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Preface

The autumn sun shines on Sunnibergbrücke at Klosters in the canton of Graubünden in
south-western Switzerland. On the cover picture one can sense how the bridge elegantly
migrates through the landscape. The steel and concrete structure and the architecture merge
into one of the most elegant buildings of our time. The engineer who designed the bridge is
named Christian Menn. It is late in October 2009, and a group of Swedish students sketch,
photograph and enthusiastically discuss the shape and the structural behaviour of the bridge.
In a week they will start a course in structural mechanics.
Structural mechanics is the branch of physics that describes how different materials, which

have been shaped and joined together to structures, carry their loads. Knowledge on the modes
of action of these structures can be used in different contexts and for different purposes. The
Roman architect and engineer Vitruvius, who lived during the first century BC summarises
in the work De architectura libri decem (‘Ten books on architecture’) the art of building
with the three classical notions of firmitas, utilitas and venustas (strength, functionality and
beauty). Engineering of our time has basically the same goal. It is about utilising the knowl-
edge and practices of our time in a creative process where sustainable and efficient, functional
and expressive buildings are designed.
At an early design stage a structural engineer needs to be trained to see how to efficiently

use material and shape to provide the construction with stability, stiffness and strength. Using
simple models, structural behaviour can be evaluated and cross-section sizes estimated. As
the design develops the need for precision of the analyses increases. In all this, the ability to
formulate computational models and to carry out simulations is of crucial importance.
A useful computationalmodel should be simple enough to be easily manageable and, simul-

taneously, sufficiently complex to provide an adequate accuracy. In recent years, the finite
element method has become the dominant method for formulating computational models and
conducting analyses. The FE method is based on expressing forces and deformations as dis-
crete entities in a chosen and representative set of degrees of freedom. Between the degrees
of freedom simple bodies (elements) are placed and together they constitute the structure to
be modelled. Each element may describe a unique mode of action and can be given a specific
geometry. In all this, FEM provides opportunities for both accurate analyses of structures with
complex geometry and material behaviour, and for quick estimates in early design stages.
Here, we present a new textbook in structural mechanics, dealing with the modelling

and analysis of trusses and frames. The textbook is based on the finite element method.
Gradually, an understanding of basic elements of structural mechanics – springs, bars, beams,
foundations and so on is built up. Methods for assembling them into complex load-bearing
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structures are presented, and tools for analysis and simulation are provided. The book has
been limited to treating trusses and frames in two and three dimensions. To demonstrate
the generality of the methodology the book also has a chapter, ‘Flows in Networks’, that
addresses other areas of applied mechanics, including thermal conduction and electrical flow.
The textbook supports three kinds of learning outcome:

• Knowledge of basic theory of structural mechanics. The textbook has a structure that high-
lights the theory as a whole. Different modes of action in structural mechanics are described
in a common format where basic concepts and relationships recur at different scale levels.
One aim is to highlight the mechanisms that determine how structures carry their loads
and how we by this knowledge can manipulate the distribution of internal forces as well as
patterns of deformations.

• Skills in modelling and analysis of structures. Being able to describe a structure by a math-
ematical model and perform computations is one of the most important engineering skills.
The matrix-based presentation of the textbook practices a computation methodology that
is general and can be applied for phenomena and geometries of structural mechanics as
well as for simulations in a variety of engineering areas far beyond the textbook limitations.
Through exercises and with support from the computer programMatlab/CALFEM students
in a course formulate about 30 computer algorithms of their own, each with increasing
complexity.

• Ability to evaluate and optimise designs proposed. Having an eye trained for patterns of
forces and deformations helps to evaluate and improve the efficiency of structural designs.
This facilitates modification of the design of a structure in the desired direction, thus creating
an efficient structural behaviour, for example by reducing bending in the favour of axial only
forces – compression and tension.

The textbook is intended for engineering students at the bachelor level. The presentation
assumes knowledge of calculus in one variable, linear algebra, classical mechanics and basic
solid/structural mechanics. Chapters 1–5 are a unit and should be read in the order they appear,
while Chapters 6–10 are independent of each other and can be read in any order. For a limited
course, we recommend primarily Chapters 1–6.
The Division of Structural Mechanics at Lund University has a long tradition in the devel-

opment of teaching materials in structural mechanics and the finite element method. A key
person behind this development is Hans Petersson who came to the division as a professor
in 1977. Within a few years, a group of young Ph.D. students and teachers gathered around
Hans, taking note of his knowledge and absorbed his enthusiasm about teaching and its tools.
We were two of them. Earlier, the framework of the computer program CALFEM (Computer
Aided Learning of the Finite Element Method) was developed, and based on his concept the
textbook ‘Konstruktionsberäkningar med dator’ (Design calculations using a computer) was
written with Sven Thelandersson as author. In this spirit, the division has continued to develop
teaching materials, and approaches. In more than 30 years time, both ideas and collaborators
spread. CALFEM is today a toolbox to the computer programMatlab and is usedworldwide. In
Sweden, collaboration between Lund University, Chalmers and KTH Royal Institute of Tech-
nology has been established, and from the site www.structarch.org, CALFEM as well as other
software for structural mechanics analysis and conceptual design can be downloaded free of
charge.

http://www.structarch.org
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The contents of this textbook have been developed over many years and there are many stu-
dents and colleagues at Lund University, Chalmers and Linnæus University, who contributed
with ideas, suggestions, corrections and translations during the creation of the book.We would
particularly like to mention Professor Per-Erik Austrell, Dr. Henrik Danielsson, Dr. Susanne
Heyden and Professor Kent Persson at Structural Mechanics in Lund, Dr. Mats Ander and
Dr. Peter Möller at Applied Mechanics at Chalmers and Ms. Louise Blyberg and Profes-
sor Anders Olsson at Linnæus University in Växjö. Professor Emeritus Bengt Åkesson at
Chalmers has with great precision and sharpness examined facts of the manuscript and given
us reason to examine and modify the conceptual choices and formulations. Dr. Samar Malek
has thoroughly proofread the English version of the text. Mr. Bo Zadig at StructuralMechanics
in Lund has skilfully drawn the figures. Sincere thanks to all of you for your commitment and
wise observations. And to Professor Göran Sandberg who with his character, his knowledge
and in his role as head of the department has built and continues to build a creative envi-
ronment for the teaching and development of teaching concepts and tools. We want to thank
people at JohnWiley & Sons and their partners for cooperation and guidance. In particular we
are grateful to Eric Willner, Anne Hunt, Clive Lawson and Lincy Priya.
The textbook is also available in Swedish, with the reverse order of authors.

Karl-Gunnar Olsson and Ola Dahlblom
Gothenburg and Lund in October 2015
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1
Matrix Algebra

The method used in this textbook to formulate computational models is characterised by the
use of matrices. The different quantities – load, section force, stiffness and displacement – are
separated and gathered into groups of numbers. All load values are gathered in a load matrix
and all stiffnesses in a stiffness matrix. This is one of the primary strengths of the method.With
a matrix formulation, the formulae describing the relations between quantities are compact and
easy to view. Physical mechanisms and underlying principles become clear. We begin with a
short summary of the matrix algebra and the notations that are used.

1.1 Definitions

Amatrix consists of a set ofmatrix elements ordered in rows and columns. If thematrix consists
of only one column it is referred to as a column matrix and if it has only one row it is referred
to as a row matrix. Such matrices are one-dimensional and may also be referred to as vectors.
A vector is denoted by a lower case letter set in bold:

a =
⎡⎢⎢⎣
a1
a2
a3

⎤⎥⎥⎦ (1.1)

where a1, a2 and a3 are the components of the vector. A two-dimensionalmatrix is denoted by
a capital letter set in bold:

A =
⎡⎢⎢⎢⎣
A11 A12 A13
A21 A22 A23
A31 A32 A33
A41 A42 A43

⎤⎥⎥⎥⎦
; B =

⎡⎢⎢⎣
B11 B12 B13
B21 B22 B23
B31 B32 B33

⎤⎥⎥⎦ (1.2)

where A11, A12 and so on are elements of the matrix A. An arbitrary component of a matrix
is denoted Aij, where the first index refers to the row number and the second index to the
column number. The matrix A in (1.2) has the dimensions 4 × 3 and the matrix B has the
dimensions 3 × 3.

Structural Mechanics: Modelling and Analysis of Frames and Trusses, First Edition.
Karl-Gunnar Olsson and Ola Dahlblom.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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Since the number of rows and columns in B are equal, it is a square matrix. If it is only
the diagonal elements Bii that are different from 0, the matrix is a diagonal matrix. A diago-
nal matrix where all the diagonal elements are equal to 1 is an identity matrix and is usually
denoted I. The transposed matrix AT of a matrixA is formed by letting the rows of A become
columns of AT , that is the transpose of A in (1.2) is

AT =
⎡⎢⎢⎣
A11 A21 A31 A41
A12 A22 A32 A42
A13 A23 A33 A43

⎤⎥⎥⎦ (1.3)

A matrix A is symmetric if A = AT . Only square matrices can be symmetric. A matrix with
all elements equal to 0 is referred to as a zero matrix and is usually denoted 𝟎.

1.2 Addition and Subtraction

Matrices of equal dimensions can be added and subtracted. The result is a new matrix of the
same dimensions, where each element is the sum of or the difference between the correspond-
ing elements of the two matrices. If

A =
⎡⎢⎢⎣
A11 A12 A13
A21 A22 A23
A31 A32 A33

⎤⎥⎥⎦ ; B =
⎡⎢⎢⎣
B11 B12 B13
B21 B22 B23
B31 B32 B33

⎤⎥⎥⎦ (1.4)

the sum of A and B is given by
C = A + B (1.5)

where

C =
⎡⎢⎢⎣
A11 + B11 A12 + B12 A13 + B13
A21 + B21 A22 + B22 A23 + B23
A31 + B31 A32 + B32 A33 + B33

⎤⎥⎥⎦ (1.6)

and the difference between A and B is given by

D = A − B (1.7)

where

D =
⎡⎢⎢⎣
A11 − B11 A12 − B12 A13 − B13
A21 − B21 A22 − B22 A23 − B23
A31 − B31 A32 − B32 A33 − B33

⎤⎥⎥⎦ (1.8)

1.3 Multiplication

Multiplying a matrix A with a scalar c results in a matrix with the same dimensions as A and
where each element is the corresponding element of A multiplied by c, that is

cA =
⎡⎢⎢⎣
cA11 cA12 cA13
cA21 cA22 cA23
cA31 cA32 cA33

⎤⎥⎥⎦ (1.9)
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Multiplication between two matrices
C = AB (1.10)

can be performed only if the number of columns in A equals the number of rows in B. The
element Cij is then computed according to

Cij =
n∑

k=1
AikBkj (1.11)

For

A =
[
A11 A12
A21 A22

]
; B =

[
B11 B12
B21 B22

]
(1.12)

the product of the matrices, C = AB, is obtained from

C =
[
A11 A12
A21 A22

][
B11 B12
B21 B22

]
=
[
A11B11 + A12B21 A11B12 + A12B22
A21B11 + A22B21 A21B12 + A22B22

]
(1.13)

In general,
BA ≠ AB (1.14)

1.4 Determinant

For every quadratic matrix A (n × n), it is possible to compute a scalar value called a determi-
nant. For n = 1,

detA = A11 (1.15)

For n > 1, the determinant detA is computed according to the expression

detA =
n∑

k=1
(−1)i+kAik detMik (1.16)

where i is an arbitrary row number and detMik is the determinant of the matrix obtained when
the ith row and the kth column is deleted from the matrix A. For n = 2, this results in

detA = A11A22 − A12A21 (1.17)

and for n = 3

detA = A11A22A33 + A12A23A31 + A13A21A32 − A11A23A32 − A12A21A33 − A13A22A31

(1.18)

1.5 Inverse Matrix

The quadratic matrix A is invertible if there exists a matrix A−1 such that

A−1A = I (1.19)
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The matrix A−1 is then the inverse of A. For the inverse A−1 to exist, it is necessary that
detA ≠ 0. If

A−1 = AT (1.20)

the matrix A is orthogonal and then

ATA = AAT = I (1.21)

1.6 Counting Rules

The following counting rules apply to matrices (under the condition that the dimensions of the
matrices included are such that the operations are defined).

A + B = B + A (1.22)

A + (B + C) = (A + B) + C (1.23)

(A + B)T = AT + BT (1.24)

(AB)T = BTAT (1.25)

IA = A (1.26)

c(AB) = (cA)B = A(cB) (1.27)

(c + d)A = cA + dA (1.28)

c(A + B) = cA + cB (1.29)

(AB)C = A(BC) (1.30)

(A + B)C = AC + BC (1.31)

A(B + C) = AB + AC (1.32)

detAB = detA detB (1.33)

detA−1 = 1∕ detA (1.34)

det cA = cn detA (1.35)

(A−1)T = (AT )−1 (1.36)

(AB)−1 = B−1A−1 (1.37)

1.7 Systems of Equations

A linear system of equationswith n equations and p unknowns can be written in matrix form as

K a = f (1.38)

whereK has the dimensions n × p, a the dimensions p × 1 and f the dimensions n × 1. Usually,
the coefficients in K are known, while the coefficients in a and f can be known as well as
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unknown. For the case when all the components of a are unknown and all the components of
f are known, there are three types of systems of equations:

• n = p, the number of equations equals the number of unknowns. The matrixK is quadratic.
Depending on the contents ofK and f, four different characteristic cases can be recognised.
These are often indications of different states or behaviours that may be important to notice:
If detK ≠ 0, there is a unique solution.

– For f = 𝟎, this solution is the trivial one, a = 𝟎.
– For f ≠ 𝟎, there is a unique solution, a ≠ 𝟎. In general, this is an indication of a function-

ing physical model.

If detK = 0, there is no unique solution. This may be an indication of an, in some way,
unstable physical model.

– For f = 0, there are infinitely many solutions. This is the case for eigenvalue problems,
which, for example, can be a method to gain knowledge about unstable states of the
model.

– For f ≠ 0, there is either none or infinitelymany solutions; theremay be elementsmissing
in the model or the set of boundary conditions may be incomplete.

• n < p, the number of equations is less than the number of unknowns. The system is under-
determined. There are infinitely many solutions.

• n > p, the number of equations exceeds the number of unknowns. The system is overdeter-
mined. In general, there is no solution.

In the following symmetric matrices, K and A are considered which are common in the forth-
coming applications.

1.7.1 Systems of Equations with Only Unknown Components in the Vector a

For the case when detK ≠ 0 and f ≠ 𝟎, the unknowns in the vector a can be determined by
Gaussian elimination. This is shown in the following example.

Example 1.1 Solving a system of equations with only unknown components in the
vector a
We are looking for a solution to the system of equations

⎡⎢⎢⎣
8 −4 −2

−4 10 −4
−2 −4 10

⎤⎥⎥⎦
⎡⎢⎢⎣
a1
a2
a3

⎤⎥⎥⎦ =
⎡⎢⎢⎣
−8
18
6

⎤⎥⎥⎦ (1)

The unknowns are determined by Gaussian elimination. In this procedure, all elements
different from 0 are eliminated below the diagonal: let the first row remain unchanged.
From row 2 we subtract row 1 multiplied by the quotient K21∕K11 = −4∕8 = −0.5. From
row 3 we subtract row 1 multiplied by the quotient K31∕K11 = −2∕8 = −0.25. In this way,
we obtain ⎡⎢⎢⎣

8 −4 −2
0 8 −5
0 −5 9.5

⎤⎥⎥⎦
⎡⎢⎢⎣
a1
a2
a3

⎤⎥⎥⎦ =
⎡⎢⎢⎣
−8
14
4

⎤⎥⎥⎦ (2)
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In the next step, we let the rows 1 and 2 remain. From row 3 we subtract row 2 multiplied
by the quotient K32∕K22 = −5∕8 = −0.625. We have triangularised the coefficient matrix
K and obtain ⎡⎢⎢⎣

8 −4 −2
0 8 −5
0 0 6.375

⎤⎥⎥⎦
⎡⎢⎢⎣
a1
a2
a3

⎤⎥⎥⎦ =
⎡⎢⎢⎣

−8
14

12.75

⎤⎥⎥⎦ (3)

With the system of equations in this form, we can determine a3, a2 and a1 by
back-substitution

a3 =
12.75
6.375

= 2; a2 =
14 − (−5)a3

8
= 3;

a1 =
−8 − (−4)a2 − (−2)a3

8
= 1 (4)

and with that, we have the solution

⎡⎢⎢⎣
a1
a2
a3

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1
3
2

⎤⎥⎥⎦ (5)

To check the results, we can substitute the solution into the original system of equations
and carry out the matrix multiplication

⎡⎢⎢⎣
8 −4 −2

−4 10 −4
−2 −4 10

⎤⎥⎥⎦
⎡⎢⎢⎣
1
3
2

⎤⎥⎥⎦ which gives
⎡⎢⎢⎣
−8
18
6

⎤⎥⎥⎦ (6)

This is equal to the original right-hand side of the system of equations, that is the solution
found is correct.

1.7.2 Systems of Equations with Known and Unknown Components in the
Vector a

The systems of equations that we consider, in general, has a square matrix K, initially with
detK = 0, and a vector f ≠ 𝟎. Moreover, it is usually the case that some components of a are
known and the corresponding components of f are unknown. One systematic way to solve
such a system of equations begins with a partition of the matrices, which means that they are
divided into submatrices

K =
[
A1 A2

A3 K̃

]
; a =

[
g
ã

]
; f =

[
r
f̃

]
(1.39)

where thematricesA1,A2,A3, K̃, g and f̃ contain knownquantities, while ã and r are unknown.
With use of these submatrices, the system of equations (1.38) can be expressed as[

A1 A2

A3 K̃

][
g
ã

]
=
[
r
f̃

]
(1.40)
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The system of equations can be divided into two parts and then be written as

A1g + A2ã = r (1.41)

A3g + K̃ã = f̃ (1.42)

or

K̃ã = f̃ − A3g (1.43)

r = A1g + A2ã (1.44)

where the right-hand side of the equation (1.43) consists of known quantities. The purpose of
the partition of the system of equations is to, within the original system of equations, find a
sub-systemwith det K̃ ≠ 0, that is a systemwith a unique solution. The unknowns in ã can then
be computed from (1.43). One way to perform this computation is to use Gaussian elimination.
Once ã has been determined, r can be computed from (1.44).

Example 1.2 Solving a system of equations with both known and unknown compo-
nents in the vector a
In the system of equations

⎡⎢⎢⎢⎢⎢⎢⎣

20 0 0 0 −20 0
0 15 0 −15 0 0
0 0 16 12 −16 −12
0 −15 12 24 −12 −9

−20 0 −16 −12 36 12
0 0 −12 −9 12 9

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

0
0

−3
0
a5
a6

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

f1
f2
f3
f4
0

−15

⎤⎥⎥⎥⎥⎥⎥⎦
(1)

the vector a has known and unknown components. The solution can then be systematised
using partitioning (1.40). The auxiliary lines show this partition. The system of equations
is partitioned into two parts according to (1.41) and (1.42):

⎡⎢⎢⎢⎣
20 0 0 0
0 15 0 −15
0 0 16 12
0 −15 12 24

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

0
0

−3
0

⎤⎥⎥⎥⎦
+
⎡⎢⎢⎢⎣
−20 0

0 0
−16 −12
−12 −9

⎤⎥⎥⎥⎦
[
a5
a6

]
=
⎡⎢⎢⎢⎣
f1
f2
f3
f4

⎤⎥⎥⎥⎦
(2)

[
−20 0 −16 −12

0 0 −12 −9

]⎡⎢⎢⎢⎣
0
0

−3
0

⎤⎥⎥⎥⎦
+
[
36 12
12 9

][
a5
a6

]
=
[

0
−15

]
(3)

In the lower system of equations, there are two equations and two unknowns. If the known
terms of the system are gathered on the right-hand side of the equal sign, cf. (1.43), we
obtain [

36 12
12 9

][
a5
a6

]
=
[

0
−15

]
−
[
−20 0 −16 −12

0 0 −12 −9

]⎡⎢⎢⎢⎣
0
0

−3
0

⎤⎥⎥⎥⎦
(4)
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or [
36 12
12 9

][
a5
a6

]
=
[
−48
−51

]
(5)

From this system of equations, the unknown elements can be determined by Gaussian elim-
ination: the first row remains unchanged. From row 2 we subtract row 1 multiplied by the
quotient K21∕K11 = 12∕36 = 0.33333. In this way, we obtain[

36 12
0 5

][
a5
a6

]
=
[
−48
−35

]
(6)

and the unknown a5 and a6 can be determined by back-substitution

a6 =
−35
5

= −7; a5 =
−48 − 12a6

36
= 1 (7)[

a5
a6

]
=
[

1
−7

]
(8)

With a5 and a6 being known, the unknown coefficients in f can be determined using the
upper system of equations obtained from the partition, cf. (1.44),

⎡⎢⎢⎢⎣
f1
f2
f3
f4

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣
20 0 0 0
0 15 0 −15
0 0 16 12
0 −15 12 24

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

0
0

−3
0

⎤⎥⎥⎥⎦
+
⎡⎢⎢⎢⎣
−20 0

0 0
−16 −12
−12 −9

⎤⎥⎥⎥⎦
[

1
−7

]
=
⎡⎢⎢⎢⎣
−20

0
20
15

⎤⎥⎥⎥⎦
(9)

and with that, all the unknowns are determined.

1.7.3 Eigenvalue Problems

At times it is of interest to study the case when detK = 0 and f = 𝟎. Mainly, two different
types of problems appear. A system of equations in the form

(A − 𝜆I)a = 𝟎 (1.45)

is referred to as an eigenvalue problem or sometimes standard eigenvalue problem. For a solu-
tion to exist, it is required that

det(A − 𝜆I) = 0 (1.46)

A system of equations in the form
(A − 𝜆B)a = 𝟎 (1.47)

is referred to as a generalised eigenvalue problem and for a solution to exist it is required that

det(A − 𝜆B) = 0 (1.48)

Solving an eigenvalue problem means that the values of 𝜆, which fulfil Equations (1.46) and
(1.48) are determined, that is the eigenvalues 𝜆i are computed. The number of eigenvalues
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𝜆i is equal to the number of unknowns in the system of equations. Two or more eigenvalues
may coincide. A symmetric matrix K with real elements has only real eigenvalues. For each
eigenvalue𝜆i there is an eigenvectorai. The unknowns in the eigenvectorai cannot be uniquely
determined, but their relative magnitude can be computed.
If the product of two vectors bTc = 0, then the vectors b and c are orthogonal. For eigenvec-

tors, we have aTi aj = 0 for i ≠ j, that is any two eigenvectors are always orthogonal.
The following example shows how an eigenvalue problem is solved:

Example 1.3 Solving an eigenvalue problem
We want to find a solution to the eigenvalue problem

(A − 𝜆I)a = 𝟎 (1)

where

A =
[

5 −2
−2 8

]
(2)

The determinant of (A − 𝜆I) can be computed as

det(A − 𝜆I) = det

[
5 − 𝜆 −2
−2 8 − 𝜆

]
= (5 − 𝜆)(8 − 𝜆) − 4 = 𝜆

2 − 13𝜆 + 36 (3)

When this expression is set to zero, the equation

𝜆
2 − 13𝜆 + 36 = 0 (4)

is obtained. The solutions to this equation are the eigenvalues

𝜆1 = 4; 𝜆2 = 9 (5)

By substituting the computed eigenvalues into the first equation in the original system of
equations we obtain

(5 − 4)a1 − 2a2 = 0; a1 = t1

[
2
1

]
(6)

and

(5 − 9)a1 − 2a2 = 0; a2 = t2

[
1

−2

]
(7)

where t1 and t2 are arbitrary scalar multipliers, t1 ≠ 0, t2 ≠ 0. Had we substituted the eigen-
values into the second equation instead, the results would be the same. Computation of the
product of the two eigenvectors yields

aT1a2 = t1t2
[
2 1

][ 1
−2

]
= 0 (8)

The fact that the product is 0 means that the eigenvectors a1 and a2 are orthogonal.
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Exercises

1.1 Begin with the matrices

A =
[
2 3 −1
4 8 0

]
; B =

[
0 −2 4
1 0 2

]
; C =

⎡⎢⎢⎣
1 0 3
4 2 1
3 4 1

⎤⎥⎥⎦
and perform the following matrix operations manually.
(a) A + B
(b) ABT

(c) BTA
(d) AC
(e) detC

1.2 Introduce the matrices

A with dimensions 4 × 3

B with dimensions 3 × 6

C with dimensions 1 × 8

D with dimensions 6 × 1

Which of the following operations are possible to perform? For the possible operations,
give the dimensions of E
(a) E = AB
(b) E = BD
(c) E = ABCD
(d) E = ABDC
(e) E = BTAT

1.3 Solve the following system of equations manually. Check the solution.

⎡⎢⎢⎣
20 1 −10

−10 3 10
5 3 5

⎤⎥⎥⎦
⎡⎢⎢⎣
a1
a2
a3

⎤⎥⎥⎦ =
⎡⎢⎢⎣
−2
4
9

⎤⎥⎥⎦
1.4 Solve the following systems of equations manually and check the solutions.

(a) ⎡⎢⎢⎣
4 −2 −2

−2 5 −3
−2 −3 5

⎤⎥⎥⎦
⎡⎢⎢⎣
0
0
a3

⎤⎥⎥⎦ =
⎡⎢⎢⎣
f1
f2
10

⎤⎥⎥⎦
(b) ⎡⎢⎢⎣

6 −4 −2
−4 12 −8
−2 −8 10

⎤⎥⎥⎦
⎡⎢⎢⎣
1
a2
a3

⎤⎥⎥⎦ =
⎡⎢⎢⎣
f1
16
−6

⎤⎥⎥⎦
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(c) ⎡⎢⎢⎢⎢⎣

4 −4 0 0 0
−4 7 −2 −1 0
0 −2 5 −3 0
0 −1 −3 7 −3
0 0 0 −3 3

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

−3
a2
0
a4
3

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

f1
4
f3
−1
f5

⎤⎥⎥⎥⎥⎦
1.5 Begin with the matrices

A =
⎡⎢⎢⎢⎣
2 1 0 3
6 4 1 −2
0 3 4 1
1 2 −4 6

⎤⎥⎥⎥⎦
; B =

⎡⎢⎢⎢⎣
3 4 1 −2
6 8 1 0
2 2 3 −2
1 4 0 4

⎤⎥⎥⎥⎦
;

C =
⎡⎢⎢⎢⎣
−4
2
3
1

⎤⎥⎥⎥⎦
; D =

[
1 4 −3 6

]

and perform the following matrix operations with CALFEM. For the sub-exercises with
more than one matrix operation, compare and comment on the results.
(a) A + B and B + A
(b) AB and BA
(c) (AB)T , (BA)T and BTAT

(d) CD and DC
(e) CTAC
(f) detA, A−1 and AA−1

1.6 Compute the determinant of the matrices in the following systems of equations with
CALFEM. If possible, solve the systems of equations and check the solutions. If any of
the systems is unsolvable, explain why.

(a) ⎡⎢⎢⎢⎣
−4 3 0 1
1 2 −1 4
0 1 −1 2
2 0 2 2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
a1
a2
a3
a4

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣
−2
−1
−3
2

⎤⎥⎥⎥⎦
(b) ⎡⎢⎢⎣

4 −4 0
−4 6 −2
0 −2 2

⎤⎥⎥⎦
⎡⎢⎢⎣
a1
a2
a3

⎤⎥⎥⎦ =
⎡⎢⎢⎣
0
0
0

⎤⎥⎥⎦
(c) ⎡⎢⎢⎣

8 −3 −5
−3 5 −2
−5 −2 7

⎤⎥⎥⎦
⎡⎢⎢⎣
a1
a2
a3

⎤⎥⎥⎦ =
⎡⎢⎢⎣

4
2

−6

⎤⎥⎥⎦
1.7 Consider the eigenvalue problem (A − 𝜆I)a = 𝟎, where

A =
[
10 −3
−3 2

]
(a) Compute the eigenvalues.
(b) Compute the eigenvectors and check that they are orthogonal.
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2
Systems of Connected Springs

Figure 2.1 Elastic spring and a system of connected springs

A system of connected springs is a set of discrete material points connected by springs
(Figure 2.1). Of the different building blocks of structural mechanics, the spring is the
simplest one. The study of systems built up of springs only can therefore be an instructive
way to describe and explain the models at the system level.
In structural mechanics, a system is basically composed of two components: nodes with

degrees of freedom and elements. Here, we choose to study a system of connected springs that
carries load only in one direction and we let this direction be the x-axis (Figure 2.2). A number
of reference points or nodes are introduced. In each node, there can be an arbitrary number of
global degrees of freedom. These degrees of freedom represent different possible movements
for the ends of the elements connected to a node. Here, we choose to allow only one possible
movement for each node, the displacement in a certain direction. The nodes and the degrees of
freedom also form locations and directions where external forces (prescribed loads or arising
support forces) can be applied and equilibrium equations can be set up.
Between two nodes, we can create a potential force path by inserting an elastic spring. The

tendency of a spring to carry load depends on its spring stiffness. In a system with several
different force paths, the stiffer ones carry the greatest load.
Aswas the case at the system level, the description of a single spring can be based on discrete

nodes; here, they comprise the end points of the spring (Figure 2.3). To these local nodes, we
can associate local degrees of freedom, which describe the possible movements of the nodes
and also enable forces to act on the spring. Based on the degrees of freedom, defined for the
element, a matrix that represents the stiffness properties of the spring is formed. This matrix
can be placed between global degrees of freedom and constitutes then a force path in the global
spring system.

Structural Mechanics: Modelling and Analysis of Frames and Trusses, First Edition.
Karl-Gunnar Olsson and Ola Dahlblom.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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Figure 2.2 Nodes, degrees of freedom and connection of degrees of freedom

Figure 2.3 A spring element with two degrees of freedom

In structural mechanics, every system contains three basic quantities – force, stiffness and
deformation – which can be considered at different scale levels. Figure 2.4 shows a map, which
summarises the quantities and relations of a system of connected springs. The map has the
following structure:

• a scale with three levels: the elastic spring, the systematically described spring element and
the system of connected springs;

• three types of quantities: force measure, stiffness measure and displacement measure;
• for force measures: relations between force measures at different scale levels – equilibrium/

static equivalence;
• for displacement measures: relations between displacement measures at different scale

levels – kinematics/compatibility;
• at each level: a constitutive relation between the force measure and corresponding displace-

ment measure.

At the lowermost level, there is a relation between force and deformation for an elastic spring,
N = k 𝛿. This relation is called the constitutive relation and is the basis for the derivation
of corresponding relations at higher scale levels. The spring relation is further described in
Section 2.1.
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Figure 2.4 The quantities and relations of structural mechanics for springs and spring systems

By systematically introducing local degrees of freedom and expressing the deformation and
the forces of the spring in connection to them, we can reformulate the constitutive relation
of the spring to a corresponding constitutive relation for a spring element. This intermediate
level, which is described in Section 2.2, is a preparatory step for the uppermost level of the
scale, the model of a spring system.
The uppermost level deals with the systematic construction of computational models for

global load-carrying structures. The methodology introduced here for a system of connected
springs is general and is applied for all the systems considered in this book. The methodology
consists of six steps, which are described in Section 2.3.
Each level in the map represents a constitutive relation between forces and deformations.

Such a constitutive relation is always derived from a lower level to a higher one. We, in terms
of six steps, introduce the general principle for such derivations.

• Start from the constitutive relation of the lower level (1).
• Define the deformation measure of the higher level, kinematic quantities (2).
• Formulate a relation between the kinematic quantities of the lower and the higher level –

the kinematic relation (3).
• Define the loading on the body/structure at the higher level, force quantities (4).
• Formulate a relation between the forces of the lower and the higher level – equilibrium/static

equivalence (5).
• Determine a constitutive relation for the higher level using the three relations (6).
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In Sections 2.1–2.3, the numbers of these steps recur in the text. Consistently throughout the
textbook, each derivation from a lower to a higher level is concluded with a figure, which
summarises Equations (1), (3) and (5), which lead to the constitutive relation of the higher
level (6).

2.1 Spring Relations

The basic action of a spring is given by the relation

N = k 𝛿 (2.1)

which describes the resistance to deformation of a spring. The spring relation (Figure 2.5)
consists of three types of quantities: the force N acting on the spring, the stiffness k of the
spring and the deformation 𝛿 which arises. Equation (2.1) is the constitutive relation of the
spring (1).

Figure 2.5 A spring with the stiffness k is loaded with the force N and thereby it is elongated by a
distance 𝛿

2.2 Spring Element

A discretised spring element (Figure 2.6) has two nodes, each with one displacement degree
of freedom, u1 and u2. The displacements u1 and u2 are referred to as the nodal displacements
of the element (2) and we choose here to define them as positive when they have the same
direction as the x-axis. The forces acting at the nodes are denoted P1 and P2, and referred to
as element forces (4). These are also defined to be positive in the direction of the x-axis.
We are now able to formulate a kinematic relation (3) by expressing the deformation 𝛿 of

the spring as a function of the nodal displacements,

𝛿 = u2 − u1 (2.2)

Figure 2.6 A discretised spring element


