Introductiontothe AppKit........c.coviiiiiiiiiii .. 249
CHAPTER 15 FileLoadingand Saving...........ccoviiiiiiiiiiiiiinnnnn... 265
CHAPTER 16 Key-Value Coding......covvuiiiiniiiiiiiiiniiinennnn, 277
CHAPTER 17 NSPredicatecouiiiiiiiii i 295
APPENDIX Coming to Objective-C from Other Languages................ 307

Contents

Aboutthe AULNOISo e e e XV
About the Technical Reviewert e et Xvii
AcknowledgmeENnts ...t e Xix
Preface .o XXi

CHAPTER 1 BeforeYouStart.......cocoveeeeenececeescscnnesesl

Where the Future Was Made Yesterday............covvvnninn... 2
What's ComingUpoiiiiiii e 2
SUMIMAIY ettt e e e e e ie et 3

CHAPTER 2 EXtensionstoC....covveeieeeeeeeneencenccnceneesd

The Simplest Objective-CProgramcovvviiiiiinninn... 5
Building Hello Objective-Ccoviiiiiiiiiii i, 5
Deconstructing Hello Objective-C.............coooviiiiiinin.... 8
That Wacky #importThing...........cooiiiiini i, 9
NSLog() and @"strings”ccvviiiiii i enenns 10
Are You the Boolean Type?couiiiiniii it 13
Mighty BOOLin ACtion.......c.vviininiiniiiiinenanne. 14
The Comparisonltself ...t 17
SUMIMAIY ettt 18

CHAPTER 3 Introduction to Object-Oriented Programming19

It's All Indirection ..o 20
Variables and Indirection ...t 21
Indirection Through Filenames 24

Using Indirection in Object-Oriented Programming 30
Procedural Programming..........c.coooviiiiiiinnenenn.. 30
Implementing Object Orientation 37

Time Out forTerminologycouiuiiiii it 42

OOP N ObjJective-C .ot 43
The @interface Section...........coiiiiiiiiii it 43
The @implementation Section................coevvvenn.. 47
Instantiating Objects. ...t 50
Extending Shapes-Objectc.coviviiiiiiiiin... 52

SUMIMIAIY ¢ ettt ettt e e e et i nie i eaeanes 55

vii

CONTENTS

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

Inheritanceccvviveeeeeeeeceescescesaesness 57

Why Use Inheritance? ... 57
INheritance SYNtaX.ovvini it it 62
Time Out forTerminologycocovviviiiiiiinian.. 64
How Inheritance Workso, 65
Method Dispatching ..ot 65
Instance Variables.......... ..o 67
OverridingMethods ...t 69
[Feel Super! ... e 70
SUMIMAIY e e e 72

Composition......coveeieereeeseccsccssccsecese 73

What Is Composition?.ot 73
CarTalk . oo e e 74
Customizing for NSLOg(). . ..o vvvvee e 75

Accessor Methodsovvii i 78
Settingthe Enginecoviiiiiiii it 80
Setting theTires. ..ot e 81
TrackingChangestoCar.covviviiiii i i 82

Extending CarPartsoovviiiiiiii it 84

CompositionorInheritance? ..., 85

SUMIMAIY et e 86

Source File Organization...........ccc00veeee.. 87

Split Interface and Implementation............................ 87
Making New FilesinXcodecooiiiiiiininns. 88
Breaking Apartthe Car........oiiiiiii it 91
Using Cross-File Dependencies.........coovviviiiiiiinennn., 93
Recompiling on a Need-to-Know Basis.................... 94
Makingthe CarGo ..o viii it 926
Importation and Inheritance ol 97
SUMIMAIY ettt e e 100

More About Xcode......cceveeveeceeneesaessss 101

Changing the CompanyNameccoviiiiiiinnin... 102
Using Editor Tipsand Tricks.coiiiiiiiiiii i 103
Writing Your Code with a Little Help from Xcode 105

Indentation (Pretty Printing)..............oooviivin, 105

Code Completion (Code Sense).........cvvvvvvvennenn... 106

CHAPTER 8

CONTENTS

Kissing Parenthesesccviiiiiiii i, 108
Mass Editsovrii i e 108
Navigating AroundinYourCode........................ 113
emacsisNotaMac.........coiiiiiiiiiiii i 113
Search Your Feelings, Luke..............cooiiiiiiin... 114
OpenSesameSeed! ..., 115
Bookmarks. ..o e 115
FocusYourEnergy........cooeeiniiiiiiiiininnennn.. 116
The NavigationBarlsOpen...........coovviiiiiiiin. 118
Getting Information. ... 121
Research Assistance, Please............cooovivinninnt, 121
Is There a Documentor in the House? 122
DebUgging . ..o e 123
Ooongawalo e 123
Xcode's Debugger......coovviiiiiii e 123
Subtle Symbolism. ... 124
Let'sDebug!coviiiii i e 124
TakingaLook-See.......covviiiiiiii i 128
Cheat Sheeto iii i e 129
UMM ettt e e et e i 130

A Quick Tour of the Foundation Kit 131

Some Useful Types. . ..ooi e 132
HomeontheRange............ooiiiiiiiiiiiiiii s, 132
GeomMEetNC TYPES . vt e 133

Stringing Us AloNg. ..o 134
Build That Stringoovvvn e 134
ClassMethodso 134
Size Matters. . ..ot e 135
Comparative Politics ... 136
Insensitivity Training ...t 137
IS ItINSIde?. .t e 138

MUtability ... e 139

Collection AQENCY ..o ittt 141
NSAITAY. .ot e e 141
Mutable Arrays. ...o.vii i e 146
Enumeration Nation............ ...t 147
Fast Enumerationt 148
[N IS B Tt o] o -1 Y780 A 148

UsebutDontExtend.........covviiiiiiiiie... 150

CONTENTS

CHAPTER 9

CHAPTER 10

FamilyValuesoovriii i e 151
NSNUMDber. . . 151
NSValue ... 152
NSNUIL. . 153

Example: Looking forFiles...........coooiiiiiiiiin... 154
Behind the Sign That Says “Beware of the Leopard”...... 158

SUMIMAIY . ettt 159

Memory Management............cceveeeeee.. 161

Object Life Cycle.....voneniie e 162
Reference Counting........covviiiiiiiii i 162
Object Ownership.vevivi i 165
Retaining and Releasing in Accessors 165

AUTOrelease. 167
EveryoneintothePool!, 168
The Eve of Our Destruction...........cooviienininnen.. 169
Poolsin Action.......couiuiiii i 169

The Rules of Cocoa Memory Management................... 171
Transient Objectsc.oviii it 172
Hangingonto Objectsc.covviiiiininiinen.. 173
Take Out Those PapersandtheTrash.................... 176

SUMIMAIY . ettt 177

Object Initializationcovvviieeeee.. 179

Allocating Objects ..o v 179
Initializing Objects . ..o v e 180
Writing Initialization Methods 180
What to Do When You're Initializing..................... 182
Isn't That Convenient?.ot 183
More PartsIsParts ... 184
iNitforTiresoeie i e 184
Updatingmain()cooovvriniiiiiiiiiiiiieie e 187
CleaningUptheCar.......coovviiiiiiiiiii i, 189
CarCleaning, GCStyleo e 193
Making a Convenience Initializer 194
The Designated Initializer ...t 195
The Subclassing Problem.................ooooiiiiit, 196
Fixing Tire’s Initializers..........ccooviiiiiiii i, 198
Adding the AllWeatherRadial Initializer 199
InitializerRulesot 200

SUMIMAIY ettt e e et i e i a e 200

CHAPTER 11

CHAPTER 12

CHAPTER 13

CONTENTS

Propertiesccciiitieencnncnccncnecneeness 201

Shrinking PropertyValues.coiiiiiiiiiiininnnn 202
Shrinking the Interface.............coooiiiiiiii... 203
Shrinking the Implementation.......................... 204
Dots Incredible ... 206

Objecting to Propertiescoviiiiiiiiiiiiii i 208
Appellation Spring......oovii i e 212
Read-Only About Itooviiv e 214
Alas, Properties Don't Do Everything.................... 214

SUMIMaAIY . ettt e et i e i eie e 215

Categoriesccoveeeereccccsccccsscccsnncees 217

Creating @ Category. . ..o et 217
@INterface 218
@implementation............oiiiiiii i 218
Bad Categories. ..o vvev it e 220
GOoOd CategorieS ..t e vt e e et e 221

Splitting an Implementation with Categories 221
Using Categoriesinour Project......................... 222

Making Forward References with Categories................. 226
CategoriestotheRescuel.........coiiiiiiii ... 227

Informal Protocols and Delegation Categories 227
The [TunesFinder Projectcoiviiiiinnninn., 228
Delegates and Categoriesoovvviiviviinnenennennns 231
Respondsto Selectors.........coovviviiiiiiiniinninnn, 232
Other Uses for Selectors..........oovviiiiiiininninn.. 233

SUMIMAIY ettt e e et i e eaeens 234

Protocolscooviieeeeeeeeececncenceneenees 235

Formal Protocols.oovuiui i 235
Declaring Protocolscoviiiiiiiiiiii it 236
AdoptingaProtocol. ..ot 237
ImplementingaProtocol.............cooviiiiiiiiiin, 237

Carbon CoPIeS . .o v vt 237
CopyingEngines........c.ooiiiiiiiiiiiiiiiiiii i, 238
CopyiNgTires .o v et e 240
CopyingtheCar......cooiiiiiii e 242
Protocolsand DataTypes..........cvviiiiininininnnnnn. 245

Objective-C 2.0 GOOdIieS . ..vvvvv it 246

SUMIMNIAIY ¢ ettt ettt e i e n e aaans 247

CONTENTS

CHAPTER 14

CHAPTER 15

CHAPTER 16

CHAPTER 17

Introduction to the AppKit.................... 249

Making the Project. ..o 249
Making the AppController @interface 252
Interface Builder...... ..o 253
Laying Out the UserInterfacec.cooviiiiiiiiin... 256
Making ConNNeCTioNS. . ..ovvt it ie e 258

Hook UptheOQutletsccoiiiiiiiii i 258

Hook Upthe Actions ..o, 260
AppController Implementation...............ccovvivvin.... 262
SUMIMAIY ettt et 264

File Loadingand Savingccce00veeeeee. 265

Property Lists. ..o.vviii i e 265
NSDaAte ..t e 266
NSData ..ot e 266
Writing and Reading Property Lists 267

Encoding Objects. . ..oiiii i 269

SUMIMAIY ettt 276

Key-ValueCodingcovvevveeeecnecccsneees 277

AStarter Project ... e 277
Introducing KVCo 280
APathl APath!. i 281
Aggregated Assault.........coiiiiiiiii e 282

Y o) o T 284

SMOOth Operatorvvt vt cee i 288
Life'saBatch......oooiveiii 290
TheNils Are Alive ... e 292
HandlingtheUnhandled...............ccooiiiiiiiiiit, 292
SUMIMIAIY . ettt e et 294

NSPredicate.....cccoeeeeeeeeeceeneenceneenees 295

CreatingaPredicatecoviiiiii i 296
Evaluate the Predicate. ..., 297
FUuel Filters. .o e e 298
Format Specifierscooviiiiiii i 299
Hello Operator, Give Me Number9l 301
Comparison and Logical Operatorscou.... 301

Array Operators. .. .couete it 302

APPENDIX

CONTENTS

SELF Sufficient.ot 304
String Operations.ooiii i e 305
Like, FerSureo 306
That's All, Folks. . ..o e 306

Coming to Objective-C from Other Languages .. 307

Coming from C ..o e e 308
Coming from G, o oo 309

C++ vtable vs. Objective-C Dynamic Dispatch........... 309

Objective-CHt . oot 312
Coming fromJavaovvviiiiiii i 314
Coming fromBASIC.ot 316
Coming from Scripting Languagesc.coovvvvenennnn. 316
SUMIMAIY . ettt 317

|NDEX ® 0 0. 00000000000 0000000 00000000000 O OO OOOONDONDONPOSIPOSPOSEPOSEPOEEPOEEPOEIOEIOSIOD 319

About the Authors

Mark Dalrymple is a longtime Mac and Unix programmer who
has worked on cross-platform toolkits, Internet publishing tools,
high-performance web servers, and end-user desktop applications.
He's also the principal author of Advanced Mac OS X Programming
(Big Nerd Ranch 2005). In his spare time, he plays trombone and
bassoon and makes balloon animals.

Scott Knaster is a legendary (that is, very old) Mac programmer and
author of such best-selling books as Take Control of Switching to the
Mac (TidBITS Publishing Inc. 2008) and Macintosh Programming
Secrets (Addison-Wesley 1992). His book How to Write Macintosh
Software (Addison-Wesley 1992) was required reading for Mac
programmers for more than a decade. He lives in a house with
other people and a dog.

Xv

About the
Technical Reviewer

Jeff LaMarche is a longtime Mac developer and certified Apple iPhone
developer with more than 20 years of programming experience. He's
written on Cocoa and Objective-C for MacTech Magazine, as well as
articles for Apple’s Developer Technical Services web site. He has
experience working in enterprise software as both a developer for

PeopleSoft, starting in the late 1990s, and later as an independent
consultant.

Xvii

Acknowledgments

If you've ever read a technical book, you've seen the acknowledgments and understand that
even though there are (in this case) two names on the front cover, a lot of other folks behind
the scenes make the whole process work.

In particular, we'd like to single out Denise Santoro Lincoln, who was our primary wrangler.
We gave her“polenta” of problems, which she handled with taste, grace, and humor. Thanks
also to Clay Andres and Jeff LaMarche, who helped make sure we didn't tell you any lies.
Zillions of thanks to Laura Esterman, our production editor, for turning mere piles of text into
this awesome tome that you're reading and to Heather Lang for warping (temporarily, we
hope) her mind sufficiently to think like we do and still perform a masterful copy editing job.

Mark would like to thank Aaron Hillegass for introducing him to all of this Objective-C and
Cocoa stuff many moons ago and for introducing him to Scott and Dave. Without Aaron,
none of this would have happened. Also, Mark gives a shout out to Greg Miller for introduc-
ing him to the coolness of KVC and NSPred1icate. And Scott just wants to thank Mark for
doing all the real work.

Finally, impossibly enormous thanks go out to Dave Mark. Without his vision, dogged persis-
tence, and awesome nagging, this book would not have seen the light of day.

Xix

Preface

One of the dangers of being a programmer for a long time is that you can lose that spark of
delight that got you interested in programming the first place. Luckily, shiny new technolo-
gies come along all the time that can reignite that interest, and Mac OS X is chock full of
shiny stuff.

Objective-C is a programming language that blends C's speed and ubiquity with an elegant
object-oriented environment and provides a buzzword-laden cornucopia of programming
good times. Objective-C is the gateway drug for many of Apple’s niftiest technologies, such
as the Cocoa toolkit and the iPhone SDK. Once you've mastered the Objective-C language,
you're well on your way to conquering the rest of the platform. And from there, you can try
to take over the world.

xXi

Chapter

Hello

elcome to Learn Objective-C on the Mac! This book is designed to teach you
the basics of the Objective-C language. Objective-C is a superset of C and
is the language used by many (if not most) applications that have a true
Mac OS X look and feel.

This book teaches you the Objective-C language and introduces you to its
companion, Apple’s Cocoa toolkit. Cocoa is written in Objective-C and contains
all the elements of the Mac OS X user interface, plus a whole lot more. Once
you learn Objective-C in this book, you'll be ready to dive into Cocoa with

a full-blown project or another book such as Learn Cocoa on the Mac or Begin-
ning iPhone Development, both by Dave Mark and Jeff LaMarche (Apress 2009).

In this chapter, we'll let you know the basic information you need before you get
started with this book. We'll also serve up a bit of history about Objective-C and
give you a thumbnail sketch of what's to come in future chapters.

Before You Start

Before you read this book, you should have some experience with a C-like
programming language such as C++, Java, or venerable Citself. Whatever the
language, you should feel comfortable with its basic principles. You should
know what variables and functions are and understand how to control

your program’s flow using conditionals and loops. Our focus is the features
Objective-C adds to its base language, C, along with some goodies chosen
from Apple’s Cocoa toolkit.

Are you coming to Objective-C from a non-C language? You'll still be able to
follow along, but you might want to take a look at Appendix A or check out
Learn C on the Mac by Dave Mark (Apress 2009).

CHAPTER 1: Hello

Where the Future Was Made Yesterday

Cocoa and Objective-C are at the heart of Apple’s Mac OS X operating system. Although Mac
OS X is relatively new, Objective-C and Cocoa are much older. Brad Cox invented Objective-C
in the early 1980s to meld the popular and portable C language with the elegant Smalltalk
language. In 1985, Steve Jobs founded NeXT, Inc., to create powerful, affordable workstations.
NeXT chose Unix as its operating system and created NextSTEP, a powerful user interface
toolkit developed in Objective-C. Despite its features and a small, loyal following, NextSTEP
achieved little commercial success.

When Apple acquired NeXT in 1996 (or was it the other way around?), NextSTEP was
renamed Cocoa and brought to the wider audience of Macintosh programmers. Apple gives
away its development tools—including Cocoa—for free, so any Mac programmer can take
advantage of them. All you need is a bit of programming experience, basic knowledge of
Objective-C, and the desire to dig in and learn stuff.

You might wonder, “If Objective-C and Cocoa were invented in the '80s—in the days of Alf and
The A-Team, not to mention stuffy old Unix—aren't they old and moldy by now?” Absolutely
not! Objective-C and Cocoa are the result of years of effort by a team of excellent programmers,
and they have been continually updated and enhanced. Over time, Objective-C and Cocoa
have evolved into an incredibly elegant and powerful set of tools. Objective-C is also the

key to writing applications for the iPhone. So now, twenty-some years after NeXT adopted
Objective-C, all the cool kids are using it.

What’s Coming Up

Objective-C is a superset of C. Objective-C begins with C, and then adds a couple of small
but significant additions to the language. If you've ever looked at C++ or Java, you may be
surprised at how small Objective-C really is. We'll cover Objective-C’s additions to C in detail
in this book’s chapters:

B Chapter 2, “Extensions to C,” focuses on the basic features that Objective-C introduces.

B |n Chapter 3, “An Introduction to Object-Oriented Programming,” we kick off the
learning by showing you the basics of object-oriented programming.

B Chapter 4, “Inheritance,” describes how to create classes that gain the features of
their parent classes.

B Chapter 5, “Composition,” discusses techniques for combining objects so they can
work together.

B Chapter 6, “Source File Organization,” presents real-world strategies for creating your
program’s sources.

CHAPTER 1: Hello

B Chapter 7, “More about Xcode,” shows you some shortcuts and power-user features
to help you get the most out of your programming day.

B We take a brief respite from Objective-C in Chapter 8, “A Quick Tour of the Founda-
tion Kit,” to impress you with some of Cocoa'’s cool features using one of its two
primary frameworks.

B You'll spend a lot of time in your Cocoa applications dealing in Chapter 9, “Memory
Management” (sorry about that).

B Chapter 10, “Object Initialization,” is all about what happens when objects are born.

® Chapter 11, “Properties,” gives you the lowdown on Objective-C's new dot notation
and an easier way to make object accessors.

B Chapter 12, “Categories,” describes the supercool Objective-C feature that lets you
add your own methods to existing classes—even those you didn't write.

® Chapter 13, “Protocols,” tells about a form of inheritance in Objective-C that allows
classes to implement packaged sets of features.

B Chapter 14, “Introduction to the Application Kit,” gives you a taste of the gorgeous
applications you can develop in Cocoa using its other primary framework.

B Chapter 15, “File Loading and Saving,” shows you how to save and retrieve your data.
B Chapter 16, “Key-Value Coding,” gives you ways to deal with your data indirectly.
B And finally, in Chapter 17, “NSPredicate,” we show you how to slice and dice your data.

If you're coming from another language like Java or C++, or from another platform like Win-
dows or Linux, you may want to check out Appendix A, “Coming to Objective-C from Other
Languages,” which points out some of the mental hurdles you'll need to jump to embrace
Objective-C.

Summary

Mac OS X programs are written in Objective-C, using technology from way back in the 1980s
that has matured into a powerful set of tools. In this book, we'll start by assuming you know
something about C programming and go from there.

We hope you enjoy the ride!

Chapter

Extensions to C

bjective-C is nothing more than the C language with some extra features
drizzled on top—it’s delicious! In this chapter, we'll cover some of those key
extras as we take you through building your first Objective-C program.

The Simplest Objective-C Program

You've probably seen the C version of the classic Hello World program, which
prints out the text “Hello, world!” or a similar pithy remark. Hello World is usu-
ally the first program that neophyte C programmers learn. We don’t want to
buck tradition, so we're going to write a similar program here called Hello
Objective-C.

Building Hello Objective-C

As you work through this book, we're assuming you have Apple’s Xcode tools
installed. If you don't already have Xcode, or if you've never used it before, an
excellent section in Chapter 2 of Dave Mark’s Learn C on the Mac (Apress 2009)
walks you through the steps of acquiring, installing, and creating programs
with Xcode.

In this section, we'll step through the process of using Xcode to create your
first Objective-C project. If you are already familiar with Xcode, feel free to
skip ahead; you won't hurt our feelings. Before you go, be sure to expand the
Learn ObjC Projects archive from this book’s archive (which you can download
from the Source Code/Download page of the Apress web site). This project is
located in the 02.07 - Hello Objective-C folder.

To create the project, start by launching Xcode. You can find the Xcode appli-
cation in /Developer/Applications. We put the Xcode icon in the Dock for easy
access. You might want to do that too.

CHAPTER 2: Extensionsto C

Once Xcode finishes launching, choose New Project from the File menu. Xcode shows you

a list of the various kinds of projects it can create. Use your focus to ignore most of the intrigu-
ing project types there, and choose Command Line Utility on the left-hand side of the window
and Foundation Tool on the right-hand side, as shown in Figure 2-1. Click the Choose button.

Choose a template for your new project:

A~ 5 m =

Application =
m Mac 05 X C++ Tool CoreFoundation CoreServices
Tool Tool

Application

Audio Units -

Automator Action B{@

Bundle ity =

Command Line Utility Standard Tool

Dynamic Library

Framework

Java

Kernel Extension Description This project builds a command-line tool that links
Standard Apple Plug-in against the Foundation library.

Static Library
Other d

(Cancel) E'Ehumw")

Figure 2-1. Making a new foundation tool

Xcode drops a sheet and asks you to name the project. You can choose any name you want,
but as you can see in Figure 2-2, we called it Hello Objective-C. We're putting it into one of
our Projects directories here to keep things organized, but you can put it anywhere you want.

After you click Save, Xcode shows you its main window, called the project window (see
Figure 2-3). This window displays the pieces that compose your project along with an edit-
ing pane. The highlighted file, Hello Objective-C.m, is the source file that contains the code
for Hello Objective-C.

Hello Objective-C.m contains boilerplate code, kindly provided by Xcode for each new proj-
ect. We can make our Hello Objective-C application a little simpler than the sample Xcode
supplies. Delete everything in Hello Objective-C.m and replace it with this code:

#import <Foundation/Foundation.h>
int main (int argc, const char *argv[])
{

NSLog (@"Hello, Objective-C!");

return (0);

} // main

CHAPTER 2: Extensions to C

o Save As: | Hello Objective-C =)
2 L
[4 | b] [22 | = m [ﬁ Learn Objective-C ” (Q search b
¥ DEVICES 4| [AMOSXP >
borkbook (3 iPhone >
= Vikki
{23 other Projects >
AR {3 websites S
Bl v pLACES
ﬁ Developer
Bl 4 markd
o ﬁ samplec... E—
" A Applicati]
K % Applicati...
st E Desktop
st [Documents i I
Ot ﬂ Music b
New Flder ey

Figure 2-2. Name the new foundation tool

Groups & Files File Name & ®
¥ (23 Hello Objective-C = A= Foundation.framework L4
» [] Source M Hello Objective-C
» [] Documentation D Hello Objective-C.1 L
» [] External Frameworks anc [| Hello Objective- o
> [::| Products @ Hello Objective-C_Prefix.pch
> @ Targets
» <$ Executables - -
» [® Errors and Warnings s | [#i Helle Ohjeqhe-c.mzl . + <Noselected symbol: W, |™, |C, #,| @ &
VQ Find Results #import Foundation/Foundation.hs |_l
» L1l Bookmarks fl int main (int arge, const char * argv[]) {
> Q 5CM NS4utoreleazePool * pool = [[NSAutoreleasePool alloc] init];
- Project Symbols
» [Implementation Files /¢ insert code here... I
DEN[B Files NSLog(@"Hgllo, World! "y
[pool drain];
return B3
¥

A

Figure 2-3. XCode’s main window

If you don’t understand all the code right now, don’t worry about it. We'll go through this
program in excruciating, line-by-line detail soon.

Source code is no fun if you can't turn it into a running program. Build and run the program
by clicking the Build and Go button or pressing 88R. If there aren’t any nasty syntax errors,
Xcode compiles and links your program and then runs it. Open the Xcode console window

CHAPTER 2: Extensionsto C

(by selecting Console from the Run menu or pressing 84> R), which displays your program’s
output, as shown in Figure 2-4.

[Session started at 2008-07-18 16:21:51 -0400.]
2008-07-18 16:21:51.999 Hello Objective-C[16826:10b] Hello, Objective-C!

The Debugger has exited with status 0.

+

Debugging of “Hello Objective-C" ended lly. @ Succeeded 4

Figure 2-4. Running Hello Objective-C

And there you have it: your first working Objective-C program. Congratulations! Let's pull it
apart and see how it works.

Deconstructing Hello Objective-C

Here, again, are the contents of Hello Objective-C.m:

#import <Foundation/Foundation.h>

int main (int argc, const char *argv[])

{
NSLog (@"Hello, Objective-C!");
return (0);

} // main

Xcode uses the .m extension to indicate a file that holds Objective-C code and will be pro-
cessed by the Objective-C compiler. File names ending in .c are handled by the C compiler,
and .cpp files are the province of the C++ compiler. (In Xcode, all this compiling is handled
by the GNU Compiler Collection [GC(C], a single compiler that understands all three varia-
tions of the language.)

The main.m file contains two lines of code that should be familiar to you already if you know
plain C: the declaration of main() and the return (0) statement at the end. Remember that
Objective-C really is C at heart, and the syntax for declaring main() and returning a value

is the same as in C. The rest of the code looks slightly different from regular C. For example,
what is that wacky #import thing? To find out, read on!

CHAPTER 2: Extensions to C

OTE

The .m extension originally stood for “messages” when Objective-C was first introduced, referring to a
central feature of Objective-C that we'll talk about in future chapters. Nowadays, we just call them
dot-m files.

That Wacky #import Thing

Just like C, Objective-C uses header files to hold the declarations of elements such as
structs, symbolic constants, and function prototypes. In C, you use the #include statement
to inform the compiler that it should consult a header file for some definitions. You can

use #include in Objective-C programs for the same purpose, but you probably never will.
Instead, you'll use #import, like this:

#import <Foundation/Foundation.h>

#import is a feature provided by the GCC compiler, which is what Xcode uses when you're
compiling Objective-C, C, and C++ programs. #import guarantees that a header file will be
included only once, no matter how many times the #import directive is actually seen for
that file.

OTE

In C, programmers typically use a scheme based on the #i fdef directive to avoid the situation where
one file includes a second file, which then, recursively, includes the first.

In Objective-C, programmers use #1import to accomplish the same thing.

The #import <Foundation/Foundation.h> statement tells the compiler to look at the
Foundation.h header file in the Foundation framework.

What's a framework? We're glad you asked. A framework is a collection of parts—header
files, libraries, images, sounds, and more—collected together into a single unit. Apple ships
technologies such as Cocoa, Carbon, QuickTime, and OpenGL as sets of frameworks. Cocoa
consists of a pair of frameworks, Foundation and Application Kit (also known as AppKit),
along with a suite of supporting frameworks, including Core Animation and Core Image,
which add all sorts of cool stuff to Cocoa.

The Foundation framework handles features found in the layers beneath the user interface,
such as data structures and communication mechanisms. All the programs in this book are
based on the Foundation framework.

CHAPTER 2: Extensionsto C

OTE

Once you finish this book, your next step along the road to becoming a Cocoa guru is to master Cocoa’s
Application Kit, which contains Cocoa’s high-level features: user interface elements, printing, color and
sound management, AppleScript support, and so on. To find out more, check out Learn Cocoa on the Mac by
Dave Mark and Jeff LaMarche (Apress 2009).

Each framework is a significant collection of technology, often containing dozens or even
hundreds of header files. Each framework has a master header file that includes all the
framework’s individual header files. By using #import on the master header file, you have
access to all the framework'’s features.

The header files for the Foundation framework take up nearly a megabyte of disk storage,
and contain more than 14,000 lines of code, spread across over a hundred files. When you
include the master header file with #import <Foundation/Foundation.h>, you get that
whole vast collection. You might think wading through all that text for every file would take
the compiler a lot of time, but Xcode is smart: it speeds up the task by using precompiled
headers, a compressed and digested form of the header that’s loaded quickly when you
#import it.

If you're curious about which headers are included with the Foundation framework, you
can peek inside its Headers directory (/System/Library/Frameworks/Foundation.framework/
Headers/). You won't break anything if you browse the files in there; just don't remove or
change anything.

NSLog() and @”strings”

Now that we have used #import on the master header file for the Foundation framework,
you're ready to write code that takes advantage of some Cocoa features. The first (and only)
real line of code in Hello Objective-C uses the NSLog () function, like so:

NSLog (@"Hello, Objective-C!");

This prints “Hello, Objective-C!" to the console. If you've used C at all, you have undoubtedly
encountered printf()in your travels. NSLog () is a Cocoa function that works very much like
printfQ).

Just like printf (), NSLog()takes a string as its first argument. This string can contain format
specifiers (such as %d), and the function takes additional parameters that match the format
specifiers. printf() plugs these extra parameters into the string before it gets printed.

CHAPTER 2: Extensions to C

As we've said before, Objective-C is just C with a little bit of special sauce, so you're wel-
come to use printf() instead of NSLog () if you want. We recommend NSLog (), however,
because it adds features such as time and date stamps, as well as automatically appending
the newline (“\n’) character for you.

You might be thinking that NSLog () is kind of a strange name for a function. What is that
“NS” doing there? It turns out that Cocoa prefixes all its function, constant, and type names
with “NS". This prefix tells you the function comes from Cocoa instead of some other toolkit.

The prefix helps prevent name collisions, big problems that result when the same identi-
fier is used for two different things. If Cocoa had named this function Log(), there's a good
chance the name would clash with a Log () function created by some innocent programmer
somewhere. When a program containing Log () is built with Cocoa included, Xcode com-
plains that Log () is defined multiple times, and sadness results.

Now that you have an idea why a prefix is a good idea, you might wonder about the specific
choice: why “NS” instead of “Cocoa,” for example? Well, the “NS” prefix dates back from the
time when the toolkit was called NextSTEP and was the product of NeXT Software (formerly
NeXT, Inc.), which was acquired by Apple in 1996. Rather than break compatibility with code
already written for NextSTEP, Apple just continued to use the “NS” prefix. It's a historical curi-
osity now, like your appendix.

Cocoa has staked its claim on the NS prefix, so obviously, you should not prefix any of your
own variables or function names with “NS”. If you do, you will confuse the readers of your
code, making them think your stuff actually belongs to Cocoa. Also, your code might break
in the future if Apple happens to add a function to Cocoa with the same name as yours.
There is no centralized prefix registry, so you can pick your own prefix. Many people prefix
names with their initials or company names. To make our examples a little simpler, we won't
use a prefix for the code in this book.

Let’s take another look at that NSLog () statement:

NSLog (@"Hello, Objective-C!");

Did you notice the at sign before the string? It’s not a typo that made it past our vigilant edi-
tors. The at sign is one of the features that Objective-C adds to standard C. A string in double
quotes preceded by an at sign means that the quoted string should be treated as a Cocoa
NSString element.

So what's an NSString element? Peel the “NS” prefix off the name and you see a familiar term:
“String". You already know that a string is a sequence of characters, usually human-readable, so
you can probably guess (correctly) that an NSString is a sequence of characters in Cocoa.

CHAPTER 2: Extensionsto C

NSString elements have a huge number of features packed into them and are used by
Cocoa any time a string is needed. Here are just a few of the things an NSString can do:

m Tell you its length
B Compare itself to another string
m Convert itself to an integer or floating-point value

That'’s a whole lot more than you can do with C-style strings. We'll be using and exploring
NSString elements much more in Chapter 8.

WATCH THOSE STRINGS

One mistake that’s easy to make is to pass a C-style string to NSLog () instead of one of the fancy
NSString @"strings" elements. If you do this, the compiler will give you a warning:

main.m:46: warning: passing arg 1 of 'NSLog’ from
incompatible pointer type

If you run this program, it might crash. To catch problems like this, you can tell Xcode to always treat warn-
ings as errors. To do that, select the top item in the Xcode Groups & Files list, choose File » Get Info, select
the Build tab, type error into the search field, and check the Treat Warnings as Errors checkbox, as shown in
the following image. Also make sure that the Configuration pop-up menu at the top says All Configurations.

4{ General | Build | Configurations Comments 17

Configuration: [All Configurations I-G-q er error)|
Show: [All Settings W
Setting [Value
¥ Code Signi
Code Signing ldentity
¥Linking
Display Mangled Names H
|_¥GCC 4.0 — Code Generation
No Common Blocks H

|_YGEC 4.0 - Warnings

Treat Missing Function Prototypes as Errors _|:|
Treat Nonconformant Code Errors as War... | []

Treat Warnings as Errors _
Based On: '.Not.h.ing E | @

CHAPTER 2: Extensions to C

Here's another cool fact about NSString: the name itself highlights one of the nice features of
Cocoa. Most Cocoa elements are named in a very straightforward manner, striving to describe
the features they implement. For instance, NSArray provides arrays; NSDateFormatter helps
you format dates in different ways; NSThread gives you tools for multithreaded programming;
and NSSpeechSynthesizer lets you hear speech.

Now, we'll get back to stepping through our little program. The last line of the program is
the return statement that ends the execution of main() and finishes the program:

return (0);

The zero value returned says that our program completed successfully. This is just the way
return statements work in C.

Congratulations, again! You've just written, compiled, run, and dissected your first
Objective-C program.

Are You the Boolean Type?

Many languages have a Boolean type, which is, of course, a fancy term for variables that
store true and false values. Objective-C is no exception.

C has a Boolean data type, booT, which can take on the values true and false. Objective-C
provides a similar type, BOOL, which can have the values YES and NO. Objective-C’s BOOL type,
incidentally, predates C's boo1 type by over a decade. The two different Boolean types can
coexist in the same program, but when you're writing Cocoa code, you'll be using BOOL.

OTE

BOOL in Objective-Cis actually just a type definition (typedef) for the signed character type
(signed char), which uses 8 bits of storage. YES is defined as 1 and NO as O (using #def1ine).

Objective-C doesn’t treat BOOL as a true Boolean type that can hold only YES or NO values. The com-
piler considers BOOL to be an 8-bit number, and the values of YES and NO are just a convention. This
causes a subtle gotcha: if you inadvertently assign an integer value that’s more than 1 byte long, such as
ashortoranint value, toa BOOL variable, only the lowest byte is used for the value of the BOOL. If
that byte happens to be zero (as with 8960, which in hexadecimal is 0x2300), the BOOL value will be
zero, the NO value.

CHAPTER 2: Extensionsto C

Mighty BOOL in Action

To show mighty BOOL in action, we move on to our next project, 02.02 - BOOL Party, which
compares pairs of integers to see if they're different. Aside from main (), the program defines
two functions. The first, areIntsDifferent(), takes two integer values and returns a BOOL:
YES if the integers are different and NO if they are the same. A second function, boo1String(),
takes a BOOL parameter and returns the string @"YES" if the parameter is YES and @"'NO" if

the parameter is NO. This is a handy function to have around when you want to print out

a human-readable representation of BOOL values. main() uses these two functions to
compare integers and print out the results.

Creating the project for BOOL Party is exactly the same process as making the project for
Hello Objective-C:

1. Launch Xcode, if it's not already running.

2. Select New Project from the File menu.

3. Choose Command Line Utility on the left and Foundation Tool on the right.
4. Click Choose.

5. Type BOOL Party as the Project Name, and click Save.

Edit BOOL Party.m to make it look like this:

#import <Foundation/Foundation.h>

// returns NO if the two integers have the same
// value, YES otherwise

BOOL areIntsDifferent (int thingl, int thing2)
{
if (thingl == thing2) {
return (NO);
} else {
return (YES);
b

} // areIntsDifferent

// given a YES value, return the human-readable
// string "YES". Otherwise return "NO"

NSString *boolString (BOOL yesNo)
{
if (yesNo == NO) {
return (@"NO");

CHAPTER 2: Extensions to C

} else {
return (@"YES"™);
h

} // boolString

int main (int argc, const char *argv[])

{
BOOL areTheyDifferent;

areTheyDifferent = arelntsDifferent (5, 5);

NSLog (@"are %d and %d different? %@",
5, 5, boolString(areTheyDifferent));

areTheyDifferent = arelntsDifferent (23, 42);

NSLog (@"are %d and %d different? %@",
23, 42, boolString(areTheyDifferent));

return (0);
} // main

Build and run your program. You'll need to bring up the Console window to see the output,
by choosing Console from the Run menu, or using the keyboard shortcut 8<*R. In the Run
Debugger Console window, you should see output like the following:

2008-07-20 16:47:09.528 02 BOOL Party[16991:10b] are 5 and 5 different? NO
2008-07-20 16:47:09.542 02 BOOL Party[16991:10b] are 23 and 42 different?
YES

The Debugger has exited with status 0.

Once again, let’s pull this program apart, function by function, and see what'’s going on.The
first function in our tour is areIntsDifferent():

BOOL areIntsDifferent (int thingl, int thing2)
{
if (thingl == thing2) {
return (NO);
} else {
return (YES);
h

} // areIntsDifferent

CHAPTER 2: Extensionsto C

The areIntsDifferent() function that takes two integer parameters and returns a BOOL
value. The syntax should be familiar to you from your C experience. Here you can see thingl
being compared to thing2. If they're the same, NO is returned (since they're not different). If
they're different, YES is returned. That's pretty straightforward, isn't it?

WON'T GET BOOLED AGAIN

Experienced C programmers might be tempted to write the areIntsDi fferent () function as a single
statement:

BOOL areIntsDifferent_faulty (int thingl, int thing2)

{
return (thingl - thing2);
} // areIntsDifferent_faulty

They'd do so operating under the assumption that a nonzero value is the same as YES. But that’s not the
case. Yes, this function returns a value, as far as Cis concerned, that is true or false, but callers of functions
returning BOOL will expect either YES or NO to be returned. If a programmer tries to use this function as
follows, it will fail, since 23 minus 5 is 18:

if (areIntsDifferent_faulty(23, 5) == YES) {
// ...
}

While the preceding function may be a true value in , it is not equal to YES (a value of 1) in Objective-C.

It's a good idea never to compare a BOOL value directly to YES, because too-clever programmers sometimes
pull stunts similarto areIntsDifferent_faulty().Instead, write the preceding i f statement
like this:

if (areIntsDifferent_faulty(5, 23)) {
Y/
}

Comparing directly to NO is always safe, since falsehood in C has a single value: zero.

The second function, boo1String(), maps a numeric BOOL value to a string that's readable
by mere humans:

NSString *boolString (BOOL yesNo)
{
if (yesNo == NO) {
return (@"NO");
} else {
return (@Q"YES");

} // boolString

