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Preface

This manual is designed to supplement the exercises and examples in Statistical Data
Analytics: Foundations for Data Mining, Informatics, and Knowledge Discovery (John
Wiley & Sons, Ltd) by providing solutions for end-of-chapter exercises.

In many cases, computer code using the R statistical environment (R Core Team 2014)
is employed to complete part or all of the solution, mirroring use of this statistical pack-
age in the original text. The program operates on Windows®, Apple OS, and Linux systems.
At the time of this writing, the version used is 3.1.0, employing 64-bit format. The bulk of
the R material in this manual was prepared from that version. The R code is not intended
to be the most efficient way to program the desired operations, but it will help illustrate a
plausible approach for acquisition of the solution. For more on R, see Appendix B of the
main text, the useful background sources by Dalgaard (2008) or Verzani (2005), the concise
online guide by Owen (http://cran.r-project.org/doc/contrib/Owen-TheRGuide.pdf), and of
course the main Comprehensive R Archive Network (CRAN) website and its online manual
at http://cran.r-project.org/doc/manuals/R-intro.html.

Instructors of classes adopting Statistical Data Analytics as a required text may employ
materials herein for classroom use. Otherwise, no part of this material may be reproduced,
stored in a retrieval system, or transcribed in any form or by any means – electronic, online,
mechanical, photoreproduction, recording, or scanning – without the prior written consent of
the author and John Wiley & Sons, Ltd.

Walter W. Piegorsch
Tucson, Arizona

http://cran.r-project.org/doc/contrib/Owen-TheRGuide.pdf
http://cran.r-project.org/doc/manuals/R-intro.html
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Data analytics and data mining

Exercise Solutions

1.1 Besides the references to bioinformatics, medical informatics, ecoinformatics (which
focuses on ecological informatics), geoinformatics, and socioinformatics made in the
textbook, one can find mention of nursing informatics and healthcare informatics
(offshoots of medical informatics), chemoinformatics (or cheminformatics), econoin-
formatics (also called business informatics), technoinformatics (which seems a bit
ambiguous, actually), molecular informatics, etc.

1.2 For example, in environmental research, a study of pollution in Canadian streams,
ponds, and lakes exposed to industrial effluents mined large numbers of tadpoles –
of which there was no shortage – to examine their DNA for damage due to the toxic
exposure (Ralph and Petras, 1997). Increases in DNA damage were seen as markers
for potential ecological damage.

1.3 The database mentioned in Exercise 1.2 involved populations of tadpoles in
streams, ponds, and lakes throughout southern Ontario. Measured were the average
length-to-width ratios in DNA fragments from 25 of each tadpole’s peripheral blood
erythrocytes. The target population was all tadpoles living in these bodies of water
who could possibly be exposed to the effluent. The sampling frame was all tadpoles
living in the particular bodies of water actually sampled who could possibly be
exposed to the effluent.

1.4 (a) Individual-level distortion occurs in all the sorts of situations mentioned: data col-
lection errors, data entry errors with misplaced or missing decimal points, trans-
posed digits, incorrect rounding errors, etc. Missing data is also a possibility, along
with impossible classification combinations such as ‘age=4/children=2,’ etc.

Statistical Data Analytics: Foundations for Data Mining, Informatics, and Knowledge Discovery,
Solution Manual, First Edition. Walter W. Piegorsch.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
www.wiley.com/go/piegorsch/data_analytics

http://www.wiley.com/go/piegorsch/data_analytics


2 STATISTICAL DATA ANALYTICS

(b) Collective-level distortion may occur when the sampling frame and target
population are confused, e.g. collect data for responses in laboratory mammals
exposed to a toxin where inference is directed at another species immune to the
toxin, or a study of magazine buying habits among newborn children.

1.5 Neither: all customers where queried so it’s a complete census and there’s no distortion
(just poorly designed data acquisition).

1.6 As noted by Hand et al. (2000, p. 119) this is individual-level distortion.

1.7 This is convenience sampling: only students who happen to enter the Student Union or
main cafeteria while the questioners are present are sampled. The sampling could be
changed to sample only every kth student (after a random start; a form of ‘systematic
sampling’) or to choose via a (wholly) random mechanism whether or not a student is
sampled as s/he enters the building.

1.8 Yes, there is selection bias evident: whether or not a record is included in the database
depends on the values of the variables.

1.9 The physician only summarized whether temporal patterns occurred in the patients’
asthma onset when low-pressure weather fronts passed through the region. Thus this
was an example of statistical description. No attempts were made to inferentially
associate any connections between weather patterns and asthma onset.

1.10 As in Exercise 1.9, the physician only summarized proximity to construction sites and
asthma onset. This remains an example of statistical description. No attempts were
made to inferentially associate any patterns between construction sites and asthma
onset.

1.11 Since the geographer determined via statistical inference if a difference existed in
property loss due to the floods, this was a an example of statistical inference.
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Basic probability and statistical
distributions

Exercise Solutions

2.1 (a) The sample space is all possible non-negative integers: = {0, 1, 2,…}. One could
also say the space is all non-negative integers below some unknown upper bound,
M, but this then will define the sample space in terms of an unknown parameterM.

(b) The sample space is all possible positive real numbers:  = [0,∞). One could also
say the space is all positive real numbers below some unknown upper bound, 𝜏, but
this then will define the sample space in terms of an unknown parameter 𝜏.

(c) The sample space is all possible quantities of the form I + J∕100, where I and J
are non-negative integers:  = {0.00, 0.01, 0.02,…}.

(d) The sample space is all pairs of real numbers (x, y) with −180 ≤ x ≤ 180 and
−180 ≤ y ≤ 180 and where negative longitudes indicate westerly direction from
the Prime Meridian and negative latitudes indicate southernly direction from the
Equator. Either x or ymay also be represented in the traditional notation±D∘M′S′′,
i.e. in Degrees, Minutes, and Seconds of arc, where 0 ≤ D ≤ 90, 0 ≤ M ≤ 60, and
0 ≤ S ≤ 60.

2.2 (a) Discrete.

(b) Continuous.

(c) Discrete.

(d) Continuous.

Statistical Data Analytics: Foundations for Data Mining, Informatics, and Knowledge Discovery,
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4 STATISTICAL DATA ANALYTICS

(e) Discrete.

(f) Continuous.

(g) (Bivariate) continuous.

2.3 (a) No: violates
∑

m∈ f (m) = 1. (
∑

m∈ f (m) = 14∕12).

(b) Yes: 0 ≤ f (m) ≤ 1 and
∑

m∈ f (m) = 1.

(c) No: violates 0 ≤ f (m) ≤ 1 (f (6) = −0.3 < 0).

(d) Yes: clearly 0 ≤ f (m) ≤ 1 for any m ∈ {1, 2,… ,N}. Also, recall that∑N
m=1 m

2 = 1
6
N(N + 1)(2N + 1), so that

∑N
m=1 f (m) = 1.

(e) Yes: this is known as the logarithmic distribution or sometimes the log-series distri-
butionwith parameter 𝜋. Since 𝜋 ∈ (0, 1), we see log(1 − 𝜋) < 0 and so 0 ≤ f (m) ≤
1 for any m ∈ {1, 2,… ,∞}. Also, recall the Maclaurin series expansion (a Taylor
series expansion about zero) for

∑∞
m=1 𝜋

m∕m is − log(1 − 𝜋) for any 𝜋 ∈ (0, 1).
This shows immediately that

∑N
m=1 f (m) = 1.

2.4 (a) No. Integral of p.d.f., ∫ ∞
1 f (x)dx, diverges.

(b) No. Integral of p.d.f. is 1, but f (x) < 0 over x < 1.

(c) Yes. This is X ∼ Beta(𝛼, 2).

(d) From the hint: the plot shows a positive-valued, continuous, linearly increasing-to-𝛿
then linearly decreasing-to-𝜔 function over x ∈ (0, 𝜔). Simple integration shows
∫ 𝜔

0 f (x)dx = 1. So, this is a valid p.d.f., known as the Triangular distribution.

2.5 The Multiplication Rule (2c) gives P[ and ] = P[|]P[]. But as noted,
P[ and ] = P[ and ]. So, apply Rule (2c) to the latter term: P[ and ] =
P[|]P[]. Thus

P[|]P[] = P[|]P[]
Dividing by P[] (and assuming P[] ≠ 0) produces

P[|] = P[|]P[]
P[] ,

which is textbook Equation (2.1).

2.6 When X and Y are independent, we know fX,Y (x, y) = fX(x)fY (y). Thus the conditional
p.d.f. of X|Y becomes

fX|Y (x|y) = fX,Y (x, y)
fY (y)

=
fX(x)fY (y)
fY (y)

= fX(x),

which is just the marginal p.d.f. of X.

2.7 Given: constants a and b and a continuous random variable X ∼ fX(x). Assume all
integrals are taken over the pertinent support of X.
(a) E[a] = ∫ afX(x)dx = a ∫ fX(x)dx = (a)(1) = a.

(b) E[bX] = ∫ bxfX(x)dx = b ∫ xfX(x)dx = bE[X].
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(c) E[a + bX] = ∫ (a + bx)fX(x)dx = ∫ afX(x)dx + ∫ bxfX(x)dx = a + bE[X],
where the latter equality follows from the previous results in parts (2.7a) and (2.7b).

2.8 Given: X ∼ fX(x) with finite population mean 𝜇X , and finite population variance 𝜎2
X .

(a) 𝜎2
X = E[(X − 𝜇X)2] = E[X2] − 2𝜇XE[X] + E[𝜇2

X] = E[X2] − 2𝜇X𝜇X + 𝜇2
X =

E[X2] − 2𝜇2
X + 𝜇2

X = E[X2] − 𝜇2
X , as desired.

(b) From part (2.8a), 𝜎2
X = E[X2] − 𝜇2

X so add 𝜇2
X to both sides of the equation to find

E[X2] = 𝜇2
X + 𝜎2

X .

2.9 Given: constants a and b and a continuous random variable X ∼ fX(x) with finite
population mean 𝜇X and finite population variance 𝜎2

X .
(a) From Exercise 2.7a we know E[a] = a, so Var[a] = E[(a − E[a])2] = E(a − a)2] =

E[0] = 0. Thus, in effect, a constant possesses no variation.

(b) Applying Exercise 2.7b we see E[aX] = aE[X] = a𝜇X , so Var[aX] = E[(aX −
E[aX])2] = E[(aX−a𝜇X)2] = E[a2(X−𝜇X)2] = a2E[(X−𝜇X)2], which is clearly
just a2𝜎2

X .

(c) From part (2.8a) we see, in effect, that adding a constant to a random variable
adds no variability, so Var[a + bX] = Var[bX]. But then from part (2.9b) this is
Var[a + bX] = b2Var[X]

2.10 We have f (m) = 1
6
for all m = 1,… , 6. It is evident that E[X] = 3.5, so using Exercise

2.8a find the variance as Var[X] = E[X2] − E2[X] =
∑6

m=1 m
2
(
1
6

)
− (3.5)2 =

1
6

∑6
m=1 m

2 − 12.25. But recall as in Exercise 2.3d that
∑6

m=1 m
2 =

(
1
6

)
(6)(7)(13) =

91. This gives Var[X] = (91∕6) − 12.25 = 35∕12, as desired.

2.11 Given: X and Y are independent. Assume the continuous case (the discrete case
is similar) and that all pertinent integrals exist. We know Cov[X,Y] = E[(X − 𝜇X)
(Y − 𝜇Y )] = ∫ ∫ (x − 𝜇X)(y − 𝜇Y )fX,Y (x, y) dx dy. But under independence this is

Cov[X,Y] = ∫ ∫ (x − 𝜇X)(y − 𝜇Y )fX(x)fY (y) dx dy

= ∫ (y − 𝜇Y )fY (y)∫ (x − 𝜇X)fX(x) dx dy

= ∫ (y − 𝜇Y )fY (y)E[X − 𝜇X] dy

= E[X − 𝜇X]∫ (y − 𝜇Y )fY (y) dy .

But clearly E[X − 𝜇X] = E[X] − 𝜇X = 0 (the remaining integral with fY (y) will be the
same), so the covariance calculates to zero.

2.12 (a) For c(b) = E[{b(X − 𝜇X) + (Y − 𝜇Y )}2] find

c(b) = E[b2(X − 𝜇X)2 + 2b(X − 𝜇X)(Y − 𝜇Y ) + (Y − 𝜇Y )2]
= b2E[(X − 𝜇X)2] + 2bE[(X − 𝜇X)(Y − 𝜇Y )] + E[(Y − 𝜇Y )2]
= b2𝜎2

X + 2b𝜎XY + 𝜎2
Y
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(b) Notice that c(b) = E[{b(X − 𝜇X) + (Y − 𝜇Y )}2] is the expected value of a squared
quantity, so it must be nonnegative: c(b) ≥ 0.

(c) Recognizing c(b) as a quadratic polynomial in b, we see its leading coefficient, 𝜎2
X ,

is positive and so the parabola must be convex. But from part (2.12b) we know the
function is nonnegative. Thus it will either have one real root if it can be zero at
some b, or will have no real roots if it is strictly positive. In either case, it has no
more than one real root.

(d) The discriminant of a parabola with at most one real root cannot be positive. Here,
this translates to 4𝜎2

XY − 4𝜎2
X𝜎

2
Y = 4(𝜎2

XY − 𝜎2
X𝜎

2
Y ) ≤ 0.

(e) Divide by 4 across the inequality in part (2.12d) – note that the direction does not
change – to find 𝜎2

XY − 𝜎2
X𝜎

2
Y ≤ 0. That is, 𝜎2

XY ≤ 𝜎2
X𝜎

2
Y . Now take square roots

across the inequality: −𝜎X𝜎Y ≤ 𝜎XY ≤ 𝜎X𝜎Y . Dividing by the product of the
standard deviations (which are each defined to be positive, so again directions do
not change) gives the desired result: −1 ≤ 𝜌XY ≤ 1 (Casella and Berger, 2002,
Section 4.5).

2.13 From the Hint:

Var[Xi + Xj] = E[{(Xi + Xj) − (𝜇i + 𝜇j)}2]
= E[{(Xi − 𝜇i) + (Xj − 𝜇j)}2]
= E[{(Xi − 𝜇i)2 + 2(Xi − 𝜇i)(Xj − 𝜇j) + (Xj − 𝜇j)}2]
= E[{(Xi − 𝜇i)2] + 2E[(Xi − 𝜇i)(Xj − 𝜇j)] + E[(Xj − 𝜇j)}2]
= Var[Xi] + 2Cov[Xi,Xj] + Var[Xj].

2.14 X ∼ Bin(10, 0.2). Note the discrete nature of the binomial sample space here.
(a) P[X = 6] via R: dbinom(x=6, size=10, prob=.2) gives 0.0055.

(b) P[X ≤ 2] via R: pbinom(q=2, size=10, prob=.2) gives 0.6778.

(c) P[X ≥ 1] = 1 − P[X < 1] = 1 − P[X = 0] from the Complement Rule (2d), so via
R: 1-dbinom(x=0, size=10, prob=.2) gives 0.8926.

(d) P[2 ≤ X ≤ 6] = P[X ≤ 6] − P[X < 2] = P[X ≤ 6] − P[X ≤ 1], so via R:
pbinom(q=6,size=10,prob=.2) - pbinom(q=1,size=10,prob=.2)
gives 0.6233.

(e) P[2 < X < 6] = P[3 ≤ X ≤ 5] = P[X ≤ 5] − P[X ≤ 2], so via R:
pbinom(q=5,size=10,prob=.2) - pbinom(q=2,size=10,prob=.2)
gives 0.3158.
[One could also use sum(dbinom(x=3:5, size=10, prob=.2)).]

2.15 X ∼ Poisson(𝜆). Note the discrete nature of the Poisson sample space here.
(a) 𝜆 = 4.95: P[X = 3] via R is dpois(x=3, lambda=4.95) to find 0.1432.

(b) 𝜆 = 4.95: P[X > 0] = 1 − P[X ≤ 0] = 1 − P[X = 0] from the Complement Rule
(2d), so via R use 1-dpois(x=0, lambda=4.95) to find 0.9929.
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(c) 𝜆 = 13.65: P[4 < X ≤ 11] = P[5 ≤ X ≤ 11] = P[X ≤ 11] − P[X ≤ 4]. In R use
ppois(q=11,lambda=13.65) - ppois(q=4,lambda=13.65)
to find 0.2883.

(d) 𝜆 = 13.65: P[X ≥ 8.05] = 1 − P[X < 8.05] = 1 − P[X ≤ 8]. In R use
1 - ppois(q=8,lambda=13.65) to find 0.9265.

(e) 𝜆 = 0.55: P[X ≤ 4] via R is ppois(q=4, lambda=.55) to find 0.9997.

2.16 X ∼ Geom(𝜋). Assume that t and u are positive integers such that t > u. Similar to that
seen in Section 2.3.7, P[X ≥ t|X ≥ u] = P[X ≥ t]∕P[X ≥ u] = {1 − FX(t − 1)}∕{1 −
FX(u − 1)}. Now, the c.d.f. of X was given in Section 2.3.3 as FX(m) = 1 − (1 − 𝜋)m+1.
Thus P[X ≥ t|X ≥ u] = {1 − 1 + (1 − 𝜋)t−1+1}∕{1 − 1 + (1 − 𝜋)u−1+1} = (1 − 𝜋)t−u.
But this is clearly P[X ≥ t − u] = 1 − FX(t − u − 1) = (1 − 𝜋)t−u, which is again
a function only of t − u and illustrates the memoryless property of the Geometric
distribution.

2.17 Z ∼ N(0, 1)
(a) P[Z ≤ 2.63] via R is pnorm(q=2.63), or 0.9957.

(b) P[Z > 2.63] = 1 − P[Z ≤ 2.63], using the Complement Rule (2d), via R is
1-pnorm(q=2.63), i.e. 0.0043. Or, just subtract 1 from the answer in part
(2.17a).

(c) P[ |Z| ≤ 2.63] = 1 − 2P[Z > 2.63] using the symmetry of the standard normal.
From part (2.17b) this is 1 − (2)(0.0043) = 0.9914. (R gives it more precisely as
0.9914615.)

(d) P[ |Z| ≥ 2.63] = 1 − P[ |Z| < 2.63], using the Complement Rule (2d). From part
(2.17c) this is 1 − 0.9914615 = 0.0085385.

(e) The upper-2.5% standard normal critical point is z0.025 = 1.9600, via, e.g.
qnorm(p=0.025,lower=F) in R.

(f) The upper-5% standard normal critical point is z0.05 = 1.6449, via, e.g.
qnorm(p=0.05,lower=F) in R.

(g) The upper-0.5% standard normal critical point is z0.005 = 2.5758, via, e.g.
qnorm(p=0.005,lower=F) in R.

(h) The upper-1% standard normal critical point is z0.01 = 2.3263, via, e.g.
qnorm(p=0.01,lower=F) in R.

2.18 X ∼ N(𝜇, 𝜎2). In all cases, we can standardize to Z = (X − 𝜇)∕𝜎 ∼ N(0, 1) and find the
probabilities as in Exercise 2.17. In R, however, we can also enter 𝜇 and 𝜎 directly into
the qnorm() function.

(a) 𝜇 = 1.3 and 𝜎2 = 16: P[X ≤ 11.82] is found in R via
pnorm(q=11.82, mean=1.3, sd=4),
or 0.9957. (By the way, notice z = [11.82 − 1.3]∕4 = 2.63.)
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(b) 𝜇 = −2.5 and 𝜎2 = 9. Find P[X > 5.39] a number of different ways. Fastest is
to notice that z = [5.39 − (−2.5)]∕3 = 2.63. So P[X > 5.39] = P[Z > 2.63] = 1 −
0.9957 = 0.0043 from Exercise 2.17b.

(c) 𝜇 = 1.3 and 𝜎2 = 16: notice z = [11.82 − 1.3]∕4 = 2.63, so P[ |X| ≤ 11.82] =
P[ |Z| ≤ 2.63] = 0.9914615 from Exercise 2.17c.

(d) 𝜇 = −2.5 and 𝜎2 = 9. Find P[ |X| ≥ 5.39] = P[ |Z| ≥ 2.63], which from Exercise
2.17d is 1 − 0.9914615 = 0.0085385.

2.19 Xi ∼ i.i.d. Poisson(2.7), i = 1,… , 100. Calculate P[X > 2].
(a) From the Hint: P[X > a] = P

[∑n
i=1 Xi > na

]
for n = 100. But, the closure of the

Poisson distribution tells us that
∑n

i=1 Xi ∼ Poisson
(∑n

i=1 𝜆i
)
= Poisson(270).

Thus P[X > 2] = P
[∑n

i=1 Xi > 200
]
= 1 − P

[∑n
i=1 Xi ≤ 199

]
can be found in

R from ppois(q=199,lambda=270), which calculates to 3.5544 × 10−6.
Subtract this from 1.0 to reach the final answer.

(b) From the Central Limit Theorem, Z = (X − 𝜆)∕
√
𝜆∕n ∼̇ N(0, 1). So, P[X >

2] = P[Z > (2 − 2.7)∕
√
0.027] = P[Z > −4.2601] = 1 − P[Z ≤ −4.2601] ≈

1 − Φ(−4.2601). In R, this requires pnorm(q=-4.2601) or 1.0217 × 10−5.
Subtract this from 1.0 to reach the final answer.

2.20 Entropy is defined as H(fX) = −E[log{fX(X)}]. Use this in the following:
(a) X ∼ Bin(1, 𝜋). (Use log2 in place of the natural logarithm.)

H(fX) = −E[log2{fX(X)}]
= −E

[
log2

{
𝜋X(1 − 𝜋)1−X

}]
= −E[X log2(𝜋)] − E[(1 − X) log2(1 − 𝜋)]
= − log2(𝜋)E[X] − log2(1 − 𝜋)E[(1 − X)]
= −𝜋 log2(𝜋) − (1 − 𝜋) log2(1 − 𝜋).

(b) X ∼ U(0, 𝜃). Being careful with the notation, here log fX(X) = log{𝜃−1I(0,𝜃)(X)}.
The expected value is an integral taken over the range of the data, where the indi-
cator function will always be 1, thus

H(fX) = −E[log{𝜃−1I(0,𝜃)(X)}]

= −∫
𝜃

0
𝜃−1 log(𝜃−1)dx = −𝜃−1 log(𝜃−1)∫

𝜃

0
dx

= −𝜃

𝜃
log(𝜃−1) = − log(𝜃−1) = log(𝜃).

In particular, at 𝜃 = 1, the entropy is zero. [In fact, one needs to be careful: if 𝜃 ∈
(0, 1), the entropy is negative.]

(c) X ∼ Exp(𝛽) for 𝛽 > 0.

H(fX) = −E[log{𝛽−1 exp(−X∕𝛽)}]
= −E[log{𝛽−1} − X∕𝛽]
= − log{𝛽−1} + 𝛽−1E[X]
= log(𝛽) + 𝛽−1𝛽
= 1 + log(𝛽).
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A plot follows in Figure 2.1. Notice the increase as 𝛽 rises.
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Figure 2.1 Entropy function for X ∼ Exp(𝛽) as a function of 𝛽.

(d) X ∼ N(0, 𝜎2).

H(fX) = −E[log{(2𝜋𝜎2)−1∕2 exp(− 1
2
X∕𝜎2)}]

= −E[− 1
2
log(2𝜋𝜎2) − 1

2
(X∕𝜎2)]

= 1
2
log(2𝜋𝜎2) + 1

2
E[X]∕𝜎2

= 1
2
log(2𝜋𝜎2) + 0

= 1
2
log(2𝜋𝜎2).

A plot follows in Figure 2.2. Notice the increase as the standard deviation rises.
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Figure 2.2 Entropy function for X ∼ N(0, 𝜎2) as a function of the standard deviation 𝜎.
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2.21 X ∼ 𝜒2(𝜈)
(a) 𝜈 = 8: P[X > 16.38] = 1 − P[X ≤ 16.38] via R is

1-pchisq(q=16.38,df=8), or 0.0373.

(b) 𝜈 = 10: P[X ≤ 1.8] via R is pchisq(q=1.8,df=10), or 0.0023.

(c) 𝜈 = 10: P[X > 17.1] = 1 − P[X ≤ 17.1] via R is
1-pchisq(q=17.1,df=10), or 0.0722.

(d) 𝜈 = 10: P[1.8 ≤ X ≤ 17.1] = P[X ≤ 17.1] − P[X < 1.8] via R is
pchisq(q=17.1,df=10)-pchisq(q=1.8,df=10), or 0.9255.

(e) The upper-1% 𝜒2(5) critical point is 𝜒2
0.01(5) = 15.0863, via, e.g.

qchisq(p=0.01,df=5,lower=F) in R.

(f) The upper-5% 𝜒2(5) critical point is 𝜒2
0.05(5) = 11.0705, via, e.g.

qchisq(p=0.05,df=5,lower=F) in R.

(g) The upper-5% 𝜒2(15) critical point is 𝜒2
0.05(15) = 24.9958, via, e.g.

qchisq(p=0.05,df=15,lower=F) in R.

(h) The upper-5% 𝜒2(25) critical point is 𝜒2
0.05(25) = 37.6525, via, e.g.

qchisq(p=0.05,df=25,lower=F) in R.

2.22 T ∼ t(𝜈).
(a) 𝜈 = 4: P[T ≤ 2.63] via R is pt(q=2.63,df=4), or 0.9709.

(b) 𝜈 = 4: P[T > 2.63] = 1 − P[T ≤ 2.63], using the Complement Rule (2d), via R is
1-pt(q=2.63,df=4), or 0.0291. Or, just subtract 1 from the answer in part
(2.22a).

(c) 𝜈 = 13: P[ |T| ≤ 2.63] = 1 − 2P[T > 2.63] using the symmetry of the
t-distribution. Use R to find P[T > 2.63] = 0.0104 via 1-pt(q=2.63,df=13).
Then P[ |T| ≤ 2.63] = 1 − (2)(0.0104) = 0.9792.

(d) 𝜈 = 13: P[ |T| ≥ 2.63] = 1 − P[ |T| < 2.63], using the Complement Rule (2d).
Using part (2.22c) this is 1 − 0.9792 = 0.0208.

(e) The upper-5% t(4) critical point is t0.05(4) = 2.1318, via, e.g.
qt(p=0.05,df=4,lower=F) in R.

(f) The upper-5% t(11) critical point is t0.05(11) = 1.7959, via, e.g.
qt(p=0.05,df=11,lower=F) in R.

(g) The upper-5% t(33) critical point is t0.05(33) = 1.6924, via, e.g.
qt(p=0.05,df=33,lower=F) in R.

(h) The upper-5% t(88) critical point is t0.05(88) = 1.6624, via, e.g.
qt(p=0.05,df=88,lower=F) in R.

2.23 Recall that t2(𝜈) = F(1, 𝜈). Thus if we desire the upper critical point t𝛼(𝜈), we could
find it as t𝛼(𝜈) =

√
F2𝛼(1, 𝜈) . (After squaring, the upper tail area in the F gains contri-

butions from both the lower and upper tails in the t. So, for a single upper tail point in
the t, we check the upper-2𝛼 critical point from the F.)
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2.24 F ∼ F(𝜈1, 𝜈2).
(a) View F as the ratio of two indep. 𝜒2 random variables over their d.f.:

Ui ∼ indep.𝜒2(𝜈i) (i = 1, 2). Thus F = (U1∕𝜈1)∕(U2∕𝜈2). But then clearly
1∕F = (U2∕𝜈2)∕(U1∕𝜈1) is also a ratio of indep. 𝜒2 random variables over their
d.f., so we can write 1∕F ∼ F(𝜈2, 𝜈1).

(b) By definition F𝛼(𝜈1, 𝜈2) satisfies P[F > F𝛼(𝜈1, 𝜈2)] = 𝛼. By taking reciprocals (and
reversing direction of the inequality) this is then P[1∕F < 1∕F𝛼(𝜈1, 𝜈2)] = 𝛼. But
from part (2.24a) we know V = 1∕F ∼ F(𝜈2, 𝜈1). So, write P[V < 1∕F𝛼(𝜈1, 𝜈2)] =
𝛼. Now apply the Complement Rule (2d): P[V ≥ 1∕F𝛼(𝜈1, 𝜈2)] = 1 − 𝛼. This says
that 1∕F𝛼(𝜈1, 𝜈2) satisfies the definition of the upper-(1 − 𝛼) critical point of V . But
V ∼ F(𝜈2, 𝜈1), so its upper-(1 − 𝛼) critical point is more conventionally denoted as
F1−𝛼(𝜈2, 𝜈1). This establishes the identity 1∕F𝛼(𝜈1, 𝜈2) = F1−𝛼(𝜈2, 𝜈1). Lastly, take
reciprocals to achieve the desired result.

2.25 F ∼ F(𝜈1, 𝜈2).
(a) 𝜈1 = 13, 𝜈2 = 28: P[F ≤ 1.9] via R is pf(q=1.9,df1=13,df2=28), or 0.9245.

(b) 𝜈1 = 21, 𝜈2 = 9: P[F > 3.4] = 1 − P[F ≤ 3.4], using the Complement Rule
(2d), via R is 1-pf(q=3.4,df1=21,df2=9), or 0.0315. Or, one can also use
pf(q=3.4,df1=21,df2=9,lower=F).

(c) 𝜈1 = 1, 𝜈2 = 4: P[F ≥ 6.2] = 1 − P[F < 6.2], using the Complement Rule (2d),
via R is 1-pf(q=6.2,df1=1,df2=4), or 0.0315. [One could also appeal to the
relationship t2(4) = F(1, 4).]

(d) The upper-2% F(1, 4) critical point is F0.02(1, 4) = 14.0396, via, e.g.
qf(p=0.02,df1=1,df2=4,lower=F) in R.

(e) The upper-5% F(1, 4) critical point is F0.05(1, 4) = 7.7087, via, e.g.
qf(p=0.05,df1=1,df2=4,lower=F) in R.

(f) The upper-5% F(8, 7) critical point is F0.05(8, 7) = 3.7257, via, e.g.
qf(p=0.05,df1=8,df2=7,lower=F) in R.

(g) The upper-1% F(3, 49) critical point is F0.01(3, 49) = 4.2084, via, e.g.
qf(p=0.01,df1=3,df2=49,lower=F) in R.

2.26 X ∼ Poisson(𝜆). Write the p.m.f. as

fX(m) =
𝜆m e−𝜆
m!

I{0,1,…}(m)

= exp

{
m log(𝜆) − 𝜆 + log

[
I{0,1,…}(m)

m!

]}
.

Decomposed into this form, the natural parameter is 𝜃 = log(𝜆), and the dispersion
parameter is (trivially) fixed at 𝜑 = 1. Then, fX(m) does satisfy the exponential family
characterization, with a(𝜑) = 1, b(𝜃) = e𝜃 , and

c(m, 1) = log

[
I{0,1,…}(m)

m!

]
.
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2.27 X ∼ NB(r, 𝜋).
(a) Complete part (2.27b) first and then simply fix r = 4.

(b) For known positive integer r, write the p.m.f. as

fX(m) =
(
r + m − 1

m

)
𝜋r (1 − 𝜋)m I{0,1,…}(m)

= exp

{
m log(1 − 𝜋) + r log(𝜋) + log

[(
r + m − 1

m

)
I{0,1,…}(m)

]}
.

Decomposed into this form, the natural parameter is 𝜃 = log(1 − 𝜋), and the disper-
sion parameter is (trivially) fixed at 𝜑 = 1. Then, fX(m) does satisfy the exponential
family characterization, with a(𝜑) = 1, b(𝜃) = −r log

(
1 − e𝜃

)
, and

c(m, 1) = log

[(
r + m − 1

m

)
I{0,1,…}(m)

]
.

(c) Since we know X ∼ Geom(𝜋) = NB(1, 𝜋), part (2.27b) tells us that the Geometric
p.m.f. must also be a member of the exponential family.

(d) For the redefined parameterization in textbook Equation (2.25), set 𝛿 = 2. Then,
write the p.m.f. as

fX(m) =
Γ(m + 1

2
)

m!
√
𝜋

(
2𝜇

1 + 2𝜇

)m
1√

1 + 2𝜇
I{0,1,…}(m)

= exp

{
m log

(
2𝜇

1 + 2𝜇

)
− 1

2
log(1 + 2𝜇)

+ log

[
Γ(m + 1

2
)

m!
√
𝜋

I{0,1,…}(m)

]}
.

Decomposed into this form, the natural parameter is 𝜃 = log{2𝜇∕(1 + 2𝜇)}, and
the dispersion parameter is (trivially) fixed at 𝜑 = 1. Then, fX(m) does satisfy the
exponential family characterization, with a(𝜑) = 1, b(𝜃) = 1

2
log(1 − e𝜃), and

c(m, 1) = log

[
Γ(m + 1

2
)

m!
√
𝜋

I{0,1,…}(m)

]
.

2.28 X ∼ Exp(𝛽). Write the p.m.f. as

fX(x) =
1
𝛽
e−x∕𝛽 I(0,∞)(x)

= exp

{
− x
𝛽
− log(𝛽) + log[I(0,∞)(x)]

}
.

Decomposed into this form, the natural parameter is 𝜃 = −1∕𝛽 (which, notice, is nega-
tive), and the dispersion parameter is (trivially) fixed at 𝜑 = 1. Then, the simple expo-
nential p.d.f. does satisfy the larger exponential family characterization, with a(𝜑) = 1,
b(𝜃) = − log(−𝜃) (again, recall that 𝜃 < 0), and c(x, 1) = log[I(0,∞)(x)].
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2.29 The Pareto distribution has p.d.f.

fX(x) =
𝛽𝛾𝛽

x𝛽+1
I(𝛾,∞)(x)

where 𝛽 > 0 and 𝛾 > 0.
(a) E[X] = ∫ ∞

𝛾
𝛽𝛾𝛽(x)(x−𝛽−1) dx. Straightforward integration gives

E[X] = 𝛽𝛾𝛽 ∫
∞

𝛾

x−𝛽 dx

= 𝛽𝛾𝛽
[
x−𝛽+1

1 − 𝛽

]∞
𝛾

dx

= 𝛽𝛾𝛽

1 − 𝛽

(
lim
x→∞

x1−𝛽 − 𝛾1−𝛽
)

in which the limit diverges unless we restrict 𝛽 > 1. Doing so produces E[X] =
𝛾𝛽∕(𝛽 − 1).

(b) Recall that Var[X] = E[X2] − E2[X]. So, consider

E[X2] = ∫
∞

𝛾

𝛽𝛾𝛽(x2)(x−𝛽−1) dx.

Similar integration calculations as in part (2.29a) lead to E[X2] = (2 −
𝛽)−1𝛽𝛾𝛽

(
limx→∞ x2−𝛽 − 𝛾2−𝛽

)
. Here the limit diverges unless we restrict

𝛽 > 2. Doing so gives E[X] = 𝛾2𝛽∕(𝛽 − 2). Combining this with E[X] in part
(2.29a) yields Var[X] = 𝛾2𝛽∕(𝛽 − 2) − 𝛾2𝛽2∕(𝛽 − 1)2. Simplifying produces

Var[X] = 𝛾2𝛽

(𝛽 − 1)2(𝛽 − 2)
.

(c) Fix 𝛾 > 0. Write the p.d.f. as

fX(x) =
𝛽𝛾𝛽

x𝛽+1
I(𝛾,∞)(x)

= exp
{
−𝛽 log(x) + log(𝛽𝛾𝛽) − log(x) + log[I(𝛾,∞)(x)]

}
.

Decomposed into this form, the Pareto p.d.f. does not correspond to the simple
exponential family in textbook Equation (2.42), but it does correspond to the
extended exponential family mentioned immediately thereafter:

fX(x) = exp

{
t(x)𝜃 − b(𝜃)

a(𝜑)
+ c(x, 𝜑)

}
.

Then, with t(x) = log(x) the natural parameter is 𝜃 = −𝛽, and the dispersion param-
eter is (trivially) fixed at 𝜑 = 1. This satisfies the extended exponential family
characterization, with a(𝜑) = 1, b(𝜃) = − log(−𝜃𝛾−𝜃), and

c(x, 1) = − log(x) + log[I(𝛾,∞)(x)].


