Pro Hibernate 3

DAVE MINTER AND JEFF LINWOOD

APIess®

Pro Hibernate 3
Copyright © 2005 by Dave Minter and Jeff Linwood

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-511-4
Printed and bound in the United States of America98765432 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Steve Anglin

Technical Reviewer: Dilip Thomas

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis,
Jason Gilmore, Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser

Associate Publisher: Grace Wong

Project Manager: Beth Christmas

Copy Edit Manager: Nicole LeClerc

Copy Editor: Linda Marousek

Production Manager: Kari Brooks-Copony

Production Editor: Katie Stence

Compositor: Dina Quan

Proofreader: April Eddy

Indexer: Michael Brinkman

Artist: April Milne

Interior Designer: Van Winkle Design Group

Cover Designer: Kurt Krames

Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 233 Spring Street, 6th
Floor, New York, NY 10013, and outside the United States by Springer-Verlag GmbH & Co. KG, Tiergarten-
str. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders@springer-ny.com, or visit
http://www.springer-ny.com. Outside the United States: fax +49 6221 345229, e-mail orders@springer.de,
or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Downloads section.

To our families.

Contents at a Glance

Aboutthe Authors
About the Technical Reviewer i
Acknowledgments ...
Introduction

PART 1 Hibernate 3 Primer

CHAPTER 1 An Introduction to Hibernate 3
CHAPTER 2 Integrating and Configuring Hibernate
CHAPTER 3 Building a Simple Application.........................
CHAPTER 4 Using Annotations with Hibernate

PART 2 Hibernate 3 Reference

CHAPTER 5 The Persistence Lifecycle
CHAPTER 6 Creating Mappingscoiiiin...
CHAPTER 7 Querying Objects with Criteria
CHAPTER 8 QueryingwithHQLand SQL
CHAPTER 9 UsingtheSession
CHAPTER 10 Design Considerations with Hibernate 3
CHAPTER 11 Events and Interceptors
CHAPTER 12 Hibernate Filters

CHAPTER 13 Fitting Hibernate into the Existing Environment

CHAPTER 14 Upgrading from Hibernate 2

Contents

About the AUthOrs o Xiii
About the Technical ReVIEWEr i XV
ACKNOWIBAgMENTS Xxvii
INtrodUCHiONo Xix

PART 1 Hibernate 3 Primer

CHAPTER 1 An Introduction to Hibernate 3 3
Plain Old Java Objects (POJOS) ...t 4
Origins of Hibernate and Object Relational Mapping 5

EJBs As a Persistence Solution 7

Hibernate As a Persistence Solution 7
A Hibernate Hello World Exampleoiiit. 8
Mappings 9
Database Generation i 10
Bootstrapping Your Configuration 10
The Relationship of Hibernate 3withEJB3 12
SUMMArY 12

CHAPTER 2 Integrating and Configuring Hibernate 13
Integrating Hibernate with Your Java Application 13
Deploying Hibernate 14

Required Libraries for Running Hibernate 3 14
Enterprise JavaBeans 3l 15
Java Management Extensions (JMX) and Hibernate 15
Hibernate Configuration 16
Hibernate Properties 16
XML Configuration i 20
Mapping Documents 21
Naming Strategyo i 22
Using a Container-Managed Data Source 23

vii

viii

CONTENTS

CHAPTER 3

CHAPTER 4

The Session Factory o i 23
SALDIAlECtS ... 24
Database Independencel 26
SUMMAIY ... 26
Building a Simple Application 27
Installthe Tools 27
Hibernate 3 27
HSQL 1.7.3.3 .. o 27
ANt 1.6.2 . . 29
Create a Hibernate ConfigurationFile 31
Run the Message of the Day Example 33
Persisting Multiple Objectsco i, 38
Creating Persistence Classesc.oviiiiiiiinnnn... 39
Creating the Object Mappings ..., 44
CreatingtheTables, 47
S SIONS .. 49
The Session and Related Objects 49
Usingthe Session ..., 50
Building Data Access Objects (DAOS)c.ccovviinin... 52
The Example Client 59
SUMMArY 63
Using Annotations with Hibernate 65
Creating Hibernate Mappings with Annotations 65
Using Annotations in Your Application 67
Introducing the Hibernate Annotations 67
Entity Beanswith @Entity 68
Primary Keyswith@Id 69
Database Table Mapping with @Table and @SecondaryTable 70
Field Persistence with @Basic and @Transient 71
Object-Relational Mapping Details with @Column 71
Modelling Relationships with Annotations 72
Inheritance 75
Using the Annotated Classes in Your Hibernate Configuration76
Code Listingsoovvii 77

SUMMANY ... 81

PART 2

CHAPTER 5

CHAPTER 6

CONTENTS
Hibernate 3 Reference
The Persistence Lifecycle 85
Introduction to the Lifecycle, 85
Saving Objects ... 86
Object Equality and Identity i 86
Loading Objects i 87
Refreshing Objectsco i 89
Updating Objectso 89
Deleting Objects ... 90
Cascading Operationscoiiiiiiiiiiiiiii, 91
Querying Objects ... i 92
EJB3/JSR 220 Persistence APl 92
SUMMArY ... 92
Creating Mappings ... 93
Hibernate Types ... 93
Entities ... 93
Componentso i 93
Values ... 94
The Anatomy of a Mapping File 95
The Hibernate-Mapping Element 95
TheClassElement L. 97
TheldElement 100
The PropertyElement 102
The ComponentElement 103
The One-to-One Element 104
The Many-to-One Element 106
The Collection Elements 107
Mapping Simple Classesco i, 113
Mapping Composition i 115
Mapping Other Associations 118
Mapping Collections 121
Mapping Inheritance Relationships 123
One Table per Concrete Class ...t 124
OneTable perSubclasscoiiiiii ... 125

One Table per Class Hierarchy 126

ix

X

CONTENTS

CHAPTER 7

CHAPTER 8

More Exotic Mappings 127
ANy 128
AITaY .. 128
JOIN Lo 128
Dynamic Component 128

SUMMArY ... 129

Querying Objects with Criteria 131

Using the Criteria Query APl il 131
Using Restrictions with Criteria 135
Paging Throughthe ResultSet 138
Obtaining aUniqueResult 139
Sorting the Query’sResults 139
Associations 140
DistinctResults i 141
Projections and Aggregatesiiials. 141
Query By Example (QBE) ..., 143

SUMMArY ... 144

QueryingwithHQLandSQL 145

Hibernate Query Languagec.coiiiiiiiiiiiat. 145

FirstExample with HQL, 146

Logging the Underlying SQLt 147
Commenting the Generated SQL 148

From Clause and Aliases ...t 148

Select Clause and Projection 149

Using Restrictionswith HQL 149

Using Named Parameters 150

Paging Throughthe Result Set 151

ObtainingaUnique Resulto..s. 152

Sorting Your Results with OrderBy 152

Associations 153
Aggregate Methods i 153

Bulk Updates and Deleteswith HQL 154

Named Queries for HQLand SQL 155

UsingNative SQLo i 157

SUMMANY ... 158

CHAPTER 9

CHAPTER 10

CHAPTER 11

CHAPTER 12

CONTENTS
Usingthe Session ... 159
SBSSIONS .. 159
Transactionsand Locking L. 161
Transactions 161
LOCKING 163
Deadlockso i 164
Caching ... 170
Threads ...t 173
SUMMANY ... 173
Design Considerations with Hibernate 3 175
Application Requirements L. 175
Designing the ObjectModel 176
Designingthe POJOS i 176
Designingour DAOSo 180
Mapping with Hibernatel 182
Creating the Database Schema 184
The Java Applicationl 186
SUMMANY ... 187
Events and Interceptors 189
Interceptors 189
An Example Interceptor 191
EVeNtS 197
An Example EventListener 199
SUMMArY ... 201
HibernateFilters ... 203
WheretoUse Filters i 203
Defining Filters i 204
Using Filters in Your Application 205
Basic Filtering Example 205

SUMMArY ... 211

Xi

Xii

CONTENTS

CHAPTER 13

CHAPTER 14

Fitting Hibernate into the Existing Environment 213
Limitations of Hibernatel 213
Hand-Rolled SQL 214

Usinga Direct Mapping ..., 214

UsingaView i 216

Putting SQL intoaMappingl 217
Invoking Stored Procedures i 219
Replacing JDBC Calls in ExistingCode 221
SUMMANY ... 222
Upgrading from Hibernate2 223
Package and DTD Changescoiiiiiiinnninns 223
New Features and SupportforOldOnes 224

Changes and Deprecated Features 225

Additions 226
Changes to Tools and Librariesc.ccviiiiin.. 226
ChangeswithJavab i i, 227
SUMMArY ... 227

About the Authors

DAVE MINTER is a freelance IT consultant (http://paperstack.com/cv/)
from rainy London, England. His liking for computers was kicked off when
aWang 2200 minicomputer made a big impression on him at the tender
age of six. Since then he has worked for the biggest of blue chips and the
smallest of startups. These days he makes his living designing and build-
ing multi-tier applications that “just work.” Dave is the coauthor with Jeff
of Building Portals with the Java Portlet API (Apress, 2004). He has a com-
puter studies degree from the University of Glamorgan.

JEFF LINWOOD is a software developer and consultant with the Gossamer
Group (http://www.gossamer-group.com/) in sunny Austin, Texas. Jeff has
been in software programming since he had a 286 in high school. He was
caught up with the Internet when he got access to a Unix shell account
and it has been downhill ever since. Jeff coauthored Building Portals with
the Java Portlet API (Apress, 2004) with Dave and Pro Struts Applications
(Apress, 2003), and was a technical reviewer for Enterprise Java Develop-
ment on a Budget (Apress, 2004) and Extreme Programming with Ant
(SAMS, 2003). He has a chemical engineering degree from Carnegie
Mellon University.

xiii

About the Technical Reviewer

DILIP THOMAS is an Open Source enthusiast who keeps a close watch on
LAMP technologies, Open Standards, and the full range of Apache Jakarta
projects. He is coauthor of PHP MySQL Website Programming: Problem -
Design - Solution (Apress, 2003) and a technical reviewer/editor on several
Open Source/Open Standard book projects. Dilip is an Editorial Director
at Software & Support Verlag GmbH.

Dilip resides in Bangalore with his beautiful wife, Indu, and
several hundred books and journals. You can reach him via email at
dilip.thomas@gmail.com.

Xv

Acknowledgments

This book would not have been possible without the energy and enthusiasm of the Apress
staff: especially Steve Anglin for entrusting us with the project in the first place; Beth Christmas,
our Project Manager; Linda Marousek, our Copy Editor; and Katie Stence, our Production
Editor. Thank you all.

We are indebted to Dilip Thomas, our Technical Editor, whose timely and pithy commen-
tary helped us to polish the rough edges of this work. The parts of the book that we are
particularly proud of are usually the direct result of his notes and enquiries.

Dave would like to thank his parents for entrusting the family ZX81 to his clutches some
years past, and his wonderful girlfriend Kalani Seymour for her patience and enthusiasm. He
would also like to thank Jeff Verdegan for his assistance with a particularly tricky example that
makes an appearance in Chapter 13.

Jeff would like to thank his family, Nancy, Judy, Rob, and Beth, for being supportive during
the book-writing process. He'd also like to thank his friends Giuliano, Ronalyn, Roman, Karl,
Michael, Jason, Valerie, Micah, and Betsy.

Where this book fails to achieve its aims, we the authors are, of course, entirely responsible.

Xvii

Introduction

Virtually every application we have worked on has involved a database. While Java and the
JDBC standard have significantly reduced the effort involved in carrying out simple database
operations, the point of contact between the object-oriented world and the relational world
always causes problems.

Hibernate offers a chance to automate most of the hard parts of this particular problem.
By writing a simple XML file, you can make the database look object oriented. Along the way,
you get some performance improvements. You also get an enormous improvement in the ele-
gance of your code.

We were originally skeptical of yet another object-relational system, but Hibernate is
so much easier to work with that we are entirely converted. Neither of us expect to write a
database-based system with JDBC and SQL prepared statements again—Hibernate or its
successors will form an essential part of the foundations. Hibernate is not just “another”
object-relational system, it is the standard to beat.

Speaking of standards, the EJB3 specification has received a lot of input from the Hibernate
team—who have, in turn, made efforts to reflect the emerging standard in their API. There-
fore, to learn good practices for EJB3, start here with Hibernate.

Who This Book Is For

This book is for Java developers who have at least some basic experience with databases and
using JDBC. You will need to have a basic familiarity with SQL and database schemas. While it
is not required, it will certainly be helpful if you have an understanding of the aims of data-
base normalization. We do not assume that you have prior experience with Hibernate or any
other object-relational technology.

Hibernate is an Open Source project, so it is fitting that all of our examples make use of
Open Source technologies. Part of Hibernate’s promise is that many of the details of a particu-
lar relational database are abstracted away, so most of our examples will work with any database
Hibernate supports. When we discuss database features that not all supported databases
have, such as stored procedures, we specifically mention which database we used—both of
our example databases are Open Source and readily available.

This book is not an academic text and does not generally attempt to describe the internal
workings of Hibernate itself. As professional developers, we have tried to impart the under-
standing of how to use Hibernate rather than how to write it!

How This Book Is Organized

This book is roughly divided into two parts, beginning with a primer on the basics of Hiber-
nate in Chapters 1 through 4 and continuing with more technical or design-oriented content
in Chapters 5 through 14.

Xix

XX

INTRODUCTION

We encourage readers who are completely new to this technology to read through the
primer section as this will give you a grounding in the basic requirements for a Hibernate-
based application.

Readers who are familiar with Hibernate 2 should start with Chapter 14, where we discuss
the differences between Hibernate 2 and Hibernate 3, and then refer back to appropriate
chapters:

Chapter 1, An Introduction to Hibernate 3: A basic introduction to the fundamentals of
Hibernate and an overview of some sample code.

Chapter 2, Integrating and Configuring Hibernate: How to integrate Hibernate into
your Java application, an overview of the configuration options for Hibernate, and we
explain how Hibernate deals with the differences between its supported relational
databases.

Chapter 3, Building a Simple Application: Two working-example Hibernate programs in
full with extensive commentary on how the source code, mapping files, and database
are related.

Chapter 4, Using Annotations with Hibernate: How to use the new EJB3 annotations
with Hibernate 3 to create object-relational mappings in your Java source code.

Chapter 5, The Persistence Lifecycle: We explain how Hibernate manages the objects that
represent data in tables, and also present an overview of the relevant methods for creat-
ing, retrieving, updating, and deleting objects through the Hibernate session.

Chapter 6, Creating Mappings: We discuss mapping files in depth. We cover all of the
commonly used elements in detail.

Chapter 7, Querying Objects with Criteria: How to use the Hibernate criteria query API
to selectively retrieve objects from the database.

Chapter 8, Querying with HQL and SQL: This chapter contains a discussion of Hiber-
nate’s object-oriented query language, HQL, and how to use native SQL with Hibernate.

Chapter 9, Using the Session: The ways in which sessions, transactions, locking, caching,
and multi-threading are related. We also present a comprehensive example of a dead-
lock.

Chapter 10, Design Considerations with Hibernate 3: How the Hibernate persistence
layer of an application is designed.

Chapter 11, Events and Interceptors: We discuss these very similar features. Interceptors
were available in Hibernate 2 and are relatively unchanged. Events, while similar to
Interceptors, were introduced with Hibernate 3.

Chapter 12, Hibernate Filters: Hibernate provides filtering functionality for limiting the
data returned by queries to a definable subset. We give an example showing this useful
functionality and explain where you might use it in an application.

INTRODUCTION XXi

* Chapter 13, Fitting Hibernate into the Existing Environment: We discuss how to go
about integrating Hibernate with legacy applications and databases. We also present
an example of how to invoke a stored procedure.

* Chapter 14, Upgrading from Hibernate 2: For users familiar with Hibernate 2, we dis-
cuss the changes and additions in Hibernate 3.

PART 1

Hibernate 3 Primer

CHAPTER 1

An Introduction to
Hibernate 3

M ost significant development projects involve a relational database. The mainstay of most
commercial applications is the large-scale storage of ordered information, such as catalogs,
customer lists, contract details, published text, and architectural designs.

With the advent of the World Wide Web, the demand for databases has increased. Though
they may not know it, the customers of online bookshops and newspapers are using data-
bases. Somewhere in the guts of the application a database is being queried and a response
is offered.

While the demand for such applications has grown, their creation has not become notice-
ably simpler. Some standardization has occurred—the most successful being the Enterprise
JavaBeans (EJBs) standard of Java 2 Enterprise Edition (J2EE), which provides for container
and bean-managed persistence of Entity Bean classes. Unfortunately, this and other persist-
ence models all suffer to one degree or another from the mismatch between the relational
model and the object-oriented model. In short, database persistence is difficult.

There are solutions for which EJBs are more appropriate, for which some sort of Object
Relational Mapping (ORM) like Hibernate is appropriate, and some for which the traditional
connected' approach of direct access via the JDBC API is most appropriate. Making the call on
which to use requires an intimate knowledge of the strengths and weaknesses of them all—
but all else being equal, we think that Hibernate offers compelling advantages in terms of ease
of use.

To illustrate some of Hibernate’s other strengths, in this chapter we will show you a “Hello
World” Java database example. This application allows previously stored messages to be dis-
played using a simple key such as the “Message of the day.” We will show the essential
implementation details using the connected approach and using Hibernate.

Both of our examples are invoked from the main method in Listing 1-1, with the point at
which we invoke the specific implementation marked in bold.

1. There is no standard way of referring to “direct use of JDBC” as opposed to ORM or EJBs, so we have
adopted the term “connected” as the least awkward way of expressing this.

CHAPTER 1 " AN INTRODUCTION TO HIBERNATE 3

Listing 1-1. The Main Method That Will Invoke Our Hibernate and Connected Implementations

public static void main(String[] args) {
if (args.length I= 1) {
System.err.println("Nope, enter one message number");
} else {
try {
int messageld = Integer.parselnt(args[0]);
Motd motd = getMotd(messageld);
if (motd != null) {
System.out.println(motd.getMessage());
} else {
System.out.println("No such message");

}

} catch (NumberFormatException e) {

System.err.println("You must enter an integer - " + args[0]
+ " won't do.");
} catch (MotdException e) {
System.err.println("Couldn't get the message: " + e);

}

Plain Old Java Objects (P0JOs)

In our ideal world, it would be trivial to take any Java object and persist it to the database. No
special coding would be required to achieve this, no performance penalty would ensue, and
the result would be totally portable. The common term for the direct persistence of traditional
Java objects is Object Relational Mapping. There is a direct and simple correspondence
between the POJOs?, something that the forthcoming changes in the EJB3 standard look set

to emulate.

Where Entity Beans have to follow a myriad of awkward naming conventions, POJOs can
be any Java object at all. Hibernate allows you to persist POJOs, with very few constraints.
Listing 1-2 is an example of a simple POJO to represent our “Message of the day” (Motd)
announcement.

Listing 1-2. The POJO That We Are Using in This Chapter’s Examples

public class Motd {
protected Motd() {

}

2. Java objects requiring no special treatment to be stored are often referred to as Plain Old Java Objects,
or POJOs for short. This is really just to provide a handy term to differentiate them from Entity Beans
and the like, which must conform to complicated and limiting contracts. The name also conveys
something of the benefits of Hibernate—you don’t have to do anything special to support persistence
of a POJO via Hibernate, so you really can reuse your existing Java objects.

CHAPTER 1 " AN INTRODUCTION TO HIBERNATE 3

public Motd(int messageld, String message) {
this.messageId = messageld;
this.message = message;

}

public int getId() {
return id;

}

public void setId(int id) {
this.id = id;
}

public String getMessage() {
return message;

}

public void setMessage(String message) {
this.message = message;

}

private int messageld;
private String message;

What sort of POJO can be persisted? Practically anything. It has to provide a default con-
structor (but this can be given package or private scope to avoid pollution of your API), but
that’s it. Not an especially onerous burden.

Origins of Hibernate and Object
Relational Mapping

If Hibernate is the solution, what was the problem? The gargantuan body of code in Listing 1-3
is required to populate our example Motd object from the database even when we know the
appropriate message identifier:

Listing 1-3. The Connected Approach to Retrieving the POJO

public static Motd getMotd(int messageId) throws MotdException {
Connection c¢ = null;
PreparedStatement p = null;
Motd message = null;

try {

Class.forName("org.postgresql.Driver");
¢ = DriverManager.getConnection(

6

CHAPTER 1 " AN INTRODUCTION TO HIBERNATE 3

}

"jdbc:postgresql://127.0.0.1/hibernate",
"hibernate",
"hibernate");
p = c.prepareStatement(
"select message from motd where id = ?");

p.setInt(1, messageld);
ResultSet rs = p.executeQuery();

if (rs.next()) {
String text = rs.getString(1);
message = new Motd(messageld, text);

if (rs.next()) {
log.warning(
"Multiple messages retrieved for message ID:
+ messageld);

}

} catch (Exception e) {
log.log(Level.SEVERE, "Could not acquire message", e);
throw new MotdException(
"Failed to retrieve message from the database.", e);
} finally {
if (p != null) {
try {
p.close();
} catch (SQLException e) {
log.log(Level.WARNING,
"Could not close ostensibly open statement.", e);

}
}
if (c != null) {
try {
c.close();

} catch (SQLException e) {
log.log(Level.WARNING,
"Could not close ostensibly open connection.”, e);

}

return message;

CHAPTER 1 " AN INTRODUCTION TO HIBERNATE 3

While some of this can be trimmed down—for example, the acquisition of a connection is
more likely to be done in a single line from a DataSource—there is still a lot of boilerplate code
here. Entering this manually is tedious and error prone.

EJBs As a Persistence Solution

So why not just use EJBs to retrieve data? Entity Beans are, after all, designed to represent,
store, and retrieve data in the database.

Strictly speaking, an Entity Bean is permitted two types of persistence in an EJB server:
Bean-Managed Persistence (BMP) and Container-Managed Persistence (CMP). In BMP, the
bean itself is responsible for carrying out all of the Structured Query Language (SQL) associ-
ated with storing and retrieving its data—in other words, it requires the author to create the
appropriate JDBC logic complete with all the boilerplate in Listing 1-3. CMP, on the other
hand, requires the container to carry out the work of storing and retrieving the bean data.
So why doesn’t that solve the problem? Here are just a few of the reasons:

e CMP Entity Beans require a one-to-one mapping to database tables.
e They are (by reputation at least) slow.
e Someone has to determine which bean field maps to which table column.

¢ They require special method names. If these are not followed correctly, they will fail
silently.

» Entity Beans have to reside within a J2EE application server environment—they are a
heavyweight solution.

* They cannot readily be extracted as “general purpose” components for other applica-
tions.

e They can't be serializable.

e They rarely exist as portable components to be dropped into a foreign application—you
generally have to roll your own EJB solution.

Hibernate As a Persistence Solution

Hibernate addresses a lot of these points, or alleviates some of the pain where it can’t, so we’ll
address the points in turn.

Hibernate does not require you to map one POJO to one table. APOJO can be constructed
out of a selection of table columns, or several POJOs can be persisted into a single table.

Though there is some performance overhead while Hibernate starts up and processes its
configuration files, it is generally perceived as being a fast tool. This is very hard to quantify,
and, to some extent, the poor reputation of Entity Beans may have been earned more from the
mistakes of those designing and deploying such applications than on its own merits. As with
all performance questions, you should carry out tests rather than rely on anecdotal evidence.

CHAPTER 1 " AN INTRODUCTION TO HIBERNATE 3

In Hibernate it is possible, but not necessary, to specify the mappings at deployment
time. The EJB solution ensures portability of applications across environments, but the Hiber-
nate approach tends to reduce the pain of deploying an application to a new environment.

Hibernate persistence has no requirement for a J2EE application server or any other spe-
cial environment. It is, therefore, a much more suitable solution for stand-alone applications,
for client-side application storage, and other environments where a J2EE server is not imme-
diately available.

Hibernate uses POJOs that can very easily and naturally be generalized for use in other
applications. There is no direct dependency upon the Hibernate libraries so the POJO can be
put to any use that does not require persistence—or can be persisted using any other POJO
“friendly” mechanism.

Hibernate presents no problems when handling serializable POJOs.

Finally, there is a very large body of preexisting code. Any Java object capable of being
persisted to a database is a candidate for Hibernate persistence. Therefore, Hibernate is an
excellent solution to choose when adding a standard persistence layer to an application that
uses an ad hoc solution, or which has not yet had database persistence incorporated into it.
Furthermore, by selecting Hibernate persistence, you are not tying yourself to any particular
design decisions for the business objects in your application.

A Hibernate Hello World Example

Listing 1-4 shows how much less boilerplate is required with Hibernate than with the con-
nected approach in Listing 1-3.

Listing 1-4. The Hibernate Approach to Retrieving Our POJO

public static Motd getMotd(int messageId)
throws MotdException
{
SessionFactory sessions =
new Configuration().configure().buildSessionFactory();
Session session = sessions.openSession();
Transaction tx = null;

try {
tx = session.beginTransaction();

Motd motd =
(Motd)session.get(Motd.class,
new Integer(messageld));

tx.commit();
tx = null;
return motd;
} catch (HibernateException e) {

CHAPTER 1 " AN INTRODUCTION TO HIBERNATE 3

if (tx != null) tx.rollback();
log.log(Level .SEVERE, "Could not acquire message", e);
throw new MotdException(
"Failed to retrieve message from the database.",e);
} finally {
session.close();
}
}

Even for this trivial example there would be a further reduction in the amount of code
required in a real deployment—particularly in an application-server environment. The
SessionFactory would normally be created elsewhere and made available to the application
as a Java Native Directory Interface (JNDI) resource. It is particularly interesting that because
this object is keyed on its identifier, we can carry out all of the SQL of Listing 1-4, along with
the population of the object from the result set using the single line

Motd motd = (Motd)session.get(Motd.class, new Integer(messageld));

When more complex queries that do not directly involve the primary key are required,
some SQL (or rather, HQL [the Hibernate Query Language]) is required, but the work of popu-
lating objects is permanently eradicated.

Some of the additional code in our Hibernate 3 example actually provides functionality
(transactionality and caching) beyond that of the connected example. In addition, we have
greatly reduced the amount of error-handling logic required.

Mappings

Of course there is more to it than this—Hibernate needs something to tell it which tables relate
to which objects (the information is actually provided in an XML-mapping file). But while some
tools inflict vast, poorly documented XML configuration files on their users, Hibernate offers a
breath of fresh air; you create and associate a small, clear mapping file with each of the POJOs
that you wish to map into the database. You're permitted to use a single monolithic configura-
tion file if you prefer, but it’s neither compulsory nor encouraged.

A Document Type Definition (DTD) is provided for all Hibernate’s configuration files, so
with a good XML editor you should be able to take advantage of autocompletion and autovali-
dation of the files as you create them. A number of tools allow the automated creation of the
mapping files, and Java 5 annotations can be used to replace them entirely.

Listing 1-5 shows the file mapping our Motd POJO into the database.

Listing 1-5. The XML File Mapping Our POJO to the Database

<?xml version="1.0"?>

<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

10

CHAPTER 1 " AN INTRODUCTION TO HIBERNATE 3

<hibernate-mapping>
<class name="Motd" table="Motd">
<id name="id" type="int" column="id">
<generator class="native"/>
</id>
<property name="message" column="message" type="string"/>
</class>
</hibernate-mapping>

It would be reasonable to ask if the complexity has simply been moved from the applica-
tion code into the XML-mapping file. But, in fact, this isn’t really the case for several reasons.

First, the XML file is much easier to edit than a complex population of a POJO from a
result set.

Second, we have still done away with the complicated error handling that was required
with the connected approach. This is probably the weakest reason, however, since there are
various techniques to minimize this without resorting to Hibernate.

Third, finally, and most importantly, if the POJO provides bean-like property access meth-
ods and a default constructor, then tools provided with Hibernate allow the direct generation
of a mapping file. We will discuss the use of these tools in depth in Chapter 10.

Database Generation

If you are creating a new Hibernate application around an existing database, creating the
database schema is not an issue; it is presented to you on a platter. If you are starting a new
application, you will need to create the schema, the POJOs, and the mapping directly.

Yet again, there is a tool to make life easy for you. The SchemaExport tool allows a database
schema to be generated for your database directly from the mapping file. This is even better
than it sounds! Hibernate comes with intimate knowledge of various different dialects of SQL,
so the schema will be tailored to your particular database software—or can be generated for
each different database to which you want to deploy your application.

The generation of a SQL script to create your database schema is similar to the generation
of the mapping file from the POJO:

java org.hibernate.tool.hbm2ddl.SchemaExport Motd.hbm.xml

Bootstrapping Your Configuration

You've probably now realized one of the things we really like about Hibernate—if you have any
one of the three things you need (POJOs, schema, mapping), you can generate the other two
without having to write them from scratch.

Figure 1-1 shows the various ways in which files and databases can be created:

