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Preface

This book is an introduction to the essentials of statistical analysis for students who have
little or no background in mathematics or statistics. The audience includes first- and second-
year undergraduate students in science, engineering, medicine and economics, along with
post-experience and other mature students who want to relearn their statistics, or to switch to
the powerful new language of R.

For many students, statistics is the least favourite course of their entire time at university.
Part of this is because some students have convinced themselves that they are no good at
sums, and consequently have tried to avoid contact with anything remotely quantitative in
their choice of subjects. They are dismayed, therefore, when they discover that the statistics
course is compulsory. Another part of the problem is that statistics is often taught by people
who have absolutely no idea how difficult some of the material is for non-statisticians. As
often as not, this leads to a recipe-following approach to analysis, rather than to any attempt
to understand the issues involved and how to deal with them.

The approach adopted here involves virtually no statistical theory. Instead, the assump-
tions of the various statistical models are discussed at length, and the practice of exposing
statistical models to rigorous criticism is encouraged. A philosophy of model simplification
is developed in which the emphasis is placed on estimating effect sizes from data, and
establishing confidence intervals for these estimates. The role of hypothesis testing at an
arbitrary threshold of significance like α � 0:05 is played down. The text starts from
absolute basics and assumes absolutely no background in statistics or mathematics.

As to presentation, the idea is that background material would be covered in a series of
1-hour lectures, then this book could be used as a guide to the practical sessions and for
homework, with the students working on their own at the computer. My experience is that
the material can be covered in 10–30 lectures, depending on the background of the students
and the depth of coverage it is hoped to achieve. The practical work is designed to be
covered in 10–15 sessions of about 1½ hours each, again depending on the ambition and
depth of the coverage, and on the amount of one-to-one help available to the students as they
work at their computers.

The R language of statistical computing has an interesting history. It evolved from the S
language, which was first developed at the AT&T Bell Laboratories by Rick Becker, John
Chambers and Allan Wilks. Their idea was to provide a software tool for professional
statisticians who wanted to combine state-of-the-art graphics with powerful model-fitting
capability. S is made up of three components. First and foremost, it is a powerful tool for
statistical modelling. It enables you to specify and fit statistical models to your data, assess
the goodness of fit and display the estimates, standard errors and predicted values derived



from the model. It provides you with the means to define and manipulate your data, but the
way you go about the job of modelling is not predetermined, and the user is left with
maximum control over the model-fitting process. Second, S can be used for data explora-
tion, in tabulating and sorting data, in drawing scatter plots to look for trends in your data, or
to check visually for the presence of outliers. Third, it can be used as a sophisticated
calculator to evaluate complex arithmetic expressions, and a very flexible and general
object-orientated programming language to perform more extensive data manipulation. One
of its great strengths is in the way in which it deals with vectors (lists of numbers). These
may be combined in general expressions, involving arithmetic, relational and transforma-
tional operators such as sums, greater-than tests, logarithms or probability integrals. The
ability to combine frequently-used sequences of commands into functions makes S a
powerful programming language, ideally suited for tailoring one’s specific statistical
requirements. S is especially useful in handling difficult or unusual data sets, because
its flexibility enables it to cope with such problems as unequal replication, missing values,
non-orthogonal designs, and so on. Furthermore, the open-ended style of S is particularly
appropriate for following through original ideas and developing new concepts. One of the
great advantages of learning S is that the simple concepts that underlie it provide a unified
framework for learning about statistical ideas in general. By viewing particular models in a
general context, S highlights the fundamental similarities between statistical techniques and
helps play down their superficial differences. As a commercial product S evolved into
S-PLUS, but the problem was that S-PLUS was very expensive. In particular, it was much
too expensive to be licensed for use in universities for teaching large numbers of students. In
response to this, two New Zealand-based statisticians, Ross Ihaka and Robert Gentleman
from the University of Auckland, decided to write a stripped-down version of S for teaching
purposes. The letter R ‘comes before S’, so what would be more natural than for two authors
whose first initial was ‘R’ to christen their creation R. The code for R was released in 1995
under a General Public License, and the core team was rapidly expanded to 15 members
(they are listed on the website, below). Version 1.0.0 was released on 29 February 2000.
This book is written using version 3.0.1, but all the code will run under earlier releases.

There is now a vast network of R users world-wide, exchanging functions with one another,
and a vast resource of packages containing data and programs. There is a useful publication
called The R Journal (formerly R News) that you can read at CRAN. Make sure that you cite
the R Core Team when you use R in published work; you should cite them like this:

R Core Team (2014). R: A Language and Environment for Statistical Computing,
R Foundation for Statistical Computing, Vienna. Available from http://www.r-project
.org/.

R is an Open Source implementation and as such can be freely downloaded. If you type
CRAN into your Google window you will find the site nearest to you from which to
download it. Or you can go directly to

http://cran.r-project.org

The present book has its own website at

http://www.imperial.ac.uk/bio/research/crawley/statistics
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Here you will find all the data files used in the text; you can download these to your hard
disk and then run all of the examples described in the text. The executable statements are
shown in the text in red Courier New font. There are files containing all the commands for
each chapter, so you can paste the code directly into R instead of typing it from the book.
There is a series of 12 fully-worked stand-alone practical sessions covering a wide range of
statistical analyses. Learning R is not easy, but you will not regret investing the effort to
master the basics.

M.J. Crawley
Ascot

April 2014
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1
Fundamentals

The hardest part of any statistical work is getting started. And one of the hardest things about
getting started is choosing the right kind of statistical analysis. The choice depends on the
nature of your data and on the particular question you are trying to answer. The truth is that
there is no substitute for experience: the way to know what to do is to have done it properly
lots of times before.

The key is to understand what kind of response variable you have got, and to know the
nature of your explanatory variables. The response variable is the thing you are working on: it
is the variable whose variation you are attempting to understand. This is the variable that goes
on the y axis of the graph (the ordinate). The explanatory variable goes on the x axis of the
graph (the abscissa); you are interested in the extent to which variation in the response variable
is associated with variation in the explanatory variable. A continuous measurement is a
variable like height or weight that can take any real numbered value. A categorical variable is a
factor with two or more levels: sex is a factor with two levels (male and female), and rainbow
might be a factor with seven levels (red, orange, yellow, green, blue, indigo, violet).

It is essential, therefore, that you know:

• which of your variables is the response variable?

• which are the explanatory variables?

• are the explanatory variables continuous or categorical, or a mixture of both?

• what kind of response variable have you got – is it a continuous measurement, a count, a
proportion, a time-at-death, or a category?

These simple keys will then lead you to the appropriate statistical method:

1. The explanatory variables (pick one of the rows):

(a) All explanatory variables continuous Regression

(b) All explanatory variables categorical Analysis of variance (ANOVA)

(c) Some explanatory variables continuous
some categorical

Analysis of covariance (ANCOVA)

Statistics: An Introduction Using R, Second Edition. Michael J. Crawley.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.



2. The response variable (pick one of the rows):

(a) Continuous Regression, ANOVA or ANCOVA

(b) Proportion Logistic regression

(c) Count Log linear models

(d) Binary Binary logistic analysis

(e) Time at death Survival analysis

There is a small core of key ideas that need to be understood from the outset. We cover
these here before getting into any detail about different kinds of statistical model.

Everything Varies

If you measure the same thing twice you will get two different answers. If you measure
the same thing on different occasions you will get different answers because the thing will
have aged. If you measure different individuals, they will differ for both genetic and
environmental reasons (nature and nurture). Heterogeneity is universal: spatial hetero-
geneity means that places always differ, and temporal heterogeneity means that times
always differ.

Because everything varies, finding that things vary is simply not interesting. We need a
way of discriminating between variation that is scientifically interesting, and variation that
just reflects background heterogeneity. That is why you need statistics. It is what this whole
book is about.

The key concept is the amount of variation that we would expect to occur by chance
alone, when nothing scientifically interesting was going on. If we measure bigger differ-
ences than we would expect by chance, we say that the result is statistically significant. If we
measure no more variation than we might reasonably expect to occur by chance alone, then
we say that our result is not statistically significant. It is important to understand that this is
not to say that the result is not important. Non-significant differences in human life span
between two drug treatments may be massively important (especially if you are the patient
involved). Non-significant is not the same as ‘not different’. The lack of significance may be
due simply to the fact that our replication is too low.

On the other hand, when nothing really is going on, then we want to know this. It makes
life much simpler if we can be reasonably sure that there is no relationship between y and x.
Some students think that ‘the only good result is a significant result’. They feel that their
study has somehow failed if it shows that ‘A has no significant effect on B’. This is an
understandable failing of human nature, but it is not good science. The point is that we want
to know the truth, one way or the other. We should try not to care too much about the way
things turn out. This is not an amoral stance, it just happens to be the way that science works
best. Of course, it is hopelessly idealistic to pretend that this is the way that scientists really
behave. Scientists often want passionately that a particular experimental result will turn out
to be statistically significant, so that they can get a Nature paper and get promoted. But that
does not make it right.
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Significance

What do we mean when we say that a result is significant? The normal dictionary definitions
of significant are ‘having or conveying a meaning’ or ‘expressive; suggesting or implying
deeper or unstated meaning’. But in statistics we mean something very specific indeed.
We mean that ‘a result was unlikely to have occurred by chance’. In particular, we mean
‘unlikely to have occurred by chance if the null hypothesis was true’. So there are two
elements to it: we need to be clear about what we mean by ‘unlikely’, and also what exactly
we mean by the ‘null hypothesis’. Statisticians have an agreed convention about what
constitutes ‘unlikely’. They say that an event is unlikely if it occurs less than 5% of the time.
In general, the null hypothesis says that ‘nothing is happening’ and the alternative says that
‘something is happening’.

Good and Bad Hypotheses

Karl Popper was the first to point out that a good hypothesis was one that was capable
of rejection. He argued that a good hypothesis is a falsifiable hypothesis. Consider the
following two assertions:

A. there are vultures in the local park

B. there are no vultures in the local park

Both involve the same essential idea, but one is refutable and the other is not. Ask
yourself how you would refute option A. You go out into the park and you look for vultures.
But you do not see any. Of course, this does not mean that there are none. They could have
seen you coming, and hidden behind you. No matter how long or how hard you look, you
cannot refute the hypothesis. All you can say is ‘I went out and I didn’t see any vultures’.
One of the most important scientific notions is that absence of evidence is not evidence of
absence.

Option B is fundamentally different. You reject hypothesis B the first time you see a
vulture in the park. Until the time that you do see your first vulture in the park, you work on
the assumption that the hypothesis is true. But if you see a vulture, the hypothesis is clearly
false, so you reject it.

Null Hypotheses

The null hypothesis says ‘nothing is happening’. For instance, when we are comparing two
sample means, the null hypothesis is that the means of the two populations are the same.
Of course, the two sample means are not identical, because everything varies. Again, when
working with a graph of y against x in a regression study, the null hypothesis is that the slope
of the relationship is zero (i.e. y is not a function of x, or y is independent of x). The essential
point is that the null hypothesis is falsifiable. We reject the null hypothesis when our data
show that the null hypothesis is sufficiently unlikely.

p Values

Here we encounter a much-misunderstood topic. The p value is not the probability that the
null hypothesis is true, although you will often hear people saying this. In fact, p values are
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calculated on the assumption that the null hypothesis is true. It is correct to say that p values
have to do with the plausibility of the null hypothesis, but in a rather subtle way.

As you will see later, we typically base our hypothesis testing on what are known as
test statistics: you may have heard of some of these already (Student’s t, Fisher’s F and
Pearson’s chi-squared, for instance): p values are about the size of the test statistic.
In particular, a p value is an estimate of the probability that a value of the test statistic,
or a value more extreme than this, could have occurred by chance when the null hypothesis
is true. Big values of the test statistic indicate that the null hypothesis is unlikely to be true.
For sufficiently large values of the test statistic, we reject the null hypothesis and accept the
alternative hypothesis.

Note also that saying ‘we do not reject the null hypothesis’ and ‘the null hypothesis is
true’ are two quite different things. For instance, we may have failed to reject a false null
hypothesis because our sample size was too low, or because our measurement error was too
large. Thus, p values are interesting, but they do not tell the whole story: effect sizes and
sample sizes are equally important in drawing conclusions. The modern practice is to state
the p value rather than just to say ‘we reject the null hypothesis’. That way, the reader can
form their own judgement about the effect size and its associated uncertainty.

Interpretation

It should be clear by this point that we can make two kinds of mistakes in the interpretation
of our statistical models:

• we can reject the null hypothesis when it is true

• we can accept the null hypothesis when it is false

These are referred to as Type I and Type II errors, respectively. Supposing we knew the
true state of affairs (which, of course, we seldom do). Then in tabular form:

Actual situationNull hypothesis

True False

Accept Correct decision Type II
Reject Type I Correct decision

Model Choice

There are a great many models that we could fit to our data, and selecting which model to use
involves considerable skill and experience. All models are wrong, but some models are
better than others. Model choice is one of the most frequently ignored of the big issues
involved in learning statistics.

In the past, elementary statistics was taught as a series of recipes that you followed
without the need for any thought. This caused two big problems. People who were taught
this way never realized that model choice is a really big deal (‘I’m only trying to do a t test’).
And they never understood that assumptions need to be checked (‘all I need is the p value’).

4 STATISTICS: AN INTRODUCTION USING R



Throughout this book you are encouraged to learn the key assumptions. In order of
importance, these are

• random sampling

• constant variance

• normal errors

• independent errors

• additive effects

Crucially, because these assumptions are often not met with the kinds of data that we
encounter in practice, we need to know what to do about it. There are some things that it is
much more difficult to do anything about (e.g. non-random sampling) than others (e.g. non-
additive effects).

The book also encourages users to understand that in most cases there are literally
hundreds of possible models, and that choosing the best model is an essential part of the
process of statistical analysis. Which explanatory variables to include in your model, what
transformation to apply to each variable, whether to include interaction terms: all of these
are key issues that you need to resolve.

The issues are at their simplest with designed manipulative experiments in which there
was thorough randomization and good levels of replication. The issues are most difficult
with observational studies where there are large numbers of (possibly correlated) explan-
atory variables, little or no randomization and small numbers of data points. Much of your
data is likely to come from the second category.

Statistical Modelling

The object is to determine the values of the parameters in a specific model that lead to the
best fit of the model to the data. The data are sacrosanct, and they tell us what actually
happened under a given set of circumstances. It is a common mistake to say ‘the data were
fitted to the model’ as if the data were something flexible, and we had a clear picture of the
structure of the model. On the contrary, what we are looking for is the minimal adequate
model to describe the data. The model is fitted to data, not the other way around. The best
model is the model that produces the least unexplained variation (the minimal residual
deviance), subject to the constraint that the parameters in the model should all be statistically
significant.

You have to specify the model. It embodies your mechanistic understanding of the
factors involved, and of the way that they are related to the response variable. We want the
model to be minimal because of the principle of parsimony, and adequate because there is
no point in retaining an inadequate model that does not describe a significant fraction of
the variation in the data. It is very important to understand that there is not one model; this
is one of the common implicit errors involved in traditional regression and ANOVA,
where the same models are used, often uncritically, over and over again. In most
circumstances, there will be a large number of different, more or less plausible models
that might be fitted to any given set of data. Part of the job of data analysis is to determine
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which, if any, of the possible models are adequate, and then, out of the set of adequate
models, which is the minimal adequate model. In some cases there may be no single best
model and a set of different models may all describe the data equally well (or equally
poorly if the variability is great).

Maximum Likelihood

What, exactly, do we mean when we say that the parameter values should afford the ‘best fit
of the model to the data’? The convention we adopt is that our techniques should lead to
unbiased, variance minimizing estimators. We define ‘best’ in terms of maximum likeli-
hood. This notion is likely to be unfamiliar, so it is worth investing some time to get a feel for
it. This is how it works:

• given the data

• and given our choice of model

• what values of the parameters of that model

• make the observed data most likely?

Let us take a simple example from linear regression where the model we want to fit is y =
a+ bx and we want the best possible estimates of the two parameters (the intercept a and the
slope b) from the data in our scatterplot.

If the intercept were 0 (left-hand graph, above), would the data be likely? The answer
of course, is no. If the intercept were 8 (centre graph) would the data be likely? Again,
the answer is obviously no. The maximum likelihood estimate of the intercept is shown
in the right-hand graph (its value turns out to be 4.827). Note that the point at which
the graph cuts the y axis is not the intercept when (as here) you let R decide where to
put the axes.

We could have a similar debate about the slope. Suppose we knew that the intercept
was 4.827, then would the data be likely if the graph had a slope of 1.5 (left-hand graph,
below)?
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The answer, of course, is no. What about a slope of 0.2 (centre graph)? Again, the data are
not at all likely if the graph has such a gentle slope. The maximum likelihood of the data
given the model is obtained with a slope of 0.679 (right-hand graph).

This is not how the procedure is carried out in practice, but it makes the point that we
judge the model on the basis how likely the data would be if the model were correct. When
we do the analysis in earnest, both parameters are estimated simultaneously.

Experimental Design

There are only two key concepts:

• replication

• randomization

You replicate to increase reliability. You randomize to reduce bias. If you replicate
thoroughly and randomize properly, you will not go far wrong.

There are a number of other issues whose mastery will increase the likelihood that you
analyse your data the right way rather than the wrong way:

• the principle of parsimony

• the power of a statistical test

• controls

• spotting pseudoreplication and knowing what to do about it

• the difference between experimental and observational data (non-orthogonality)

It does not matter very much if you cannot do your own advanced statistical analysis. If
your experiment is properly designed, you will often be able to find somebody to help you
with the stats. But if your experiment is not properly designed, or not thoroughly
randomized, or lacking adequate controls, then no matter how good you are at stats,
some (or possibly even all) of your experimental effort will have been wasted. No amount of
high-powered statistical analysis can turn a bad experiment into a good one. R is good, but
not that good.
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The Principle of Parsimony (Occam’s Razor)

One of the most important themes running through this book concerns model simplification.
The principle of parsimony is attributed to the fourteenth-century English nominalist
philosopher William of Occam who insisted that, given a set of equally good explanations
for a given phenomenon, then the correct explanation is the simplest explanation. It is
called Occam’s razor because he ‘shaved’ his explanations down to the bare minimum.
In statistical modelling, the principle of parsimony means that:

• models should have as few parameters as possible

• linear models should be preferred to non-linear models

• experiments relying on few assumptions should be preferred to those relying on many

• models should be pared down until they are minimal adequate

• simple explanations should be preferred to complex explanations

The process of model simplification is an integral part of statistical analysis in R. In
general, a variable is retained in the model only if it causes a significant increase in deviance
when it is removed from the current model. Seek simplicity, then distrust it.

In our zeal for model simplification, we must be careful not to throw the baby out with the
bathwater. Einstein made a characteristically subtle modification to Occam’s razor. He said:
‘A model should be as simple as possible. But no simpler.’

Observation, Theory and Experiment

There is no doubt that the best way to solve scientific problems is through a thoughtful blend
of observation, theory and experiment. In most real situations, however, there are con-
straints on what can be done, and on the way things can be done, which mean that one or
more of the trilogy has to be sacrificed. There are lots of cases, for example, where it is
ethically or logistically impossible to carry out manipulative experiments. In these cases it is
doubly important to ensure that the statistical analysis leads to conclusions that are as critical
and as unambiguous as possible.

Controls

No controls, no conclusions.

Replication: It’s the ns that Justify the Means

The requirement for replication arises because if we do the same thing to different individuals
we are likely to get different responses. The causes of this heterogeneity in response are many
and varied (genotype, age, sex, condition, history, substrate, microclimate, and so on). The
object of replication is to increase the reliability of parameter estimates, and to allow us to
quantify the variability that is found within the same treatment. To qualify as replicates, the
repeated measurements:
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• must be independent

• must not form part of a time series (data collected from the same place on successive
occasions are not independent)

• must not be grouped together in one place (aggregating the replicates means that they are
not spatially independent)

• must be measured at an appropriate spatial scale

• ideally, one replicate from each treatment ought to be grouped together into a block, and
all treatments repeated in many different blocks.

• repeated measures (e.g. from the same individual or the same spatial location) are not
replicates (this is probably the commonest cause of pseudoreplication in statistical
work)

How Many Replicates?

The usual answer is ‘as many as you can afford’. An alternative answer is 30. A very useful
rule of thumb is this: a sample of 30 or more is a big sample, but a sample of less than 30 is a
small sample. The rule doesn’t always work, of course: 30 would be derisively small as a
sample in an opinion poll, for instance. In other circumstances, it might be impossibly
expensive to repeat an experiment as many as 30 times. Nevertheless, it is a rule of great
practical utility, if only for giving you pause as you design your experiment with 300
replicates that perhaps this might really be a bit over the top. Or when you think you could
get away with just five replicates this time.

There are ways of working out the replication necessary for testing a given hypothesis
(these are explained below). Sometimes we know little or nothing about the variance of the
response variable when we are planning an experiment. Experience is important. So are pilot
studies. These should give an indication of the variance between initial units before the
experimental treatments are applied, and also of the approximate magnitude of the responses
to experimental treatment that are likely to occur. Sometimes it may be necessary to reduce
the scope and complexity of the experiment, and to concentrate the inevitably limited
resources of manpower and money on obtaining an unambiguous answer to a simpler
question. It is immensely irritating to spend three years on a grand experiment, only to find
at the end of it that the response is only significant at p = 0.08. A reduction in the number of
treatments might well have allowed an increase in replication to the point where the same
result would have been unambiguously significant.

Power

The power of a test is the probability of rejecting the null hypothesis when it is false. It has to
do with Type II errors: β is the probability of accepting the null hypothesis when it is false.
In an ideal world, we would obviously make β as small as possible. But there is a snag.
The smaller we make the probability of committing a Type II error, the greater we make the
probability of committing a Type I error, and rejecting the null hypothesis when, in fact, it is
correct. A compromise is called for. Most statisticians work with α � 0:05 and β � 0:2.
Now the power of a test is defined as 1 � β � 0:8 under the standard assumptions. This is
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used to calculate the sample sizes necessary to detect a specified difference when the error
variance is known (or can be guessed at).

Let’s think about the issues involved with power analysis in the context of a Student’s
t-test to compare two sample means. As explained on p. 91, the test statistic is t = difference/
(the standard error of the difference) and we can rearrange the formula to obtain n, the
sample size necessary in order that that a given difference, d, is statistically significant:

n � 2s2t2

d2

You can see that the larger the variance s2, and the smaller the size of the difference, the
bigger the sample we shall need. The value of the test statistic t depends on our decisions
about Type I and Type II error rates (conventionally 0.05 and 0.2). For sample sizes of order
30, the t values associated with these probabilities are 1.96 and 0.84 respectively: these add
to 2.80, and the square of 2.80 is 7.84. To the nearest whole number, the constants in the
numerator evaluate to 2× 8 = 16. So as a good rule of thumb, the sample size you need in
each treatment is given by

n � 16s2

d2

We simply need to work out 16 times the sample variance (obtained from the literature or
from a small pilot experiment) and divide by the square of the difference that we want to be
able to detect. So suppose that our current cereal yield is 10 t/ha with a standard deviation of
sd = 2.8 t/ha (giving s2 = 7.84) and we want to be able to say that a yield increase (delta) of
2 t/ha is significant at 95% with power = 80%, then we shall need to have 16× 7.84/
4 = 31.36 replicates in each treatment. The built in R function

power.t.test(delta=2,sd=2.8,power=0.8)

also gives n = 32 replicates per treatment on rounding-up.

Randomization

Randomization is something that everybody says they do, but hardly anybody does
properly. Take a simple example. How do I select one tree from a forest of trees, on
which to measure photosynthetic rates? I want to select the tree at random in order to avoid
bias. For instance, I might be tempted to work on a tree that had accessible foliage near to the
ground, or a tree that was close to the lab. Or a tree that looked healthy. Or a tree that had
nice insect-free leaves. And so on. I leave it to you to list the biases that would be involved in
estimating photosynthesis on any of those trees.

One common way of selecting a ‘random’ tree is to take a map of the forest and select a
random pair of coordinates (say 157 m east of the reference point, and 228 m north). Then
pace out these coordinates and, having arrived at that particular spot in the forest, select the
nearest tree to those coordinates. But is this really a randomly selected tree?

If it were randomly selected, then it would have exactly the same chance of being selected
as every other tree in the forest. Let us think about this. Look at the figure below, which
shows a map of the distribution of trees on the ground. Even if they were originally planted
out in regular rows, accidents, tree-falls, and heterogeneity in the substrate would soon lead
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to an aggregated spatial distribution of trees. Now ask yourself how many different random
points would lead to the selection of a given tree. Start with tree (a). This will be selected by
any points falling in the large shaded area.

Now consider tree (b). It will only be selected if the random point falls within the tiny area
surrounding that tree. Tree (a) has a much greater chance of being selected than tree (b),
and so the nearest tree to a random point is not a randomly selected tree. In a spatially
heterogeneous woodland, isolated trees and trees on the edges of clumps will always have a
higher probability of being picked than trees in the centre of clumps.

The answer is that to select a tree at random, every single tree in the forest must be
numbered (all 24 683 of them, or whatever), and then a random number between 1 and
24 683 must be drawn out of a hat. There is no alternative. Anything less than that is not
randomization.

Now ask yourself how often this is done in practice, and you will see what I mean when
I say that randomization is a classic example of ‘Do as I say, and not do as I do’. As an
example of how important proper randomization can be, consider the following experiment
that was designed to test the toxicity of five contact insecticides by exposing batches of flour
beetles to the chemical on filter papers in Petri dishes. The animals walk about and pick up
the poison on their feet. The Tribolium culture jar was inverted, flour and all, into a large
tray, and beetles were collected as they emerged from the flour. The animals were allocated
to the five chemicals in sequence; three replicate Petri dishes were treated with the first
chemical, and 10 beetles were placed in each Petri dish. Do you see the source of bias in this
procedure?
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It is entirely plausible that flour beetles differ in their activity levels (sex differences,
differences in body weight, age, etc.). The most active beetles might emerge first from the
pile of flour. These beetles all end up in the treatment with the first insecticide. By the time
we come to finding beetles for the last replicate of the fifth pesticide, we may be grubbing
round in the centre of the pile, looking for the last remaining Tribolium. This matters,
because the amount of pesticide picked by the beetles up will depend upon their activity
levels. The more active the beetles, the more chemical they pick up on their feet, and the
more likely they are to die. Thus, the failure to randomize will bias the result in favour of the
first insecticide because this treatment received the most active beetles.

What we should have done is this. If we think that insect activity level is important in our
experiment, then we should take this into account at the design stage. We might decide to
have three levels of activity: active, average and sluggish. We fill the first five Petri dishes
with 10 each of the active insects that emerge first from the pile. The next 50 insects we find
go 10-at-a-time into five Petri dishes that are labelled average. Finally, we put last 50 insects
to emerge into a set of five Petri dishes labelled sluggish. This procedure has created three
blocks based on activity levels: we do not know precisely why the insects differed in their
activity levels, but we think it might be important. Activity level is called a random effect: it
is a factor with three levels. Next comes the randomization. We put the names of the five
insecticides into a hat, shuffle them up, and draw them out one-at-a-time at random. The first
Petri dish containing active beetles receives the insecticide that is first out of the hat, and so
on until all five active Petri dishes have been allocated their own different pesticide. Then
the five labels go back in the hat and are reshuffled. The procedure is repeated to allocate
insecticide treatment at random to the five average activity Petri dishes. Finally, we put the
labels back in the hat and draw the insecticide treatment for the five Petri dishes containing
sluggish insects.

But why go to all this trouble? The answer is very important, and you should read it again
and again until you understand it. The insects differ and the insecticides differ. But the Petri
dishes may differ, too, especially if we store them in slightly different circumstances (e.g.
near to the door of the controlled temperature cabinet or away at the back of the cabinet). The
point is that there will be a total amount of variation in time to death across all the insects in
the whole experiment (all 3× 5× 10= 150 of them). We want to partition this variation into
that which can be explained by differences between the insecticides and that which cannot.

explained variation

unexplained variation

total variation
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If the amount of variation explained by differences between the insecticide treatments is
large, then we conclude that the insecticides are significantly different from one another in
their effects on mean age at death. We make this judgement on the basis of a comparison
between the explained variation SSA and the unexplained variation SSE. If the unexplained
variation is large, it is going to be very difficult to conclude anything about our fixed effect
(insecticide in this case).

The great advantage of blocking is that it reduces the size of the unexplained variation. In
our example, if activity level had a big effect on age at death (block variation), then the
unexplained variation SSE would be much smaller than would have been the case if we had
ignored activity and the significance of our fixed effect will be correspondingly higher:

explained variation

unexplained variation

total variation
block variation

SSE

The idea of good experimental design is to make SSE as small as possible, and blocking is
the most effective way to bring this about.

R is very useful during the randomization stage because it has a function called sample

which can shuffle the factor levels into a random sequence. Put the names of the five
insecticides into a vector like this:

treatments <- c("aloprin","vitex","formixin","panto","allclear")

Then use sample to shuffle them for the active insects in dishes 1 to 5:

sample(treatments)

[1] "formixin" "panto" "vitex" "aloprin" "allclear"

then for the insects with average activity levels in dishes 6 to 10:

sample(treatments)

[1] "formixin" "allclear" "aloprin" "panto" "vitex"

then finally for the sluggish ones in dishes 11 to 15:

sample(treatments)

[1] "panto" "aloprin" "allclear" "vitex" "formixin"

The recent trend towards ‘haphazard’ sampling is a cop-out. What it means is that ‘I admit
that I didn’t randomize, but you have to take my word for it that this did not introduce any
important biases’. You can draw your own conclusions.
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Strong Inference

One of the most powerful means available to demonstrate the accuracy of an idea is an
experimental confirmation of a prediction made by a carefully formulated hypothesis. There
are two essential steps to the protocol of strong inference (Platt, 1964):

• formulate a clear hypothesis

• devise an acceptable test

Neither one is much good without the other. For example, the hypothesis should not lead
to predictions that are likely to occur by other extrinsic means. Similarly, the test should
demonstrate unequivocally whether the hypothesis is true or false.

A great many scientific experiments appear to be carried out with no particular
hypothesis in mind at all, but simply to see what happens. While this approach may
be commendable in the early stages of a study, such experiments tend to be weak as an
end in themselves, because there will be such a large number of equally plausible
explanations for the results. Without contemplation there will be no testable predictions;
without testable predictions there will be no experimental ingenuity; without experi-
mental ingenuity there is likely to be inadequate control; in short, equivocal interpreta-
tion. The results could be due to myriad plausible causes. Nature has no stake in being
understood by scientists. We need to work at it. Without replication, randomization and
good controls we shall make little progress.

Weak Inference

The phrase ‘weak inference’ is used (often disparagingly) to describe the interpretation of
observational studies and the analysis of so-called ‘natural experiments’. It is silly to be
disparaging about these data, because they are often the only data that we have. The aim of
good statistical analysis is to obtain the maximum information from a given set of data,
bearing the limitations of the data firmly in mind.

Natural experiments arise when an event (often assumed to be an unusual event, but
frequently without much justification of what constitutes unusualness) occurs that is like an
experimental treatment (a hurricane blows down half of a forest block; a landslide creates
a bare substrate; a stock market crash produces lots of suddenly poor people, etc.). ‘The
requirement of adequate knowledge of initial conditions has important implications for the
validity of many natural experiments. Inasmuch as the “experiments” are recognized only
when they are completed, or in progress at the earliest, it is impossible to be certain of the
conditions that existed before such an “experiment” began. It then becomes necessary to
make assumptions about these conditions, and any conclusions reached on the basis of
natural experiments are thereby weakened to the point of being hypotheses, and they should
be stated as such’ (Hairston, 1989).

How Long to Go On?

Ideally, the duration of an experiment should be determined in advance, lest one falls prey to
one of the twin temptations:
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