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Preface

This book includes the lectures and problem sets from the one-semester
course ‘Earth Modelling and Prediction’ that I teach at the University of Edin-
burgh. The course is aimed at first-year geoscience undergraduates who want
to understand the Earth and its evolving climate but do not have the necessary
quantitative skills to move beyond qualitative studies. My primary and most
ambitious objective for this course was to help students overcome the psycho-
logical barrier of applying mathematics to problems associated with the Earth.
It is this barrier that artificially limits students’ ability to gain a deeper under-
standing of the underlying science. My second objective was to show that the
relatively simple mathematics covered in this course could be applied to learn
something relevant to current areas of scientific research.

The focus of the book is the application of mathematics to scientifically rele-
vant problems. Rather than being comprehensive, the material should be seen
as providing a background for more advanced geoscience courses, which prac-
tise the application of mathematics and introduce the students to additional
mathematics. I support the use of real data in teaching and so in recent years
I have included progressively more exercises that involve the analysis of real
measurements, many of which form the backdrop to a major news story in
that year, for example, increased/decreased tropical deforestation rates or the
reduction in the spatial extent of Arctic sea ice. I hope to include in future edi-
tions more varied data analysis problems that reflect the breadth of geoscience
research.

I thank Patience Cowie, Roger Scrutton, and Roger Hipkin for recogniz-
ing the need for this course and for helping me to establish it at Edinburgh.
For helping to teach topics within the course over the years I thank Patience
Cowie, Godfrey Fitton, Gabriele Hegerl, Roger Hipkin, Ian Main, Chris
Merchant, Mark Parrington, Simon Tett, and Thorvaldur Thordarson. I thank
all the tutors who helped to make the course work well: Amber Annett, Louise
Barron, Dave Bell, Anthony Bloom, Matthew Brolly, Iain Cameron, Ruth
Carley, Craig Duguid, Leon Kapetas, Simon King, Jack Lonsdale, Malcolm
McMillan, Simone Morak, Heather Nicolson, Katie Noak, Luke Ridley,
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Robert Shore, Luke Smallman, Lorna Street, Oliver Sus, Sarah Touati,
Matthew Unterman, Lucia Viegas, and Adam Wilson. Finally, I thank Martin
Wooster (King’s College London) for proofreading and providing useful com-
ments on an earlier draft of the manuscript.

Paul I. Palmer
University of Edinburgh

May 2013



1
How Do You Know that
Global Warming Is Not
a Hoax?

The title of this introductory chapter is the question I pose at the start of my
course in Edinburgh. It seems like a ridiculous question to ask a bunch of
bright young students, especially ones who have chosen to study the Earth
system. But up until walking through the doors of the university many students
have not had the resources, inclination, and/or ability to question what they
are told; the key to being an effective scientist is to ask the right questions,
ones that probe at the very heart of the problem being studied. I provide the
student with four possible choices to answer the question and ask for a show
of hands:

1. popular media (internet, TV, radio, newspapers);

2. rigorous scientific reasoning and/or debate;

3. (blind) faith in scientists; or

4. other.

Typically, choice 1 represents the vast majority of hands. Why? Because we
are bombarded with scientific and political coverage of climate change. Why is
this dangerous? Because companies need to sell newspapers and to get people
to watch TV, and politicians are invariably biased in their opinions. Much of
the coverage is accurate but some programmes are biased, loosely based on
fact, with a damaging effect on the science education of the general public.
Sensationalism about Earth’s climate (particularly looking to the future) is
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2 CH 1 GLOBAL WARMING

rife, but some aspects of Earth’s climate are genuinely remarkable and awe-
inspiring. So how do you know what to believe?

Choice 2 often represents the second highest show of hands, but a much
smaller proportion than choice 1. This is fine up to a point. Scientists are some
of the biggest sceptics around and are generally very careful about what they
say. For instance, we see later in this chapter that the wording used in the Inter-
governmental Panel on Climate Change (IPCC) report1 has very strict statis-
tical interpretation that is difficult to misinterpret. But you only learn from
the scientists what they tell you. How did they reach their conclusions? Could
they have approached the problem from a different perspective and reached
a different conclusion? With the renewed call for transparency in science, par-
ticularly related to climate, most data used to draw conclusions about Earth’s
climate are online and freely available to download. Often the only barrier to
pursuing option 2, given that data are now freely available, is the confidence
to understand and interrogate quantitative data. The aim of this book is to
increase that confidence.

This mix of responses is reasonably similar to the general public response
to the question ‘How well do you feel you understand the issue of global
warming?’ that has been asked frequently by Gallup (www.gallup.com) for
the past quarter century (Figure 1.1). For this admittedly crude comparison I
have equated ‘Great deal’ with ‘Rigorous scientific reasoning’, ‘Fair amount’
with ‘Popular media’, and ‘Only a little’ with ‘(Blind) faith in scientists’.

How can mathematics help? In simple terms, mathematics (at this level) is
a tool that allows us to move far beyond what we can learn from descriptive
analysis. How much has sea ice changed? If we use the current rate of change,
how long will it be before the Arctic is free of ice? These are simple example
questions that cannot be answered without mathematics.

The Earth system: how do we know what we know?
I define the Earth system as the land, ocean, and atmosphere, all the physical,
chemical, biological, and social processes and their interactions (Figure 1.2).
This is a big unwieldy interconnected system that is coupled on a wide spec-
trum of spatial and temporal scales. To minimize the risk of discussing current
science results that might be superseded by new data, I have decided to focus
on how scientists generally know what they know about the Earth system and
the recent role of human activity and not what they know:

� First, we have a basic physical understanding of the Earth. We know, for
example, about the heat-trapping properties of gases in the atmosphere,

1 A report prepared by a subset of leading climate scientists that summarizes the state of the science.
The latest report can be found at www.ipcc.ch

www.gallup.com
www.gallup.com
http://www.ipcc.ch
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Figure 1.1 Results from a Gallup poll question ‘How well do you feel you understand the issue
of global warming?’ that has been asked since 1989.

Solid Earth Weather 

CryosphereAtmospheric gases 

and particles 

Land and ocean biology 

Humans 

Figure 1.2 A schematic describing the broad-scale subcomponents of the Earth system. Graph-
ics reproduced with permission from the UK/NERC National Centre for Earth Observation. (Image
courtesy of NASA.)



4 CH 1 GLOBAL WARMING

based on work first started in the nineteenth century. Another example is
continental drift, a theory describing how Earth’s continents move relative
to each other, which has been known since the twentieth century. These are
well-established science theories that have stood up to decades/centuries
of scientific scrutiny.

� Second, we have circumstantial evidence. We make qualitative connections
between observations of disparate quantities and results from computer
models2 of the Earth system, for example, warming of oceans, lands, and
the lower atmosphere, cooling of the middle atmosphere, and increases in
water vapour.

� Third, we have palaeoclimate evidence. We can reconstruct past climate
using a variety of data, for example, ice core, lake sediment core, coral
reefs, pollen. This places contemporary warming trends in the longer-term
context. Although there is debate about whether the past is any guide
to the future, they do provide us a history of how Earth has behaved in
the past.

� Finally, we have so-called ‘fingerprint’ evidence. The underlying philoso-
phy is that individual (natural and human-driven) processes will leave their
own unique signature (or fingerprint) on measurements of the Earth. By
comparing these data that naturally include these signatures with computer
models of climate with/without descriptions of the processes responsible
for these signatures we can understand the importance of individual pro-
cesses. This can also potentially identify the need for additional processes
that are currently not present in the model.

It is important to acknowledge that several independent lines of inquiry are
used to investigate phenomena and provide evidence to test a hypothesis. The
IPCC is testing the overarching hypothesis that human activity has determined
recent changes in climate. As we will see in the next chapter, the hypothesis
is right at the crux of the scientific method. In successive IPCC reports the
headline result has been stronger and stronger:

� 1995: The balance of evidence suggests a discernable human influence on
global climate.

2 A model in this instance is a collection of interrelated equations, written in a computer language,
that describe, for example, the physics, chemistry, and biology of the atmosphere and ocean. With-
out a computer, evaluating these equations would be an intractable task. In fact some of the fastest
computers in the world are dedicated to studying Earth’s climate.
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� 2001: Most of the observed warming over the last 50 years is likely to have
been due to the increase in greenhouse gas concentrations.

� 2007: Most of the observed increase in globally averaged temperatures
since the mid-twentieth century is very likely due to the observed increase
in anthropogenic greenhouse gas concentrations.

In the IPCC nomenclature the term ‘likely’ refers to a probability greater than
66% and ‘very likely’ to a probability greater than 90%. In 2001 the IPCC was
more than 66% certain that climate change was caused by human activity.
By 2007 it was more than 90% certain that recent climate change is due to
anthropogenic greenhouse gas concentrations. And most recently, in 2013, the
IPCC increased this confidence to 95%. It is possible that climate change is
due to other causes, but the IPCC regards this as unlikely. It is unfortunate that
this level of scientific ‘honesty’ also represents an inroad to climate scepticism.





2
Preamble

This chapter lays out many core mathematical skills that are important but do
not fit neatly into other chapters.

2.1 The scientific method: pushing back the
frontiers of ignorance
We start by introducing the idea of the scientific method, which describes a
general series of steps for investigating phenomena. You will already be famil-
iar with many of the steps but it is useful to go over the basics. Figure 2.1 illus-
trates the basic steps of the scientific method (see also boxed text below).

We start by identifying or defining a problem to investigate. It might be that
a ‘problem’ can be split up into a number of sub-problems.

We follow this by forming a hypothesis, an idea of what/how we expect
the problem to be once it is measured. The hypothesis can be as simple as
the expected value of a measurement or as complicated as how an object will
respond to a change in its environment. It is important to note that the hypoth-
esis must be formed prior to the measurement, otherwise it compromises the
validity of the conclusion we might draw from the method.

We make some observations or we perform an experiment to test the
hypothesis. We aim to improve knowledge of the system by measurement.
For many problems, data may already be available, in which case we move on
to the next step.

We organize or analyse the data. ‘Organizing the data might involve gath-
ering together or combining different sets of data. Data analysis describes a
whole range of techniques, some of which we will discuss in later chapters.
In both this step and the last, we must pay careful attention to measurement
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Identify or define
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Valid responses

Draw conclusions

Additional

experiments/analyses

and/or
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Yes

No

Figure 2.1 A schematic describing the scientific method.

error, otherwise our analysis may result in erroneous conclusions. We discuss
errors in Chapter 6.

Finally, we self-reflect on our experiment. Do the data agree with the
hypothesis? Is the answer definitive? Are other explanations possible? This is
an important step in the overall scientific method (therefore marked in bold)
and is what distinguishes the method from less rigorous pseudo-science meth-
ods. Depending on the nature of your experiment, you may have learnt some-
thing if the data agree or disagree with the original hypothesis. So you might
choose to draw reasonable conclusions at this point. If the data do not agree
with the original hypothesis, other valid responses might include additional
analysis or additional experiments to refine the original hypothesis. Or you
may choose to completely revise the hypothesis and go through the whole
process again.

Because of the importance of this method we will return to many of these
key concepts, particularly the self-reflection, throughout the book.

A trivial example of applying self-reflection is to answer the following ques-
tion: A pen and paper together cost £1.10. The pen costs £1 more than the paper.
How much is the paper?1

1 The majority of people will say that the paper costs 10p, but the answer is of course 5p. If the paper
costs 10p then the pen costs only 90p more than the paper.


